JP3328501B2 - Gas sensor for food quality detection - Google Patents

Gas sensor for food quality detection

Info

Publication number
JP3328501B2
JP3328501B2 JP09063196A JP9063196A JP3328501B2 JP 3328501 B2 JP3328501 B2 JP 3328501B2 JP 09063196 A JP09063196 A JP 09063196A JP 9063196 A JP9063196 A JP 9063196A JP 3328501 B2 JP3328501 B2 JP 3328501B2
Authority
JP
Japan
Prior art keywords
sensor
gas
dimethyl disulfide
gas sensor
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09063196A
Other languages
Japanese (ja)
Other versions
JPH09257737A (en
Inventor
▲のぼる▼ 山添
則雄 三浦
菜穂美 船崎
泰一 浅野
研司 林
彦明 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirei Corp
Original Assignee
Nichirei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirei Corp filed Critical Nichirei Corp
Priority to JP09063196A priority Critical patent/JP3328501B2/en
Publication of JPH09257737A publication Critical patent/JPH09257737A/en
Application granted granted Critical
Publication of JP3328501B2 publication Critical patent/JP3328501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食品工業分野にお
いてスープ類等の加工食品の品質管理、製造管理に有効
に使用される食品の品質検知用ガスセンサに関し、さら
に詳しくは、食品のフレーバー画分に見い出される成分
である二硫化ジメチルに優れた応答特性を示すガスセン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sensor for detecting the quality of food, which is used effectively for quality control and production control of processed foods such as soups in the field of food industry, and more particularly, to a flavor fraction of food. The present invention relates to a gas sensor exhibiting excellent response characteristics to dimethyl disulfide, which is a component found in US Pat.

【0002】[0002]

【従来の技術】加工食品であるスープ類は、脂肪族炭化
水素、芳香族炭化水素、アルデヒド、ケトン、フラン
類、エステル、硫黄化合物、窒素化合物、フェノール、
油脂等の種々の呈味成分、におい成分を含有する。例え
ばコンソメスープでは、重要なにおい成分として、畜肉
中に含まれるエステル類、野菜を煮込んだ際に発生する
ケトン類、肉を煮込んだ際に発生するアルデヒド類、肉
の香ばしいにおい成分であるピラジン類、野菜を煮込ん
だ際の爽やかな香り成分である硫黄化合物が含まれてい
る。これらの各グループについては、それぞれ酢酸エチ
ル、アセトン、カプロンアルデヒド、2−メチルピラジ
ン、二硫化ジメチルといった代表的成分が挙げられ、こ
れらの成分が混合されてコンソメスープ独特のにおいを
形成している。
2. Description of the Related Art Soups that are processed foods include aliphatic hydrocarbons, aromatic hydrocarbons, aldehydes, ketones, furans, esters, sulfur compounds, nitrogen compounds, phenols,
Contains various taste components and odor components such as oils and fats. For example, in consommé soup, important odor components are esters contained in meat, ketones generated when vegetables are boiled, aldehydes generated when meat is boiled, and pyrazines, which are fragrant components of meat. It contains a sulfur compound that is a refreshing scent when vegetables are boiled. Each of these groups includes representative components such as ethyl acetate, acetone, caproaldehyde, 2-methylpyrazine, and dimethyl disulfide, and these components are mixed to form a unique smell of consomme soup.

【0003】スープ類の製造においては、その呈味性、
香気性を的確に評価し、その結果に基づいて各工程を管
理することが重要である。従来、スープ類等の加工食品
の製造工程における味やにおいに対する品質管理は、人
間の感覚に頼る官能試験を中心とし、これに糖度や透視
度等を測定するといった評価法を併用しているのが現状
である。
[0003] In the production of soups, its taste,
It is important to accurately evaluate the aroma and control each process based on the results. Conventionally, quality control for taste and smell in the manufacturing process of processed foods such as soups has centered on sensory tests relying on human sensation, along with evaluation methods such as measuring sugar content and transparency. Is the current situation.

【0004】しかし、近年、加工食品の品質については
厳しい要求がなされるようになっており、従来のような
評価法では十分な品質管理を行うことが困難になってい
る。特に味やにおいの官能試験については、客観的に評
価しようとすれば、専門パネルの養成あるいはそれらの
複数の人による評価が必要であり、製造工程での即時的
対応は難しいこととなり、いわゆる味のプロが長年の勘
に頼っているのが現状である。また、官能試験では個人
差や体調などにも左右され、味やにおいの正確な判定を
行うことが難しい。
However, in recent years, strict requirements have been made on the quality of processed foods, and it has become difficult to perform sufficient quality control with conventional evaluation methods. Especially for sensory tests of taste and smell, it is necessary to train specialized panels or evaluate them by multiple persons if objective evaluation is to be performed, and it is difficult to immediately respond in the manufacturing process. It is the current situation that professionals rely on intuition for many years. In addition, in the sensory test, it is difficult to make an accurate determination of taste and smell depending on individual differences and physical condition.

【0005】一方、味やにおいの代表的成分を機器類で
分析することにより、食品の品質を管理することも考え
られる。味の分析手段としては、高速液体クロマトグラ
フや、酵素センサ、微生物センサ等のうまみ成分用セン
サがあり、においの分析手段としては、ガスクロマトグ
ラフ等がある。しかし、高速液体クロマトグラフやガス
クロマトグラフは装置が複雑かつ大型で高価な上、操作
が煩雑で測定に時間を要するため、現場での管理に用い
るには不適である。また、上記のうまみ成分用センサで
は寿命や感度での問題が見られ、十分な結果が得られて
いない。
On the other hand, it is conceivable to control the quality of food by analyzing typical components of taste and smell with instruments. Taste analysis means include high-performance liquid chromatographs and umami component sensors such as enzyme sensors and microbial sensors, and odor analysis means include gas chromatographs. However, high-performance liquid chromatographs and gas chromatographs are unsuitable for on-site management because the equipment is complicated, large and expensive, and the operation is complicated and time is required for measurement. Further, in the above-mentioned sensor for taste component, there are problems in life and sensitivity, and sufficient results have not been obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたもので、スープ類等の加工食品の品質評
価を簡便、迅速、かつ安価に行うことが可能な食品の品
質検知用ガスセンサを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended for detecting the quality of processed foods, such as soups, in a simple, quick and inexpensive manner. It is an object to provide a gas sensor.

【0007】[0007]

【課題を解決するための手段】本発明者らは、スープ類
に含まれるにおい成分の検討を行い、このにおい成分が
スープ類の官能評価に大きな影響を与えること、したが
ってスープ類に含まれるにおい成分に高感度に応答する
ガスセンサを開発すれば、スープ類の品質管理を簡便に
精度良く行なえることに着目した。そして、スープ類の
フレーバー画分に見い出される成分である二硫化ジメチ
ルに優れた応答特性を示す半導体ガスセンサ材料を探索
した。
Means for Solving the Problems The present inventors have studied the odor components contained in soups, and found that these odor components have a great effect on the sensory evaluation of the soups, and therefore the odor contained in the soups. We focused on the fact that if we developed a gas sensor that responds to components with high sensitivity, we could easily and accurately control the quality of soups. Then, a semiconductor gas sensor material exhibiting excellent response characteristics to dimethyl disulfide, which is a component found in the flavor fraction of soups, was searched.

【0008】この場合、金属酸化物を素子材料とした硫
黄系ガス用センサとして、これまで硫化水素用センサと
メルカプタン用センサが提案されており、そのセンサ素
子材料としては、硫化水素用では酸化錫、メルカプタン
用では酸化インジウムを用いることが提案されている
(T.Maekawa et al,Chemistry Letters,pp.575-578.199
1、前川他,九州大学大学院総合理工学研究科報告,第15
巻,第3号,273-279,平成5年12月、T.Maekawa et al,Jour
nal of Material Chemistry,1994,4(8),1259-1262)。
一方、食品の香気成分の1つである二硫化ジメチルに応
答するセンサとしては、プラセオジウムを添加した酸化
鉄系材料をセンサ素子材料としたものが提案されている
が、このセンサは感度、選択性が十分でなかった(阿武
他,表面化学,第16巻,第8号,474-479,1995)。そこで、
本発明者らは、これらの知見をもとに、有機硫黄化合物
に応答性のある酸化インジウムを用いて二硫化ジメチル
用センサの開発を行った。
In this case, a sensor for hydrogen sulfide and a sensor for mercaptan have been proposed as sensors for a sulfur-based gas using a metal oxide as an element material. As the sensor element material, tin oxide for hydrogen sulfide is used. It has been proposed to use indium oxide for mercaptans (T. Maekawa et al, Chemistry Letters, pp. 575-578.199).
1, Maekawa et al., Report of Graduate School of Science and Engineering, Kyushu University, No. 15
Volume, No. 3, 273-279, December 1993, T. Maekawa et al, Jour
nal of Material Chemistry, 1994, 4 (8), 1259-1262).
On the other hand, as a sensor responding to dimethyl disulfide, one of the aroma components of food, a sensor element material made of an iron oxide-based material to which praseodymium is added has been proposed, but this sensor has a sensitivity and selectivity. (Abu et al., Surface Chemistry, Vol. 16, No. 8, 474-479, 1995). Therefore,
The present inventors have developed a sensor for dimethyl disulfide using indium oxide responsive to organic sulfur compounds based on these findings.

【0009】その結果、本発明者らは、硫酸リチウム
[Li2SO4]又は硫酸ナトリウム[Na2SO4]を分
散した酸化インジウム[In23]をセンサ素子材料と
して用いた場合、二硫化ジメチル[(CH3S)2]に対
して優れた応答特性を示し、スープ類等の品質評価のた
めのセンサとして有用な半導体ガスセンサが得られるこ
とを知見し、本発明をなすに至った。
As a result, the present inventors have found that when indium oxide [In 2 O 3 ] in which lithium sulfate [Li 2 SO 4 ] or sodium sulfate [Na 2 SO 4 ] is dispersed is used as a sensor element material, The present inventors have found that a semiconductor gas sensor that exhibits excellent response characteristics to dimethyl sulfide [(CH 3 S) 2 ] and is useful as a sensor for evaluating the quality of soups and the like can be obtained, and has led to the present invention. .

【0010】したがって、本発明は、硫酸リチウム又は
硫酸ナトリウムを分散してなる酸化インジウムをセンサ
素子材料とし、二硫化ジメチル応答性を有することを特
徴とする食品の品質検知用ガスセンサを提供する。
Therefore, the present invention provides a gas sensor for detecting the quality of food, characterized in that it has responsiveness to dimethyl disulfide, using indium oxide obtained by dispersing lithium sulfate or sodium sulfate as a sensor element material.

【0011】[0011]

【発明の実施の形態】本発明において、酸化インジウム
に対する硫酸リチウム又は硫酸ナトリウムの分散量
[(硫酸リチウム又は硫酸ナトリウム)/{酸化インジ
ウム+(硫酸リチウム又は硫酸ナトリウム)}]は、
0.1〜10重量%、特に1〜5重量%とすることが好
ましい。硫酸リチウム又は硫酸ナトリウムの分散量を
0.1〜10重量%とすることにより、二硫化ジメチル
に対する応答特性が極めて良いセンサを得ることができ
る。この場合、酸化インジウムへの硫酸リチウム又は硫
酸ナトリウムの分散は、含浸法、コロイド吸着法、共沈
法等の公知の方法で行うことができる。また、本発明セ
ンサの構造に限定はなく、通常の半導体ガスセンサと同
様の構造とすることができる。なお、硫酸リチウム及び
硫酸ナトリウムは併用することもでき、この場合の硫酸
リチウム及び硫酸ナトリウムの酸化インジウムに対する
添加量は合計量が前記範囲となるようにすればよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the dispersion amount of lithium sulfate or sodium sulfate relative to indium oxide [(lithium sulfate or sodium sulfate) / {indium oxide + (lithium sulfate or sodium sulfate)] is:
It is preferably 0.1 to 10% by weight, particularly preferably 1 to 5% by weight. By setting the dispersion amount of lithium sulfate or sodium sulfate to 0.1 to 10% by weight, a sensor having extremely good response characteristics to dimethyl disulfide can be obtained. In this case, lithium sulfate or sodium sulfate can be dispersed in indium oxide by a known method such as an impregnation method, a colloid adsorption method, and a coprecipitation method. The structure of the sensor of the present invention is not limited, and may be the same as that of a normal semiconductor gas sensor. Note that lithium sulfate and sodium sulfate can be used in combination. In this case, the total amount of lithium sulfate and sodium sulfate added to indium oxide may be within the above range.

【0012】[0012]

【実施例】次に、実施例により本発明を具体的に示す。
以下に述べるように種々の半導体ガスセンサを作製し、
スープ類中のにおい成分に対するこれらセンサの特性を
調べた。
Next, the present invention will be specifically described by way of examples.
Fabricate various semiconductor gas sensors as described below,
The characteristics of these sensors for odor components in soups were investigated.

【0013】(1)センサ素子の作製 In23をベース材料とし、これに12種類の硫酸塩を
それぞれ添加して粉末試料(センサ素子材料)を調製し
た。得られた粉末試料を用いてセンサ素子を作製した。
(1) Preparation of Sensor Element A powder sample (sensor element material) was prepared by using In 2 O 3 as a base material and adding 12 kinds of sulfates to each. A sensor element was manufactured using the obtained powder sample.

【0014】粉末試料の調製 In23の粉末(ベース材料)に硫酸塩を添加して粉末
試料を調製した。ベース材料のIn23は、InCl3
を28%NH3水溶液で加水分解し、得られた沈殿を濾
過・水洗・乾燥した後、空気中において850℃で5時
間焼成し、さらにボールミルで粉砕して得た。硫酸塩の
添加は含浸法により行った。まず、硫酸塩をベース材料
に対して所定の割合になるように混合した。さらに蒸留
水を加え、攪拌しながら試料がペースト状になるまで水
を蒸発させ、105〜110℃に保たれた乾燥器中で1
2時間乾燥させた。その後、粉砕して空気中において7
00℃で5時間焼成した。このようにして添加した硫酸
塩は、Li2SO4、Na2SO4、K2SO4、MgS
4、CaSO4、SrSO4、BaSO4、Al2(S
43、CdSO4、ZnSO4、Ag2SO4、Ce(S
42である。ベース材料に対する硫酸塩の添加量[硫
酸塩/(ベース材料+硫酸塩)]は、いずれの粉末試料
でも5重量%とした。
Preparation of Powder Sample A powder sample was prepared by adding a sulfate to In 2 O 3 powder (base material). In 2 O 3 of the base material is InCl 3
Was hydrolyzed with a 28% NH 3 aqueous solution, and the obtained precipitate was filtered, washed with water and dried, calcined in air at 850 ° C. for 5 hours, and further pulverized with a ball mill. Sulfate was added by the impregnation method. First, the sulfate was mixed with the base material at a predetermined ratio. Further, distilled water was added thereto, and the water was evaporated with stirring until the sample became a paste.
Dry for 2 hours. Then, pulverize in air for 7
It was baked at 00 ° C. for 5 hours. The sulfates added in this manner include Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , MgS
O 4 , CaSO 4 , SrSO 4 , BaSO 4 , Al 2 (S
O 4 ) 3 , CdSO 4 , ZnSO 4 , Ag 2 SO 4 , Ce (S
O 4 ) 2 . The amount of sulfate added to the base material [sulfate / (base material + sulfate)] was 5% by weight for all powder samples.

【0015】センサ素子の作製 図1に示すように、アルミナ絶縁管(内径0.4mm、
外径1.2mm)に電極として2本のPt線(0.3m
mφ)を3.0mmの間隔で巻き付けたものに、水で練
ってペースト状にしたセンサ材料(粉末試料)を塗布
し、室温で乾燥後、空気中において700℃で4時間焼
成してセンサ素子を作製した。
Fabrication of Sensor Element As shown in FIG. 1, an alumina insulating tube (with an inner diameter of 0.4 mm,
Two Pt wires (0.3 m
mφ) is applied at a distance of 3.0 mm, a sensor material (powder sample) kneaded with water and made into a paste is applied, dried at room temperature, and baked at 700 ° C. for 4 hours in air to obtain a sensor element. Was prepared.

【0016】(2)センサ特性の測定 測定方法 イ.装置 センサ素子の応答は、回路の基準抵抗の両端の出力電圧
を求める方法(電流検出法)により測定した。この場
合、センサ素子を図2に示す測定回路に組み込みんだ。
なお、センサ素子はスポット溶接により素子ホルダに接
続し、その素子ホルダを反応管に装着した。素子ホルダ
を装着した反応管を図3に示す。
(2) Measurement of sensor characteristics Measurement method a. Apparatus The response of the sensor element was measured by a method (current detection method) for obtaining the output voltage across the reference resistance of the circuit. In this case, the sensor element was incorporated in the measurement circuit shown in FIG.
The sensor element was connected to the element holder by spot welding, and the element holder was attached to the reaction tube. FIG. 3 shows a reaction tube to which the element holder is attached.

【0017】ロ.手順 素子ホルダを装着した反応管に空気を200cm3/分
の流速で流通させた。この場合、測定温度に進む前に6
00℃×30分の乾燥空気による前処理を行った。その
後、湿潤空気雰囲気として測定温度まで冷却し、湿潤空
気中における素子抵抗の定常値(Ra)を求め、さらに
キャリヤガス(湿潤空気)中に目的ガス成分を導入した
被検ガスを流通させ、素子抵抗の定常値(Rg)を求め
た。その後、ガスを湿潤空気に切り換え、素子抵抗があ
る程度定常値に回復した後に、乾燥空気中600℃×3
0分の処理を行ってから次の測定へと進んだ。この場
合、目的成分を導入するキャリヤガスを湿潤空気とした
のは、実際のスープなどの食品サンプルから発生するガ
スを被検ガスとして測定を行うとすると、水蒸気の影響
は避けられないと考えられるからである。
B. Procedure Air was passed through the reaction tube equipped with the element holder at a flow rate of 200 cm 3 / min. In this case, before proceeding to the measurement temperature, 6
A pretreatment with dry air at 00 ° C. for 30 minutes was performed. Thereafter, the sample gas is cooled to a measurement temperature in a humid air atmosphere, a steady-state value (R a ) of the element resistance in the humid air is obtained, and a test gas into which a target gas component is introduced is circulated in a carrier gas (humid air). The steady-state value (R g ) of the element resistance was determined. Thereafter, the gas was switched to wet air, and after the element resistance was restored to a steady value to some extent, the temperature was changed to 600 ° C. × 3 in dry air.
After performing the process for 0 minutes, the process proceeded to the next measurement. In this case, the carrier gas for introducing the target component was humid air.If the measurement is performed using a gas generated from a food sample such as an actual soup as a test gas, it is considered that the influence of water vapor is inevitable. Because.

【0018】ハ.ガス感度の解析 測定時に得られるセンサの応答曲線の一例を図4に示
す。この図の空気中及び被検ガス中の出力電圧を求める
と、以下の2式を用いてそれぞれの素子抵抗Rを求める
ことができる。 Ra=r(E/Va−1) Rg=r(E/Vg−1) ここで、rは基準抵抗、Eは印加電圧、Vは出力電圧、
添字a、gはそれぞれ空気中、ガス中を示す。さらに、
ガス感度Sは空気中の素子抵抗に対する被検ガス中の素
子抵抗の比で表される。 S=Ra/Rg
C. Analysis of gas sensitivity An example of a response curve of a sensor obtained at the time of measurement is shown in FIG. When the output voltages in the air and the test gas in this figure are obtained, the respective element resistances R can be obtained using the following two equations. R a = r (E / V a -1) R g = r (E / V g -1) where r is a reference resistance, E is an applied voltage, V is an output voltage,
The subscripts a and g indicate in air and gas, respectively. further,
The gas sensitivity S is represented by the ratio of the element resistance in the test gas to the element resistance in air. S = R a / R g

【0019】目的ガスに対するセンサ特性の測定 イ.In23単独素子及び硫酸塩(5重量%)を添加し
たIn23素子の二硫化ジメチルに対する感度を測定温
度200℃、300℃、400℃でそれぞれ測定した。
二硫化ジメチルの気相濃度は20ppmとした。結果を
図5に示す。図5より、湿潤空気中の二硫化ジメチルに
対する感度は、300℃前後の温度域においてLi2
4−In23が最も良く、400℃前後の温度域にお
いてNa2SO4−In23が最も良いことがわかった。
Measurement of sensor characteristics for target gas In 2 O 3 alone device and the added In 2 O 3 measured temperature 200 ° C. The sensitivity to dimethyl disulphide of elements sulfate (5 wt%), 300 ℃, were measured at 400 ° C..
The gas phase concentration of dimethyl disulfide was 20 ppm. FIG. 5 shows the results. FIG. 5 shows that the sensitivity to dimethyl disulfide in humid air was Li 2 S in a temperature range around 300 ° C.
O 4 -In 2 O 3 is best. It was found that Na 2 SO 4 -In 2 O 3 best in a temperature range of about 400 ° C..

【0020】ロ.In23単独素子、Li2SO4−In
23素子及びNa2SO4−In23素子の二硫化ジメチ
ル感度の二硫化ジメチル濃度依存性を調べた。測定温度
は、In23単独素子は200℃、Li2SO4−In2
3素子は300℃、Na2SO4−In23素子は40
0℃とした。結果を図6に示す。二硫化ジメチル濃度の
対数値と二硫化ジメチル感度の対数値との間に良好な直
線性が得られており、Li2SO4−In23素子及びN
2SO4−In23素子は良好な濃度依存性を示し、か
つIn23単独素子より感度が高いことがわかった。な
お、図6における感度は、固有の値を乗じることにより
二硫化ジメチル濃度を与える値である。
B. In 2 O 3 single element, Li 2 SO 4 -In
The dependency of the sensitivity of the 2 O 3 element and the Na 2 SO 4 —In 2 O 3 element on the dimethyl disulfide concentration was examined. The measurement temperature was 200 ° C. for the In 2 O 3 single element, and Li 2 SO 4 -In 2
The O 3 element is 300 ° C., the Na 2 SO 4 —In 2 O 3 element is 40 ° C.
0 ° C. FIG. 6 shows the results. Good linearity was obtained between the logarithmic value of the dimethyl disulfide concentration and the logarithmic value of the dimethyl disulfide sensitivity, indicating that the Li 2 SO 4 —In 2 O 3 element and the N 2
a 2 SO 4 -In 2 O 3 elements showed good concentration dependence, and it was found that the sensitivity is higher than the In 2 O 3 alone device. Note that the sensitivity in FIG. 6 is a value that gives the dimethyl disulfide concentration by multiplying by a specific value.

【0021】ハ.Li2SO4−In23素子及びNa2
SO4−In23素子の二硫化ジメチル(DMDS)、
メチルピラジン(MP)、アセトン(Ac)、カプロン
アルデヒド(CA)、エタノール(EtOH)、エチル
アセテート(EA)に対する選択性を調べた。センサ温
度は300℃又は400℃、目的成分の気相濃度は20
ppmとした。300℃で測定を行った結果を図7、4
00℃で測定を行った結果を図8に示す。図7、8よ
り、Li2SO4−In23素子及びNa2SO4−In2
3素子は、二硫化ジメチルに対しては高感度に応答す
るが、他のにおい成分に対してはかなり感度が低く、特
にNa2SO4−In23素子を400℃で使用した場合
には選択性が非常に良いことがわかった。
C. Li 2 SO 4 —In 2 O 3 element and Na 2
Dimethyl disulfide (DMDS) of SO 4 —In 2 O 3 element,
The selectivity for methylpyrazine (MP), acetone (Ac), capronaldehyde (CA), ethanol (EtOH), and ethyl acetate (EA) was examined. The sensor temperature is 300 ° C or 400 ° C and the gas phase concentration of the target component is 20
ppm. The results measured at 300 ° C. are shown in FIGS.
FIG. 8 shows the result of measurement at 00 ° C. 7 and 8, the Li 2 SO 4 —In 2 O 3 element and the Na 2 SO 4 —In 2
The O 3 element responds with high sensitivity to dimethyl disulfide, but is much less sensitive to other odor components, especially when the Na 2 SO 4 —In 2 O 3 element is used at 400 ° C. Was found to have very good selectivity.

【0022】ニ.Na2SO4−In23素子の二硫化ジ
メチルに対する応答速度及び再現性を調べた。センサ温
度は400℃、二硫化ジメチルの気相濃度は20pp
m、測定回数は5回とした。その結果、90%応答時間
は77秒、再現性は4.78%CVであり、Na2SO4
−In23素子は、二硫化ジメチル測定における応答速
度及び再現性が良好であることが認められた。このとき
の応答曲線の一例を図9に示すが、応答特性、回復特性
はいずれも良好であることが認められる。
D. The response speed and reproducibility of the Na 2 SO 4 —In 2 O 3 element to dimethyl disulfide were examined. The sensor temperature is 400 ℃, the gas phase concentration of dimethyl disulfide is 20pp
m, and the number of measurements was 5. As a result, the 90% response time was 77 seconds, the reproducibility was 4.78% CV, and the Na 2 SO 4
-In 2 O 3 elements, it was observed response speed and reproducibility in dimethyl disulfide measurement is good. An example of the response curve at this time is shown in FIG. 9, and it is recognized that both the response characteristics and the recovery characteristics are good.

【0023】[実験例]同一の試料(スープ)中の二硫
化ジメチル濃度を本発明ガスセンサ及びガスクロマトグ
ラフを用いてそれぞれ測定した。本発明ガスセンサのセ
ンサ素子としてはNa2SO4−In23素子(Na2
4添加量5重量%)を用い、センサ温度は400℃と
した。
[Experimental Example] The concentration of dimethyl disulfide in the same sample (soup) was measured using the gas sensor of the present invention and a gas chromatograph. As a sensor element of the gas sensor of the present invention, a Na 2 SO 4 —In 2 O 3 element (Na 2 S
The amount of O 4 added was 5% by weight), and the sensor temperature was 400 ° C.

【0024】被検ガスは、図10の試料導入装置を用い
てキャリヤガス(湿潤空気)中に目的ガス成分を導入す
ることにより調製した。図10の試料導入装置は、試料
液注入口を有する密閉可能な試料注入セルと、試料液注
入セル内に配置され、試料液注入口から注入された試料
液(スープ)が含浸される濾紙とを備え、試料注入セル
内で濾紙に含浸した試料液を気化させるとともに、この
気化試料をキャリヤガスに混合して反応管に導入するも
のである。この装置を用いることにより、測定環境のに
おい成分の影響をカットし、清浄なキャリヤガスを得る
ことができるため、目的成分であるスープ由来の二硫化
ジメチルを正確に測定することが可能となる。
The test gas was prepared by introducing a target gas component into a carrier gas (wet air) using the sample introduction device shown in FIG. The sample introduction device of FIG. 10 includes a sealable sample injection cell having a sample liquid injection port, a filter paper disposed in the sample liquid injection cell, and impregnated with the sample liquid (soup) injected from the sample liquid injection port. In the sample injection cell, the sample liquid impregnated in the filter paper is vaporized, and the vaporized sample is mixed with a carrier gas and introduced into a reaction tube. By using this apparatus, the influence of the odor component in the measurement environment can be cut and a clean carrier gas can be obtained, so that the target component, dimethyl disulfide derived from soup, can be accurately measured.

【0025】測定値の相関を図11に示す。その結果、
Na2SO4−In23素子を用いた本発明ガスセンサに
よる測定値は、ガスクロマトグラフによる測定値と良好
な相関を示した。また、センサ素子としてLi2SO4
In23素子(Li2SO4添加量5重量%)を用い、セ
ンサ温度を300℃として同様の測定を行ったところ、
やはり測定値はガスクロマトグラフによる測定値と良好
な相関を示した。したがって、本実験により本発明ガス
センサの信頼性が確認された。
FIG. 11 shows the correlation between the measured values. as a result,
The value measured by the gas sensor of the present invention using the Na 2 SO 4 —In 2 O 3 element showed a good correlation with the value measured by gas chromatography. In addition, Li 2 SO 4
The same measurement was performed using an In 2 O 3 element (Li 2 SO 4 added amount 5% by weight) and a sensor temperature of 300 ° C.
Again, the measured values showed a good correlation with the values measured by gas chromatography. Therefore, this experiment confirmed the reliability of the gas sensor of the present invention.

【0026】[0026]

【発明の効果】以上説明したように、本発明の食品品質
検知用ガスセンサは、食品に含まれるにおい成分である
二硫化ジメチルに対する応答特性に優れ、特にコンソメ
スープ等のスープ類の品質管理、製造管理に有効に使用
することができるものである。
As described above, the gas sensor for detecting food quality of the present invention has excellent response characteristics to dimethyl disulfide as an odor component contained in foods, and particularly, quality control and production of soups such as consommé soup. It can be used effectively for management.

【図面の簡単な説明】[Brief description of the drawings]

【図1】センサ素子の一例を示す一部切欠斜視図であ
る。
FIG. 1 is a partially cutaway perspective view showing an example of a sensor element.

【図2】センサ素子特性の測定回路を示す回路図であ
る。
FIG. 2 is a circuit diagram showing a circuit for measuring sensor element characteristics.

【図3】センサ素子特性の測定に用いた反応管を示す概
略図である。
FIG. 3 is a schematic view showing a reaction tube used for measuring sensor element characteristics.

【図4】センサ素子の応答曲線の一例を示すグラフであ
る。
FIG. 4 is a graph showing an example of a response curve of a sensor element.

【図5】In23単独素子及び硫酸塩を添加したIn2
3素子の二硫化ジメチルに対する感度を示すグラフで
ある。
FIG. 5: In 2 O 3 element alone and In 2 added with sulfate
4 is a graph showing the sensitivity of an O 3 element to dimethyl disulfide.

【図6】In23単独素子、Li2SO4−In23素子
及びNa2SO4−In23素子における二硫化ジメチル
濃度の対数値と二硫化ジメチル感度の対数値との関係を
示すグラフである。
FIG. 6 shows the relationship between the logarithmic value of the dimethyl disulfide concentration and the logarithmic value of the dimethyl disulfide sensitivity in the In 2 O 3 element, the Li 2 SO 4 —In 2 O 3 element, and the Na 2 SO 4 —In 2 O 3 element. It is a graph which shows a relationship.

【図7】Li2SO4−In23素子及びNa2SO4−I
23素子の300℃における各種ガスに対する感度を
示すグラフである。
FIG. 7 shows a Li 2 SO 4 —In 2 O 3 element and Na 2 SO 4 —I
4 is a graph showing the sensitivity of an n 2 O 3 element to various gases at 300 ° C.

【図8】Li2SO4−In23素子及びNa2SO4−I
23素子の400℃における各種ガスに対する感度を
示すグラフである。
FIG. 8: Li 2 SO 4 —In 2 O 3 element and Na 2 SO 4 —I
4 is a graph showing the sensitivity of an n 2 O 3 element to various gases at 400 ° C.

【図9】Na2SO4−In23素子の応答曲線の一例を
示すグラフである。
FIG. 9 is a graph showing an example of a response curve of a Na 2 SO 4 —In 2 O 3 element.

【図10】センサ素子を設置した反応管への被検ガス導
入装置の一例を示す概略図である。
FIG. 10 is a schematic view showing an example of a device for introducing a test gas into a reaction tube provided with a sensor element.

【図11】本発明ガスセンサで測定した二硫化ジメチル
濃度とガスクロマトグラフで測定した二硫化ジメチル濃
度との相関を示すグラフである。
FIG. 11 is a graph showing the correlation between the dimethyl disulfide concentration measured by the gas sensor of the present invention and the dimethyl disulfide concentration measured by gas chromatography.

フロントページの続き (72)発明者 三浦 則雄 福岡県福岡市中央区平尾3−17−5− 301 (72)発明者 船崎 菜穂美 東京都武蔵野市吉祥寺北町4丁目13番14 号 電気化学計器株式会社内 (72)発明者 浅野 泰一 東京都武蔵野市吉祥寺北町4丁目13番14 号 電気化学計器株式会社内 (72)発明者 林 研司 千葉県船橋市夏見台3−11−1 ニチレ イ船橋ハイム308号 (72)発明者 小塚 彦明 千葉県八千代市八千代台北16−16−29 (56)参考文献 特開 平9−26406(JP,A) 特開 平8−15200(JP,A) 特開 平8−15201(JP,A) 特開 平6−34592(JP,A) 特開 平3−223660(JP,A) 特開 平1−232247(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/12 JICSTファイル(JOIS)Continued on the front page (72) Inventor Norio Miura 301-17-301, Hirao, Chuo-ku, Fukuoka City, Fukuoka Prefecture (72) Inventor Naomi Funasaki 4- 13-14 Kichijoji Kitamachi, Musashino City, Tokyo Electrochemical Instruments Inc. (72) Inventor Taiichi Asano 4- 13-14 Kichijoji Kitamachi, Musashino City, Tokyo Electrochemical Instruments Co., Ltd. (72) Inventor Kenji Hayashi 3-11-1 Natsumidai, Funabashi City, Chiba Prefecture Nichire I Funabashi Heim 308 (72) Inventor Hiroaki Kozuka 16-16-29, Yachiyo-Taipei, Yachiyo-shi, Chiba (56) References JP-A-9-26406 (JP, A) JP-A-8-15200 (JP, A) JP-A-8- 15201 (JP, A) JP-A-6-34592 (JP, A) JP-A-3-223660 (JP, A) JP-A 1-2232247 (JP, A) (58) Fields investigated (Int. 7 , DB name) G01N 27/12 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫酸リチウム又は硫酸ナトリウムを分散
してなる酸化インジウムをセンサ素子材料とし、二硫化
ジメチル応答性を有することを特徴とする食品の品質検
知用ガスセンサ。
1. A gas sensor for detecting the quality of food, characterized in that it has responsiveness to dimethyl disulfide and uses indium oxide, in which lithium sulfate or sodium sulfate is dispersed, as a sensor element material.
JP09063196A 1996-03-19 1996-03-19 Gas sensor for food quality detection Expired - Fee Related JP3328501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09063196A JP3328501B2 (en) 1996-03-19 1996-03-19 Gas sensor for food quality detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09063196A JP3328501B2 (en) 1996-03-19 1996-03-19 Gas sensor for food quality detection

Publications (2)

Publication Number Publication Date
JPH09257737A JPH09257737A (en) 1997-10-03
JP3328501B2 true JP3328501B2 (en) 2002-09-24

Family

ID=14003845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09063196A Expired - Fee Related JP3328501B2 (en) 1996-03-19 1996-03-19 Gas sensor for food quality detection

Country Status (1)

Country Link
JP (1) JP3328501B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153083A (en) * 2017-05-22 2017-09-12 江苏时瑞电子科技有限公司 A kind of preparation method of gas containing nitrogen oxide sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648253B2 (en) * 1988-03-11 1994-06-22 工業技術院長 Method for manufacturing detection material for carbon monoxide gas sensor
JPH03223660A (en) * 1990-01-29 1991-10-02 Osaka Gas Co Ltd Metal-oxide-based semiconductor element for gas sensor
JP3108211B2 (en) * 1992-07-16 2000-11-13 株式会社ニチレイ Gas sensor for food quality detection
JP3366117B2 (en) * 1994-06-28 2003-01-14 株式会社ニチレイ Gas sensor for food quality detection
JP3366118B2 (en) * 1994-06-28 2003-01-14 株式会社ニチレイ Gas sensor for food quality detection
JP3328469B2 (en) * 1995-07-13 2002-09-24 株式会社ニチレイ Gas sensor for food quality detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153083A (en) * 2017-05-22 2017-09-12 江苏时瑞电子科技有限公司 A kind of preparation method of gas containing nitrogen oxide sensor

Also Published As

Publication number Publication date
JPH09257737A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
Hobbs et al. Assessment of odours from livestock wastes by a photoionization detector, an electronic nose, olfactometry and gas chromatography-mass spectrometry
Mielle ‘Electronic noses’: Towards the objective instrumental characterization of food aroma
Wardencki et al. Gas chromatography-olfactometry (GC-O), electronic noses (e-noses) and electronic tongues (e-tongues) for in vivo food flavour measurement
CN109959748A (en) It is a kind of car emphasis odoring substance and the high-risk components of smell determine method
Jaeschke et al. An eNose-based method performing drift correction for online VOC detection under dry and humid conditions
Ruys et al. Mercury detection in air using a coated piezoelectric sensor
Zhou et al. Prediction of Linalool Content in Osmanthus fragrans Using E‐Nose Technology
JP3366117B2 (en) Gas sensor for food quality detection
JP3328501B2 (en) Gas sensor for food quality detection
JP3328469B2 (en) Gas sensor for food quality detection
Frank et al. Chemical analysis with tin oxide gas sensors: choice of additives, method of operation and analysis of numerical signal
JP3108211B2 (en) Gas sensor for food quality detection
Gebicki Application of ionic liquids in electronic nose instruments
Gwiżdż et al. Temperature modulated response of gas sensors array-humidity interference
Ghazaly et al. Assessment of an e-nose performance for the detection of COVID-19 specific biomarkers
JP3366118B2 (en) Gas sensor for food quality detection
Bruno Simple, quantitative headspace analysis by cryoadsorption on a short alumina PLOT column
Kuchmenko et al. A method for the rapid estimation of the level of emissions of toxic easily volatile compounds from polymeric household products using an array of quartz crystal microbalance sensors
Röck et al. Multisensor system for characterization of packaging emissions: Prediction of total solvent amount and odor scores
WO2016036334A1 (en) Voltametric methods to determine alpha-amanitin and phalloidin
Kim et al. Analytical bias among different gas chromatographic approaches using standard BTX gases and exhaust samples
Gough et al. Techniques in gas chromatography. Part III. Choice of detectors. A review
CN113196045B (en) Method for analyzing a gas mixture and gas sensor
WO2023149533A1 (en) Food product spoilage determination method, and food product spoilage determination system
Baumbach et al. A new method for fast identification of gases and gas mixtures after sensor power up

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees