JPS6186519A - Combustion apparatus for gas turbine - Google Patents

Combustion apparatus for gas turbine

Info

Publication number
JPS6186519A
JPS6186519A JP60219303A JP21930385A JPS6186519A JP S6186519 A JPS6186519 A JP S6186519A JP 60219303 A JP60219303 A JP 60219303A JP 21930385 A JP21930385 A JP 21930385A JP S6186519 A JPS6186519 A JP S6186519A
Authority
JP
Japan
Prior art keywords
upstream
sidewall
air
downstream
entry slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60219303A
Other languages
Japanese (ja)
Other versions
JPH0317045B2 (en
Inventor
エドワード・ウエイン・トベリー
ロナルド・ジヨセフ・カズナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of JPS6186519A publication Critical patent/JPS6186519A/en
Publication of JPH0317045B2 publication Critical patent/JPH0317045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/045Air inlet arrangements using pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • F23R3/08Arrangement of apertures along the flame tube between annular flame tube sections, e.g. flame tubes with telescopic sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Spray-Type Burners (AREA)
  • Gas Burners (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 り詳細には、衝突冷却作用とフィルム冷却作用とを燃焼
器壁に与える燃焼器構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In particular, the present invention relates to a combustor structure that provides impingement cooling and film cooling to the combustor wall.

ガスタービンの燃焼器壁の温度は、外部対流と内部フィ
ルム対流との組合せによって、設計値或はそれ以下の値
に保たれる。本出願人の現市販構造において、燃焼器の
外部冷却は、外殻体の空気が、ノズル空気、1次・希釈
用空気及びフィルム冷却用空気として燃焼器に入る前に
燃焼器壁の外面上を通ることの結果である。そのため平
均熱伝達係数は、比較的低く、例えば100 BTU/
hr、−ft2.−’F(56+、、8 W/m2−K
 )よりも低い値きなり、局在化された領域では、それ
よりも更に低い値となる。熱負荷の大部分はフィルム冷
却によって除かれ、その結果として、熱伝達係数は、前
記平均1直の少なくとも6倍の値となる。現在のフィル
ム冷却構造は比較的に最適化されているものと考えられ
、米国特許願連番第517,929号に開示されている
The temperature of the gas turbine combustor wall is maintained at or below the design value by a combination of external convection and internal film convection. In Applicant's current commercially available construction, external cooling of the combustor is performed by directing the shell air onto the external surface of the combustor wall before entering the combustor as nozzle air, primary/dilution air, and film cooling air. This is the result of passing through. The average heat transfer coefficient is therefore relatively low, e.g. 100 BTU/
hr, -ft2. -'F(56+,,8 W/m2-K
), and in localized regions, the value is even lower than that. Most of the heat load is removed by film cooling, resulting in a heat transfer coefficient of at least 6 times that of the average shift. Current film cooling architectures are believed to be relatively optimized and are disclosed in US Patent Application Serial No. 517,929.

本発明の目的は、内部のフィルム冷却を高レベルに保ち
ながら、内部冷却を増大させることによって、燃焼器壁
の冷却を更に改善することにある。
It is an object of the present invention to further improve the cooling of the combustor wall by increasing the internal cooling while maintaining a high level of internal film cooling.

本発明は、入れ子式に配設された一連の管状の側壁部材
によって形成された管状側壁と、該側壁部材の各々の外
側上流端部を隣接した上流側の側壁部材の内側下流端部
に対し相対的に外方に支持して、該側壁部材の外側上流
、内側下流端部間に冷却用空気の環状進入スロットを形
成するためのスペーサー手段とを有する、ガスタービン
燃焼器において、該側壁部材の下流端部が、該スペーサ
ー手段の下流側端部から下流側に延長する管状の先端を
有し、前記ガスタービン燃焼器は、最も上流側の側壁部
材及びこれに連続した少なくともいくつかの下流側の側
壁部材を包囲する円筒状ジャケットを更に有し、該ジャ
ケットは、各々の側壁部材のための、円周方向の間隔を
密にした少なくとも1列の衝突ポートを含み、該受なく
とも1列は、冷却用空気の前記環状進入スロットに軸方
向に近接したすぐ上流側に配置され、次の上流側の環状
進入スロットから比較的遠く下流側に寄った前記側壁部
材の比較的高温の部分に対して、衝突空気による冷却作
用を、該衝突空気が前記ジャケットの内部に連通ずる該
環状進入スロットを通過する前に与えることを特徴とす
るガスタービン燃焼器を提供する。
The present invention provides a tubular sidewall formed by a series of nested tubular sidewall members, each having an outer upstream end relative to an inner downstream end of an adjacent upstream sidewall member. and spacer means for supporting relatively outwardly to define an annular entry slot for cooling air between the outer upstream and inner downstream ends of the sidewall member. a downstream end of the gas turbine combustor having a tubular tip extending downstream from the downstream end of the spacer means; further comprising a cylindrical jacket surrounding the sidewall members, the jacket including at least one row of closely spaced circumferentially impingement ports for each sidewall member; a relatively hot portion of the sidewall member located axially adjacent and immediately upstream of the annular entry slot for cooling air and relatively far downstream from the next upstream annular entry slot; In contrast, there is provided a gas turbine combustor characterized in that a cooling effect is provided by impingement air before the impingement air passes through the annular entry slot communicating with the interior of the jacket.

側壁の上流側部分を包囲する円筒状ジャケットは、入れ
子式の配列とした複数の連続した側壁部材によって形成
するのが有利である。ジャケットは、円周方向の間隔を
密とした少なくとも1列の衝突ポートを側壁部材の各々
について有し、少なくとも1列の衝突ポートは、側壁部
材の接合部に形成された冷却用空気の環状進入スロット
に軸方向に近接してそのすぐ上流側に配置され、次に上
流側の冷却用空気の環状進入スロットから下流側に比較
的隔だたった側壁部材の比較的高温の部分に衝突冷却作
用を与えるようになっている。この衝突冷却作用は、環
状進入スロットから燃焼器本体中に空気が流入する前に
行なわれる。
Advantageously, the cylindrical jacket surrounding the upstream portion of the side wall is formed by a plurality of successive side wall members in a nested arrangement. The jacket has at least one row of closely circumferentially spaced impingement ports on each of the sidewall members, the at least one row of impingement ports having an annular inlet for cooling air formed at the joint of the sidewall members. axially adjacent and immediately upstream of the slot and then providing impingement cooling to a relatively hot portion of the sidewall member relatively downstream from the upstream cooling air annular entry slot; It is designed to give. This impingement cooling occurs before air enters the combustor body through the annular entry slot.

次に本発明を図面に基ついて一層詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

第1図に示した燃焼器本体は、上流側ドーム10と、下
流側に向かって、一連の側壁部材+2.14,16.1
8,20.22とを有し、これらの側壁部材は、全体上
して、円筒状の燃焼器の側壁を形成している。これらの
側壁部材は、基本的には、図示のように入れ子式に配設
してあり、各々の側壁部材の上流端部例えば側壁部材1
4の上流端部(外側上流端部)14aは、それに隣接し
た上流側の側壁部材12の径方向内側の下流端部(内側
下流端部)12bと重なっている。隣接した側壁部材の
重なり合った接合部分には、スペーサー手段24(有利
lrは波形の帯状片とする)が、隣接した側壁部材の端
部、例えば上流端部14aと下流端部12bとの間に介
在されている。帯状片24は、その山と谷とが軸方向に
延長するように配設されているため、空気の環状進入ス
ロット26が形成される。環状進入スロット26を通る
空気流の方向は、第3図に矢印で示した通りである。第
3図に示され、また前出の特許願に好ましい実施例とし
て記述されているように、帯状片24は、側壁部材14
の上流端部14aよりも更に上流側に突出しており、側
壁部材12の下流端部121)の先端12Cは、帯状片
24の下流側端部よりも更に下流側に突出している。
The combustor main body shown in FIG.
8, 20, and 22, and these side wall members collectively form the side wall of a cylindrical combustor. These side wall members are basically arranged in a nested manner as shown, with the upstream end of each side wall member, e.g.
The upstream end (outer upstream end) 14a of No. 4 overlaps with the radially inner downstream end (inner downstream end) 12b of the upstream side wall member 12 adjacent thereto. At the overlapping joints of adjacent side wall members, spacer means 24 (preferably lr is a corrugated strip) are provided between the ends of adjacent side wall members, e.g. the upstream end 14a and the downstream end 12b. It is mediated. The strip 24 is arranged such that its peaks and valleys extend in the axial direction, thereby forming an annular air entry slot 26. The direction of airflow through the annular entry slot 26 is as indicated by the arrows in FIG. As shown in FIG. 3 and described in the preferred embodiment in the above-referenced patent application, the strip 24 is attached to the side wall member 14.
The tip 12C of the downstream end 121) of the side wall member 12 projects further downstream than the downstream end of the strip 24.

燃料は、燃焼器の上流側部分28(第1図)に、図示し
ない手段によって給送され、1次空気取入口50.62
を経て・燃焼器の内部に供給される燃焼用空気と混合さ
れる。高温の混合物は、第1図に方向矢印で示したよう
に、下流側に向かって流れ、希釈用空気は、希釈用空気
取入口34を経て、より下流側の燃焼器部分に導入され
る。
Fuel is delivered to the upstream portion 28 (FIG. 1) of the combustor by means not shown, and is supplied to the primary air intake 50.62.
- Mixed with combustion air supplied to the inside of the combustor. The hot mixture flows downstream, as indicated by the directional arrows in FIG. 1, and dilution air is introduced into the more downstream combustor section via dilution air intake 34.

ところで、燃焼に必要な1次空気の量は、基本的には、
特別の燃焼条件に従って確定されている。燃焼器に入る
別の2種の空気は、冷却用空気と希釈用空気である。希
釈のために利用可能な量は、冷却用空気の所要量が少な
くなるように燃焼器の冷却を最適化しうる限度まで増大
し、これは望ましいと考えられている。
By the way, the amount of primary air required for combustion is basically:
determined according to special combustion conditions. Two other types of air entering the combustor are cooling air and dilution air. The amount available for dilution is increased to the extent that combustor cooling can be optimized such that less cooling air is required, which is considered desirable.

冷却のために使用される空気の冷却効果を改善する目的
のために、上流側の側壁部材12と、少なくとも数個の
互いに隣接した下流側の側壁部材、この例では側壁部材
14.16と側壁部材18の一部分とを囲むように、円
筒状のジャケット36(第1図)が設けられている。ジ
ャケット36には、円周方向に密な間隔に配置した衝突
ポートの列が、ジャケット66と燃焼器本体との間の環
状スペースに冷却用空気を導入するために形成されてい
る。衝突ポート列の数及び衝突ポート1列当りのポート
数は、所要の温度レベルに従って異なる値としてもよい
か、図示した好ましい実施例では、各々の環状進入スロ
ット26(!:対°応するように、軸方向に隔たてられ
た2列の衝突ポートが用いられている。これらの衝突ポ
ート列は、第2図に示すように、符号38,69,40
,41,42,43,44.45により表わされている
。2つ1組の各々の衝突ポート列のうちで下流側の衝突
ポート列の軸方向位置は1、本発明の実施上大切である
。その理由は、側壁部材12.+4.16.1B、20
.22に対するフィルム冷却効果が、フィルムの完全性
が成る程度消失する前の、環状進入スロット26の付近
でより高いため、側壁部材12,14,16,18,2
0.22の比較的高温の部分が、環状進入スロット26
から少し上流側に寄った近接領域、例えば第1図に符号
16Cによって表わした領域にあるためである。従って
、衝突ポート列43は、側壁部材16.18の間に形成
された環状進入スロット26よりも軸方向に少し上流側
の近接位置に形成される。1組の衝突ポート列42.4
3のうち他方の衝突ポート列42も、衝突ポート列46
よりも軸方向に少し上流側の近接位置に形成される。こ
れは、フィルム冷却領域と次に下流側の環状進入スロッ
ト26(!:の間の側壁部分が適切に冷却されるように
するためである。衝突ポートに入った空気は、それぞれ
の向かい合う側壁部材に衝突した後、環状進入スロット
26に向かって流れ、次に燃焼器本体中に流入し、その
フィルム冷却作用を逐行する。
For the purpose of improving the cooling effect of the air used for cooling, an upstream side wall element 12 and at least several mutually adjacent downstream side wall elements, in this example side wall elements 14, 16 and side walls. A cylindrical jacket 36 (FIG. 1) is provided to surround a portion of the member 18. A row of circumferentially closely spaced impingement ports are formed in the jacket 36 for introducing cooling air into the annular space between the jacket 66 and the combustor body. The number of impingement port rows and the number of ports per impingement port row may be different values according to the desired temperature level, or in the preferred embodiment shown, each annular entry slot 26 (!: correspondingly , two axially spaced rows of impingement ports are used. These impingement port rows are designated 38, 69, 40 as shown in FIG.
, 41, 42, 43, 44.45. The axial position of the downstream collision port row in each pair of collision port rows is important in implementing the present invention. The reason is that the side wall member 12. +4.16.1B, 20
.. Sidewall members 12, 14, 16, 18, 2 because the film cooling effect on 22 is higher in the vicinity of annular entry slot 26, before any degree of film integrity is lost.
The relatively hot portion of 0.22 mm is the annular entry slot 26
This is because it is located in a nearby area slightly upstream from, for example, the area indicated by reference numeral 16C in FIG. The impingement port array 43 is thus formed axially slightly upstream and adjacent to the annular entry slot 26 formed between the sidewall members 16.18. 1 set of collision port rows 42.4
The other collision port row 42 among the collision port rows 46
It is formed at a position slightly upstream and close to the shaft in the axial direction. This is to ensure that the sidewall portion between the film cooling area and the next downstream annular entry slot 26 (!) is properly cooled. After impinging on the combustor, it flows toward the annular entry slot 26 and then into the combustor body, carrying out its film cooling action.

ところで、第1図に示した特別の構成において、冷却ジ
ャケット36の下流側端部48は、側壁部材+8.20
の間に形成された空気の環状進入スロット26の上流側
にある。ジャケット66を軸方向に更に下流側に延長さ
せてもよいが、燃焼器中のこの点での冷却の問題は、1
次燃焼域の更に上流側の領域はど深刻ではない。
Incidentally, in the particular configuration shown in FIG. 1, the downstream end 48 of the cooling jacket 36 is
upstream of an annular air entry slot 26 formed between. Although the jacket 66 may extend axially further downstream, the cooling problem at this point in the combustor is
Areas further upstream of the secondary combustion zone are less serious.

l  −A、I     、’ンJy  k  ”/ 
 l−I  A  /7”I T需 佃1#立RAEI
  ↓ all壁部材−18との間に形成された隅角部
の方に衝突空気を差向けるように衝突ポート列45を傾
斜させることは好ましいと考えられる。衝突ポート列4
4.45を経て側壁部材18に衝突する空気は、ジャケ
ット66と燃焼器との間の環状スペース内において上流
側に流れ、側壁部材16.18の間の環状進入スロット
26を経て燃焼器に入る。そのため、より上流側の衝突
ポートに入る冷却空気は、次に上流側の環状進入スロッ
ト26に向かって上流側に流れる空気成分ももつ傾向を
示すようになる。
l-A,I,'nJyk''/
l-I A /7”IT demand Tsukuda 1# RAEI
↓ It is considered preferable to slope the impingement port array 45 so as to direct impingement air toward the corner formed between the all wall members 18 and 18. Collision port row 4
The air impinging on the side wall member 18 via 4.45 flows upstream in the annular space between the jacket 66 and the combustor and enters the combustor via the annular entry slot 26 between the side wall members 16.18. . As such, the cooling air entering the more upstream impingement ports will also tend to have an air component that then flows upstream toward the upstream annular entry slot 26.

この構成は、冷却用空気を可能な限り有効に利用するよ
うに意図したものである。即ち、前記の構成でフィルム
冷却のみを用いた場合と同量の空気を用いて側壁の温度
を実質的に低下させ、又は、前記の場合よりも少量の空
気を用いて同一の側壁温度を得ることができるため、1
次燃焼領域において利用可能な空気量が増大して、NO
Xが減少し、又は、希釈領域において利用可能な空気量
が増大し、燃焼器の流況ファククーか改必される。
This configuration is intended to utilize cooling air as efficiently as possible. That is, the same amount of air is used to substantially reduce the sidewall temperature as in the configuration described above using only film cooling, or the same sidewall temperature is obtained using less air than in the previously described case. 1.
The amount of air available in the next combustion zone increases and NO
X decreases, or the amount of air available in the dilution region increases, requiring a change in the flow regime of the combustor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ンヤケットを備えた燃焼器の壁部を通る部分
断面図、第2図は、径方向内側にある燃焼器の側壁に対
する衝突ポート及び空気取入口の配列を示すためのジャ
ケットの一部切欠き側面図、第6図は、隣接した側壁部
材の1つの接合部の拡大断面図である。 +2.14.16.18,20.22・・側壁部材、i
4a・・(外側)上流端部、12b ・・(内側)下流
端部、12c  ・・先端、24・・帯状片(スヘーサ
一手段)、26・・進入スロット、36・・ジャケット
、38.!、40,41.42,43,44゜45・・
衝突ポート列。 特許出願人代理人   曽  我  道  照1゛、1
1・・  ・  □
FIG. 1 is a partial sectional view through the wall of the combustor with the jacket; FIG. 2 is a partial section through the wall of the combustor with the jacket; The partial cutaway side view, FIG. 6, is an enlarged cross-sectional view of the joint of one of the adjacent sidewall members. +2.14.16.18, 20.22...Side wall member, i
4a...(outside) upstream end, 12b...(inside) downstream end, 12c...tip, 24...band-like piece (shasa means), 26...approach slot, 36...jacket, 38. ! ,40,41.42,43,44°45...
Collision port column. Patent applicant's agent Teru Sogado 1゛, 1
1・・・□

Claims (1)

【特許請求の範囲】[Claims] 入れ子式に配設された一連の管状の側壁部材によつて形
成された管状側壁と、該側壁部材の各々の外側上流端部
を隣接した上流側の側壁部材の内側下流端部に対し相対
的に外方に支持して、該側壁部材の外側上流、内側下流
端部間に冷却用空気の環状進入スロツトを形成するため
のスペーサー手段とを有する、ガスタービン燃焼器にお
いて、該側壁部材の下流端部が、該スペーサー手段の下
流側端部から下流側に延長する管状の先端を有し、前記
ガスタービン燃焼器は、最も上流側の側壁部材及びこれ
に連続した少なくともいくつかの下流側の側壁部材を包
囲する円筒状ジヤケツトを更に有し、該ジヤケツトは、
各々の側壁部材のための、円周方向の間隔を密にした少
なくとも1列の衝突ポートを含み、該少なくとも1列は
、冷却用空気の前記環状進入スロツトに軸方向に近接し
たすぐ上流側に配置され、次の上流側の環状進入スロツ
トから比較的遠く下流側に寄つた前記側壁部材の比較的
高温の部分に対して、衝突空気による冷却作用を、該衝
突空気が前記ジヤケツトの内部に連通する該環状進入ス
ロツトを通過する前に与えることを特徴とするガスター
ビン燃焼器。
a tubular sidewall formed by a series of nested tubular sidewall members, the outer upstream end of each sidewall member being relative to the inner downstream end of an adjacent upstream sidewall member; and spacer means for outwardly supporting the downstream end of the sidewall member to define an annular entry slot for cooling air between the outer upstream and inner downstream ends of the sidewall member. an end portion having a tubular tip extending downstream from a downstream end of the spacer means; further comprising a cylindrical jacket surrounding the sidewall member, the jacket comprising:
at least one row of closely spaced circumferentially spaced impingement ports for each sidewall member, the at least one row immediately upstream and axially proximate to the annular entry slot for cooling air; The cooling effect of the impinging air is applied to a relatively hot portion of the side wall member located relatively far downstream from the next upstream annular entry slot, and the impinging air communicates with the interior of the jacket. A gas turbine combustor characterized in that:
JP60219303A 1984-10-04 1985-10-03 Combustion apparatus for gas turbine Granted JPS6186519A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65755484A 1984-10-04 1984-10-04
US657554 1984-10-04

Publications (2)

Publication Number Publication Date
JPS6186519A true JPS6186519A (en) 1986-05-02
JPH0317045B2 JPH0317045B2 (en) 1991-03-07

Family

ID=24637675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219303A Granted JPS6186519A (en) 1984-10-04 1985-10-03 Combustion apparatus for gas turbine

Country Status (6)

Country Link
EP (1) EP0178820A1 (en)
JP (1) JPS6186519A (en)
KR (1) KR860003469A (en)
CN (1) CN85107191A (en)
IT (1) IT1185959B (en)
MX (1) MX161443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132211A (en) * 2013-01-04 2014-07-17 General Electric Co <Ge> Articulated transition duct in turbomachine, where this invention was made with government support under contract number de-fc26-05nt42643 awarded by department of energy and government has certain rights in this invention

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547703C2 (en) * 1995-12-20 1999-02-18 Mtu Muenchen Gmbh Combustion chamber, in particular ring combustion chamber, for gas turbine engines
GB9919981D0 (en) * 1999-08-24 1999-10-27 Rolls Royce Plc Combustion apparatus
KR100395643B1 (en) * 2000-10-04 2003-08-21 한국기계연구원 Gas turbin combuster
US7975487B2 (en) 2006-09-21 2011-07-12 Solar Turbines Inc. Combustor assembly for gas turbine engine
US8448443B2 (en) * 2007-10-11 2013-05-28 General Electric Company Combustion liner thimble insert and related method
JP2011102669A (en) 2009-11-10 2011-05-26 Mitsubishi Heavy Ind Ltd Gas turbine combustor and gas turbine
WO2014063835A1 (en) 2012-10-24 2014-05-01 Alstom Technology Ltd Sequential combustion with dilution gas mixer
EP2989389B1 (en) * 2013-04-25 2018-08-01 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas
EP3037726B1 (en) 2014-12-22 2018-09-26 Ansaldo Energia Switzerland AG Separate feedings of cooling and dilution air
FR3037107B1 (en) * 2015-06-03 2019-11-15 Safran Aircraft Engines ANNULAR ROOM OF COMBUSTION CHAMBER WITH OPTIMIZED COOLING
CN105042640B (en) * 2015-08-11 2018-05-08 南京航空航天大学 The cooling structure of aeroengine combustor buring room burner inner liner
JP6956779B2 (en) * 2016-08-30 2021-11-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Impingement cooling features for gas turbines
CN110185554B (en) * 2019-03-08 2021-09-10 西北工业大学 Double-wall cooling structure for jet engine vector jet pipe
CN110107914A (en) * 2019-04-10 2019-08-09 南京航空航天大学 One kind being based on the impact-gaseous film control structure of triangular-section deflector (ring)
CN113464283B (en) * 2021-08-10 2022-10-21 南京航空航天大学 Compound initiative cooling structure of rotatory detonation engine and rotatory detonation engine
CN113739208B (en) * 2021-09-09 2022-08-26 成都中科翼能科技有限公司 Mixed cooling flame tube for low-pollution gas turbine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369363A (en) * 1966-01-19 1968-02-20 Gen Electric Integral spacing rings for annular combustion chambers
US4109459A (en) * 1974-07-19 1978-08-29 General Electric Company Double walled impingement cooled combustor
CA1185799A (en) * 1981-03-27 1985-04-23 Edward W. Tobery Turbine combustor having enhanced wall cooling for longer combustor life at high combustor outlet gas temperatures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132211A (en) * 2013-01-04 2014-07-17 General Electric Co <Ge> Articulated transition duct in turbomachine, where this invention was made with government support under contract number de-fc26-05nt42643 awarded by department of energy and government has certain rights in this invention

Also Published As

Publication number Publication date
IT8522315A0 (en) 1985-09-30
CN85107191A (en) 1986-09-24
KR860003469A (en) 1986-05-26
MX161443A (en) 1990-09-27
EP0178820A1 (en) 1986-04-23
IT1185959B (en) 1987-11-18
JPH0317045B2 (en) 1991-03-07

Similar Documents

Publication Publication Date Title
JPS6186519A (en) Combustion apparatus for gas turbine
JP4433529B2 (en) Multi-hole membrane cooled combustor liner
JP5475901B2 (en) Combustor liner and gas turbine engine assembly
US7146815B2 (en) Combustor
JP3011524B2 (en) Combustor liner
US6655149B2 (en) Preferential multihole combustor liner
US6640547B2 (en) Effusion cooled transition duct with shaped cooling holes
US6494044B1 (en) Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
US7748222B2 (en) Performance of a combustion chamber by multiple wall perforations
US5590531A (en) Perforated wall for a gas turbine engine
EP0378505A1 (en) Combustor fuel nozzle arrangement
EP0203431B1 (en) Impingement cooled transition duct
US5144795A (en) Fluid cooled hot duct liner structure
EP1813868A2 (en) Wall elements for gas turbine engine combustors
JPH1068523A (en) Liner for collision/release cooling combustion device
US4566280A (en) Gas turbine engine combustor splash ring construction
CA1204293A (en) Low smoke combustor for land based combustion turbines
EP0972993B1 (en) Crossfire tube for gas turbine combustors
JP3523309B2 (en) Gas turbine combustor
JPH04283315A (en) Combustor liner
JPS61159031A (en) Combustion apparatus for gas turbine engine
JP4068432B2 (en) Gas turbine combustor
CA1185799A (en) Turbine combustor having enhanced wall cooling for longer combustor life at high combustor outlet gas temperatures
JPS581332B2 (en) Combustion chamber for gas turbine engine
JPH02154919A (en) Heat shielding pressure partition wall