JPS618649A - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPS618649A
JPS618649A JP13061684A JP13061684A JPS618649A JP S618649 A JPS618649 A JP S618649A JP 13061684 A JP13061684 A JP 13061684A JP 13061684 A JP13061684 A JP 13061684A JP S618649 A JPS618649 A JP S618649A
Authority
JP
Japan
Prior art keywords
sample
light
photoluminescence
emitted
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13061684A
Other languages
Japanese (ja)
Other versions
JPH0158454B2 (en
Inventor
Michio Tajima
道夫 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13061684A priority Critical patent/JPS618649A/en
Publication of JPS618649A publication Critical patent/JPS618649A/en
Publication of JPH0158454B2 publication Critical patent/JPH0158454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make a light analysis of photoluminescence emitted from a sample over a wide wavelength range by observing the sample with high magnification and irradiating an extremely small area with laser light for excitation. CONSTITUTION:The laser light 3 for excitation is incident from beside a microscope 2 provided over the sample 1 and guided to the lower part in the optical path of the microscope 2 through a half-mirror 4, and the light is converged through an objective lens 5 to illuminate the surface of the sample 1. At the same time, the surface of the sample 1 is observed with high magnification. At this time, the angle-directional intensity distribution of photoluminescence light emitted from the extremely small irradiated area part of the sample 1 is isotropic in the vertical direction of the sample 1. Its light energy is smaller than the forbidden band width of the sample. Therefore, half of the photoluminescence light is emitted from the surface of the sample at the same side with the laser light irradiation side, and the remainder propagates downward in the sample 1 and is emitted from its reverse surface.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、半導体結晶の微小優域に光を照射して励起し
たフォトルミネッセンスの観測により、半導体結晶中の
微小領域における不純物や欠陥等を評価する顕微フォト
ルミネッセンス法を用いた光学測定装置に関するもので
ある。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a microscopy method for evaluating impurities, defects, etc. in minute regions in a semiconductor crystal by observing photoluminescence excited by irradiating light onto a minute dominant region of the semiconductor crystal. This invention relates to an optical measurement device using photoluminescence method.

〔従来技術〕[Prior art]

各種の電子デバイスに広く使用されているSi、GaA
s、 GaP等の半導体結晶中に存在する不純物や欠陥
は、デバイス特性に大きな影響を与える。
Si, GaA widely used in various electronic devices
Impurities and defects present in semiconductor crystals such as S, GaP, etc. have a large effect on device characteristics.

最近では、デバイスの高集積化・高品質化が進み、素材
結晶中の微小領域の不純物や欠陥の分布状態が問題とな
ってきている。特に、超LSI用CZ−9i(回転引き
上げSi)結晶中の酸素析出物や高速IC用半絶縁性G
aAs結晶中のアンチサイト欠陥などのように、深い準
位を形成する微小欠陥のウェーハ面内不均一分布が重要
視されている。このような深い準位を形成する微小欠陥
の不均一分布を調べるには、高感度で微小領域の測定が
原理的に可能であるフォトルミネッセンス法がきわめて
有力であり、このフォトルミネッセンス法についてはこ
れまでにいくつかの報告例があるが、以下に示すような
欠点のために十分な評価が行なわれていなかった。
Recently, as devices have become more highly integrated and of higher quality, the distribution of impurities and defects in minute regions in material crystals has become a problem. In particular, oxygen precipitates in CZ-9i (rotation-pulled Si) crystals for VLSI and semi-insulating G for high-speed ICs
The non-uniform distribution within the wafer surface of minute defects that form deep levels, such as anti-site defects in aAs crystals, has become important. To investigate the uneven distribution of micro defects that form such deep levels, the photoluminescence method is extremely effective because it is in principle possible to measure microscopic areas with high sensitivity. Although there have been several reports so far, sufficient evaluation has not been conducted due to the following drawbacks.

従来、上述のフォトルミネッセンス法による微小領域の
フォトルミネッセンス観測を行なう際に用いられていた
顕微測定光学系の概略構成例を第1図および第2図に示
す。
FIGS. 1 and 2 show schematic configuration examples of a microscopic measurement optical system conventionally used when performing photoluminescence observation of a minute area by the above-mentioned photoluminescence method.

第1図に示す光学系は通常の光学顕微鏡を用いて励起光
の照射およびフォトルミネッセンス光の集光を行なう方
式のものである。この励起光としては、半導体試料の禁
制帯幅よりも大きいエネルギーをもつ高い輝度の光が必
要であることから、例えばArレーザー光またはHe−
Neレーザー光などが用いられている。すなわち、試料
1の上方に設置された顕微鏡2の側方からレーザー光3
を入射させ、このレーザー光3を半透鏡4に゛よって顕
微られ、液体窒素または液体ヘリウム温度に冷却されて
いる。
The optical system shown in FIG. 1 uses an ordinary optical microscope to irradiate excitation light and collect photoluminescence light. As this excitation light, high brightness light with energy larger than the forbidden band width of the semiconductor sample is required, so for example, Ar laser light or He-
Ne laser light or the like is used. That is, the laser beam 3 is emitted from the side of the microscope 2 installed above the sample 1.
is made incident, and this laser beam 3 is focused by a semi-transparent mirror 4 and cooled to the temperature of liquid nitrogen or liquid helium.

さて、試料1の表面のレーザー光3で照射されたところ
から発せられるフォトルミネッセンス先達するので、こ
の反射光をフォトルミk ツセンス光から分離するフィ
ルター8が必要となる。
Now, since the photoluminescence emitted from the surface of the sample 1 irradiated with the laser beam 3 precedes the photoluminescence, a filter 8 is required to separate this reflected light from the photoluminescence light.

このような従来方式では、レーザー光照射および試料観
察に関しては問題はないが、フォトルミネッセンス集光
に関し、通常仕様の対物レンズを使用している点で問題
がある。すなわち、通常の対物レンズは可視光領域で使
用することを念頭に、波長400〜800nmの範囲で
色収差等の収差を補正するように設計されているので、
800nm以上の波長領域では収差が急激に増大すると
ともに、レンズ材質やコーテイング材質の関係で透過特
性も著しく悪くなってしまう。したがって、17zm以
上の波長となるGaAsおよびGaP中の深い準位やS
lのフォトルミネッセンスの測定は行なえなくなってし
まう。また、波長の短かい領域においても、微弱なフォ
トルミネッセンス光に対して数桁GaPにおける禁制帯
幅付近の光エネルギーの強ト)フォトルミネッセンスに
対してはきわめて有効セあり、冷却容器内にセットした
試料面上にレーることによって非常に高い空間的分解能
のフ十トでは全く無力であった。
In such a conventional method, there is no problem with laser light irradiation and sample observation, but there is a problem with photoluminescence focusing in that a standard objective lens is used. In other words, ordinary objective lenses are designed to correct aberrations such as chromatic aberration in the wavelength range of 400 to 800 nm, keeping in mind that they will be used in the visible light region.
In a wavelength region of 800 nm or more, aberrations increase rapidly and transmission characteristics also deteriorate significantly depending on the lens material and coating material. Therefore, deep levels in GaAs and GaP and S
It becomes impossible to measure the photoluminescence of l. In addition, even in the short wavelength region, it is extremely effective against weak photoluminescence light and strong light energy near the forbidden band width in GaP of several orders of magnitude. It was completely ineffective to achieve very high spatial resolution by raying onto the sample surface.

これに対し、第2図に示す光学系による方式では、励起
用レーザー光学系とフォトルミネッセンス集光系を分離
することによって上述の欠点を除去している6すなわち
、試料1の表面の上方に二系統の光学系を配置し、レー
ザー光3の照射には通常の対物レンズ5を用い、フォト
ルミネッセンス光の集光には長い波長領域の測定をも可
能にする石英レンズ光学系10(あるいは球面反射鏡光
学系)を用いている。ところが、一般にフォトルミネッ
センス光は微弱であるので、その集光系10をレーザー
照射系5に優先して考える必要があることから、レーザ
ー照射系5は第2図に示すようにフォトルミネッセンス
集光光路を防げないように側方に設置しなければならな
くなり、対物レンズ5から試料1までの距離(動作距離
)は長くなる。 したがって、この対物レンズ5として
高倍率の対物レンズは使用できず、レーザー光の絞り込
みは甘くなる。この方式によるこれまでの報告例では、
試料を冷却容器内に入れた場合に、最小ビーム径はたか
だか5071m程度にしかならない。また、試料表面観
察も斜め入射のためにぼけた像になってしまうという欠
点があった。
On the other hand, the method using the optical system shown in FIG. 2 eliminates the above-mentioned drawback by separating the excitation laser optical system and the photoluminescence focusing system6. A regular objective lens 5 is used for irradiating the laser beam 3, and a quartz lens optical system 10 (or a spherical reflection lens) is used to collect the photoluminescence light, which also enables measurement in a long wavelength range. mirror optical system). However, since photoluminescence light is generally weak, it is necessary to give priority to the light collection system 10 over the laser irradiation system 5. Therefore, the laser irradiation system 5 has a photoluminescence light collection path as shown in FIG. Therefore, the distance from the objective lens 5 to the sample 1 (operating distance) becomes long. Therefore, an objective lens with high magnification cannot be used as the objective lens 5, and the narrowing down of the laser beam becomes difficult. In previous reports using this method,
When the sample is placed in a cooling container, the minimum beam diameter is only about 5071 m at most. In addition, observation of the sample surface also had the disadvantage of resulting in a blurred image due to oblique incidence.

このように、顕微フォトルミネッセンス法は原理的には
極微小領域の不純物や欠陥の高感度評価が可能であるが
、実際には従来の手法を使用する限り、長波長領域のフ
ォトルミネッセンスを示す深い準位などの評価には適用
できず、大きな問題とされていた。
In this way, the microscopic photoluminescence method is theoretically capable of highly sensitive evaluation of impurities and defects in extremely small areas, but in reality, as long as conventional methods are used, deep This was considered a major problem as it could not be applied to evaluations such as rank.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来の顕微フォトルミネッセ
ンス法による光学測定装置の欠点を除去し、試料を高倍
率で顕微鏡観察可能にすると同時に、励起用レーザー光
を極微小領域に照射し、試料から発せられたフォトルミ
ネッセンスに対して広い波長領域にわたって分光分析を
行なうことができるようにした光学測定装置を提供する
ことにある。
The purpose of the present invention is to eliminate the drawbacks of the conventional optical measurement device using the microscopic photoluminescence method described above, and to make it possible to observe a sample with a microscope at high magnification. An object of the present invention is to provide an optical measuring device that can perform spectroscopic analysis of emitted photoluminescence over a wide wavelength range.

〔発明の要点〕[Key points of the invention]

すなわち、本発明の光学測定装置においては。 That is, in the optical measuring device of the present invention.

試料表面の極微小領域に励起レーザー光を照射して発生
させたフォトルミネッセンスのうちで試料を透過した成
分を試料の裏面より効率良く集光することを特徴とする
ものである。
It is characterized by the fact that among the photoluminescence generated by irradiating an extremely small area on the sample surface with an excitation laser beam, the component that has passed through the sample is efficiently focused from the back surface of the sample.

〔実 施 例〕〔Example〕

以下に、図面を参照して、本発明の詳細な説明する。第
3図は本発明の一実施例を示し、試料1に励起用レーザ
ー光を照射する部分については、前述の第1図に示した
従来例と同様な構成の光学系を使用するものとする。す
なわち、試料l上に設置された顕微鏡2の側方から励起
用レーザー光3を入射させ、このレーザ光3を半透鏡4
によって顕微鏡光路2内の下方に導き、さらに対物レン
ズ5によって絞り込み、試料lの表面に照射する。同時
に、接眼レンズ6によって試料1の表面を高倍率で観察
する。このとき、試料1の照射さス光の半分は、レーザ
ー光照射と同じ側の試料1の表面から放射され、その残
りは試料l内を下方に伝播してその裏面から放射される
The present invention will be described in detail below with reference to the drawings. FIG. 3 shows an embodiment of the present invention, and the part for irradiating the sample 1 with excitation laser light uses an optical system with the same configuration as the conventional example shown in FIG. 1 above. . That is, an excitation laser beam 3 is incident from the side of a microscope 2 placed on a sample 1, and this laser beam 3 is transmitted through a semi-transparent mirror 4.
The light is guided downward into the microscope optical path 2 by the lens 5, and further narrowed down by the objective lens 5, and irradiated onto the surface of the sample 1. At the same time, the surface of the sample 1 is observed at high magnification through the eyepiece 6. At this time, half of the irradiated light of the sample 1 is emitted from the surface of the sample 1 on the same side as the laser beam irradiation, and the remainder propagates downward within the sample 1 and is emitted from the back surface thereof.

また、■ 測定対象としている試料lは電子デバイス作
製用のウェー/\が主であり、その厚さは数100ルm
程度の薄い試料であること、 ■ 特に測定で着目したいフォトルミネッセンスは深い
準位からのものであっ て、禁制帯幅エネルギーよりもはるか に小さいエネルギーの光であること、 以上の理由により、試料1内の伝播中でのフォトルミネ
ッセンス光の吸収は少なく、実際上はとんど無視できる
。したがって、本図に示すように広い波長領域に対応で
きる石英レンズのような集光レンズ系10(あるいは反
射鏡型集光系)を試料1゜の裏面側に設置することによ
って、レーザー光3の照射点より発せられるフォトルミ
ネッセンス光を高効率で集光し、フィルター8を通して
分光器8に導くことができる。
In addition, ■ The sample l to be measured is mainly a wafer used for manufacturing electronic devices, and its thickness is several hundreds of lumens.
■ The photoluminescence that we particularly want to focus on in the measurement comes from a deep level and has an energy much smaller than the forbidden band energy.For the above reasons, Sample 1 Absorption of photoluminescent light during propagation within the rays is small and can be ignored in practice. Therefore, as shown in this figure, by installing a condensing lens system 10 such as a quartz lens (or a reflecting mirror type condensing system) capable of handling a wide wavelength range on the back side of the sample 1°, the laser beam 3 can be Photoluminescence light emitted from the irradiation point can be collected with high efficiency and guided to the spectrometer 8 through the filter 8.

一般に、禁制帯幅エネルギーよりも大きいエネめて大き
く吸収され、その透過光強度は1/1000から1 /
 10000に減少する。したがって、従来の第1図お
よび第2図に示した従来方式で問題となった励起用レー
ザー光のフォトルミネッセンス加半絶縁性引き上げGa
Asウェーハを第3図の試料1として用いた場合に、こ
のウェーハの転位線近傍のフォトルミネッセンス光の光
強度変化の状態を転位線からの距111m(単位、pL
m)で示したものである。この試料lは液体ヘリウム温
度に冷却し、第3図に示す配置状態で試料1を紙面に垂
直な方向に移動させてフォトルミネッセンス強度の一次
元分布の変化を分光器8により測定した。また、対物レ
ンズ5としては長動作距離の5倍のレンズを用い、波長
514.5 nmのAtレーザー光3を直径20p、m
まで絞り込むことができた。上述のGaAs結晶のフォ
トルミネッセンス・スペクトルは、残留炭素不純物によ
る1、413.eV (832nm )の発光帯と、E
L2と呼ばれる深い準位に起因すると考えられる0、6
5eV (1,8ルm)の発光帯とから成っている。
Generally, energy greater than the forbidden band energy is absorbed to a large extent, and the transmitted light intensity is 1/1000 to 1/1/1000.
It decreases to 10,000. Therefore, the photoluminescence of the excitation laser beam, which was a problem in the conventional method shown in FIGS.
When an As wafer is used as sample 1 in FIG.
m). This sample 1 was cooled to liquid helium temperature, and the sample 1 was moved in the direction perpendicular to the plane of the paper in the arrangement shown in FIG. 3, and changes in the one-dimensional distribution of photoluminescence intensity were measured using a spectrometer 8. In addition, a lens with a long working distance of 5 times is used as the objective lens 5, and the At laser beam 3 with a wavelength of 514.5 nm is transmitted with a diameter of 20p and m.
I was able to narrow it down to. The photoluminescence spectrum of the GaAs crystal described above is due to residual carbon impurities of 1,413. eV (832 nm) emission band and E
0, 6, which is thought to be caused by a deep level called L2.
5 eV (1.8 lumen) emission band.

1.4!3eVの発光帯の強度分布は、第4図の波形a
り報告されている結果と一致する。
The intensity distribution of the 1.4!3 eV emission band is shown in waveform a in Figure 4.
This is consistent with the results reported previously.

一方、0.85eVの発光帯に対しては、高い空間的分
解能で測定した例はこれまでに報告がなかったが、第3
図示の本発明装置によれば上述のように励起レーザー光
3を直径20g、mに絞り込んで測定することができる
ので、その結果、第4図の波形すに示すように、少くと
もこのGaAsウェーハの試料に関する限り0.85e
Vの発光帯の強度は転位によって影響を受けないことが
明らかとなった。
On the other hand, there have been no reports of measurement with high spatial resolution for the 0.85 eV emission band;
According to the illustrated apparatus of the present invention, as described above, the excitation laser beam 3 can be narrowed down to a diameter of 20 g, m for measurement, and as a result, as shown in the waveform of FIG. 0.85e as far as the sample is concerned
It has been found that the intensity of the V emission band is not affected by dislocations.

以上の測定結果は予備的実験によるものであ視光から5
gm程度までの広い波長領域の極微小領域のフォトルミ
ネッセンス分析が可能になると期待される。
The above measurement results are based on preliminary experiments.
It is expected that photoluminescence analysis will become possible in a very small region over a wide wavelength range up to about 1.5 gm.

〔効果〕〔effect〕

以上から明らかなように、本発明の光学測定装置を用い
ることにより、各種デバイス作製に用いられるSi、 
GaAs、 GaPのウェーハのフォトルミネッセンス
を広い波長領域にわたって数ILffl程度の高い空間
的分解能で測定することが可能とな  。
As is clear from the above, by using the optical measuring device of the present invention, Si, which is used for manufacturing various devices,
It has become possible to measure the photoluminescence of GaAs and GaP wafers over a wide wavelength range with a high spatial resolution of several ILffl.

る。これは、従来の手法では全く行なえなかったもので
ある。
Ru. This is something that could not be done using conventional methods.

さらに1本発明装置によれば、フォトルミネッ  1セ
ンス測定において有害である励起用レーザー光の混入を
極めて少なくすることができるという格別の効果も有し
ている。
Furthermore, the apparatus of the present invention has the special effect of being able to extremely reduce the amount of excitation laser light that is harmful to photoluminescence measurements.

また、本発明の光学測定装置を用いた顕微フォトルミネ
ッセンス法は、半導体結晶中の転位や微小析出物などと
深い準位との関連性を調べて行く上できわめて有用とな
るばかりでなく、結晶内での微小欠陥や不純物の微視的
な不均一分布がデバイス特性に及ぼす影響の検討、さら
には高集積度デバイス中での微細素子の不良部分の解明
などにおいて大きく貢献するものと思われる。
In addition, the microscopic photoluminescence method using the optical measurement device of the present invention is not only extremely useful for investigating the relationship between dislocations, minute precipitates, etc. in semiconductor crystals and deep levels, but also This research is expected to greatly contribute to the study of the effects of microscopic defects and microscopic non-uniform distribution of impurities on device characteristics, as well as to the elucidation of defective microelements in highly integrated devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来の光学測定装置によ
る顕微フォトルミネッセンス法の原理を示す内部構成図 第3図は本発明光学装置による顕微フォトルミ本ツセン
ス法の原理を示す内部構成図、第4図はGaAs結晶の
転位線近傍の1.49eV発光帯BよびO,E15eV
15eV強度分布をそれぞれ示す持主曲線図である。 1・・・試料、 2・・・光学顕微鏡、 3・・・励起用レーザー、 4・・・半透鏡、 5・・・対物レンズ、 6・・・接眼レンズ、 −7・・・反射鏡、 8・・・フィルター、 9・・・分光器、 10・・・集光レンズ。 第1図 第2図 第4図
FIGS. 1 and 2 are internal configuration diagrams showing the principle of the microphotoluminescence method using a conventional optical measurement device, respectively. FIG. 3 is an internal configuration diagram showing the principle of the microphotoluminescence method using the optical device of the present invention, and FIG. The figure shows the 1.49eV emission bands B and O, E15eV near the dislocation line of the GaAs crystal.
FIG. 3 is an owner curve diagram showing a 15 eV intensity distribution. DESCRIPTION OF SYMBOLS 1... Sample, 2... Optical microscope, 3... Laser for excitation, 4... Semi-transparent mirror, 5... Objective lens, 6... Eyepiece, -7... Reflecting mirror, 8...Filter, 9...Spectroscope, 10...Condensing lens. Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 各種の電子デバイスに使用されている半導体ウェーハの
フォトルミネッセンス分析を行なう際に、通常の顕微鏡
光学系を用いて前記ウェーハの表面観察を行ないながら
前記フォトルミネッセンス分析をすべき前記ウェーハの
場所を狙って励起用レーザー光を前記場所の極微小領域
に絞り込んで照射し、該照射した点から発せられて当該
ウェーハ内を伝播して該ウェーハの裏面に出射したフォ
トルミネッセンス光を該ウェーハの裏面に配置した集光
光学系により集光して分光器に導くことにより、前記励
起用レーザー光と前記フォトルミネッセンス光を完全に
分離させて広範囲の波長領域にわたる極微小領域のフォ
トルミネッセンス分析を行なうようにしたことを特徴と
する光学測定装置。
When performing photoluminescence analysis of semiconductor wafers used in various electronic devices, while observing the surface of the wafer using an ordinary microscope optical system, aiming at the location of the wafer where the photoluminescence analysis is to be performed. An excitation laser beam is focused and irradiated to a very small area at the location, and photoluminescence light emitted from the irradiated point, propagated within the wafer, and emitted to the back surface of the wafer is placed on the back surface of the wafer. The excitation laser beam and the photoluminescence light are completely separated by condensing the light using a condensing optical system and guiding it to a spectrometer, thereby performing photoluminescence analysis in an extremely small area over a wide range of wavelength regions. An optical measurement device featuring:
JP13061684A 1984-06-25 1984-06-25 Optical measuring device Granted JPS618649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13061684A JPS618649A (en) 1984-06-25 1984-06-25 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13061684A JPS618649A (en) 1984-06-25 1984-06-25 Optical measuring device

Publications (2)

Publication Number Publication Date
JPS618649A true JPS618649A (en) 1986-01-16
JPH0158454B2 JPH0158454B2 (en) 1989-12-12

Family

ID=15038478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13061684A Granted JPS618649A (en) 1984-06-25 1984-06-25 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS618649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001692A2 (en) * 1988-07-29 1990-02-22 Edinburgh Instruments Ltd. Electro-optical measuring instruments

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788348A (en) * 1980-11-21 1982-06-02 Hitachi Ltd Method and device for spectral fluorescence

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788348A (en) * 1980-11-21 1982-06-02 Hitachi Ltd Method and device for spectral fluorescence

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001692A2 (en) * 1988-07-29 1990-02-22 Edinburgh Instruments Ltd. Electro-optical measuring instruments
US5202744A (en) * 1988-07-29 1993-04-13 Louis Thomas A Electro-optical measuring instruments

Also Published As

Publication number Publication date
JPH0158454B2 (en) 1989-12-12

Similar Documents

Publication Publication Date Title
EP0925497B1 (en) Apparatus and method for detecting micro defects in semi-conductors
JP3381924B2 (en) Inspection device
US5381016A (en) Method and apparatus for measuring photoluminescence in crystal
US5196716A (en) Method and apparatus for measuring internal defects for position and depth
TWI687674B (en) Apparatus and method for metrology analysis of thin film and method of obtaining properties of thin film
JP3507319B2 (en) Optical property measurement device
WO2004010121A1 (en) Detection method and apparatus
JPH09243569A (en) Apparatus and method for evaluating semiconductor substrate
JPS618649A (en) Optical measuring device
De Wolf et al. High-resolution stress and temperature measurements in semiconductor devices using micro-Raman spectroscopy
JP3275022B2 (en) Photoluminescence measurement device in crystal
JPH0254149A (en) Characteristic display device for semiconductor sample by photoluminescence
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JPH01182739A (en) Measurement of strain in compound semiconductor crystal
RU2767156C1 (en) Terahertz subwave scanning microscope
JPH0868757A (en) Evaluation of surface of sample
JP2004271220A (en) Evaluation apparatus and method of fused quartz
JPS6032133B2 (en) Sample evaluation device
JPH03109719A (en) Manufacture of semiconductor device
Pommiès et al. Nondestructive optical characterization of KH2PO4 crystals heterogeneities and adapted excimer laser conditioning process
Bowron et al. New spectrally resolved confocal scanning laser microscope
JPS62115346A (en) Method and instrument for measuring impurity concentration in semiconductor crystal
JPH06102173A (en) Method and device for microspectroscopic measurement
TW202009470A (en) Inspecting equipment and method for hydroxyl content in crucible
Baker Semiconductor wafer inspection

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term