JPS6186497A - Gas phase growth apparatus - Google Patents

Gas phase growth apparatus

Info

Publication number
JPS6186497A
JPS6186497A JP20947684A JP20947684A JPS6186497A JP S6186497 A JPS6186497 A JP S6186497A JP 20947684 A JP20947684 A JP 20947684A JP 20947684 A JP20947684 A JP 20947684A JP S6186497 A JPS6186497 A JP S6186497A
Authority
JP
Japan
Prior art keywords
susceptor
distance
phase growth
nozzles
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20947684A
Other languages
Japanese (ja)
Other versions
JPH0310596B2 (en
Inventor
Masayuki Nozawa
野沢 昌幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP20947684A priority Critical patent/JPS6186497A/en
Publication of JPS6186497A publication Critical patent/JPS6186497A/en
Publication of JPH0310596B2 publication Critical patent/JPH0310596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Abstract

PURPOSE:To bring uniformly the reaction gas into contact with a wafer on a susceptor by providing plural gas feeding nozzles to the end part side of the susceptor wherein the distance from axial core is shorter than the other hand the changing the distance of each nozzle hole from the axial core of the susceptor. CONSTITUTION:A barrel type susceptor body 11 having the gradient in the axial direction is fitted to a rotary axis which is lengthened upward by perforating a base plate. Plural pieces of nozzles 18A through which the reaction gas is fed in the axial direction nearly along the surface of the susceptor 11 are fitted to the end part side of the 11 wherein the distance from the axial core is shorter than the other hand. The distance of the nozzle holes 36 of the nozzles 18A from the axial core of the susceptor is changed so as to be shown by R1 and R2. Thereby the reaction gas is uniformly brought into contact with all the wafers 12 arranged on the gradient surface of the susceptor assembly body 11. By this mechanism, the film thickness of gas phase growth becomes the specified value and also the productivity can be increased.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明にシリコン等の半導体物質基板(以下ウェハとい
う)にシリコン結晶等を気相成長させるバレル型の気相
成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a barrel-type vapor phase growth apparatus for vapor phase growing silicon crystals and the like onto a semiconductor material substrate (hereinafter referred to as a wafer) such as silicon.

〔従来技術〕[Prior art]

従来のバレル型気相成長装置はサセプタが軸方向に若干
勾配を有しているが、サセプタ上方に設けた反応ガスを
供給する複数本のノズルはサセプタ回転中心から一定位
置に孔をあけていたため、サセプタに取付けた多数のウ
ェハに対する反応ガスの接触が一様でなく、この友め気
相成長の膜厚が均一にならない欠点があった。
In conventional barrel-type vapor phase growth equipment, the susceptor has a slight slope in the axial direction, but the multiple nozzles installed above the susceptor to supply the reaction gas have holes drilled at fixed positions from the center of rotation of the susceptor. However, there is a drawback that the contact of the reaction gas to the large number of wafers attached to the susceptor is not uniform, and the film thickness of the vapor phase epitaxy is not uniform.

〔発明の目的〕[Purpose of the invention]

本発明はこのような欠点を除去したものでその目的は、
サセプタに取付けた多数のウェハに対する反応ガスの接
触をより一様にし、気相成長の膜厚を均一にして品質を
高め得る気相成長装置を提供することにある。
The present invention eliminates these drawbacks, and its purpose is to:
It is an object of the present invention to provide a vapor phase growth apparatus which can improve the quality by making the contact of a reaction gas more uniform to a large number of wafers attached to a susceptor and by making the film thickness of the vapor phase growth uniform.

〔発明の要点〕[Key points of the invention]

本発明の気相成長装置は、軸方向に勾配を有するバレル
型のサセプタを備えた気相成長装置において、軸心から
の距離が短かr側のサセプタ端部側に、ほぼサセプタの
表面に沿って軸方向へ反応ガスを供給する複数本のノズ
ルを設けると共に、該ノズル孔のサセプタ軸心からの距
離を変化させたことを特徴にしてAる。
The vapor phase growth apparatus of the present invention is a vapor phase growth apparatus equipped with a barrel-shaped susceptor having a slope in the axial direction. A is characterized in that a plurality of nozzles are provided for supplying a reactive gas in the axial direction along the susceptor, and the distance of the nozzle hole from the susceptor axis is varied.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を示した図につ論て説明する。、
第1図におりでサセプタ組立体11は複数枚の短冊状を
したサセプタが多角形状に配置されると共に、細心に対
し勾配を有しかつ上面および下面はフタ状体に工9おお
われておりその外周には多数のウェハ12が取付けであ
る。サセプタ組立体11は上下のフタ状体に固着した、
セラミックス等の非金属製かつ中空の回転軸13により
両方向へ回転されるようになされており、その外周およ
び上方は石英製のベルジャ14によりおおわれている。
An embodiment of the present invention will be explained below with reference to the drawings. ,
In the susceptor assembly 11 shown in FIG. 1, a plurality of strip-shaped susceptors are arranged in a polygonal shape, and the susceptor assembly 11 has a carefully sloped surface, and its upper and lower surfaces are covered with a lid-like body 9. A large number of wafers 12 are attached to the outer periphery. The susceptor assembly 11 is fixed to the upper and lower lid-like bodies,
It is configured to be rotated in both directions by a hollow rotating shaft 13 made of a non-metallic material such as ceramics, and its outer periphery and upper part are covered with a bell jar 14 made of quartz.

ベルジャ14の下方にはこnと同心かつサセプタ組立体
11の回転を妨げない近接したわずかな隙間を有する位
置に石英製の円筒体15があり、ベルジャ14お工び円
筒体15は共にステンレス鋼製のペースプレート16上
に密接した状態で載置されている。なお円筒体15はサ
セプタ組立体1、テベルジャ14とサセプタ組立体】1
および円筒体】5にエフ形成される空間を反応室といい
、回転軸】3はペースプレート16を気密llC貫通し
ている。ベルジャ14の下側内周と円筒体15の下側外
周との間にはペースプレート16A表面から金属イオン
の放出を阻止するため石英リング19Aが敷かれており
、この石英リング19Aとベースプレート16には反応
室のガスを外部に排出するための孔19Bがあけである
。回転軸】3の中心にはそれぞれ固定の内管】7お工び
外管】8の2重管が設けらn、内管17からはN2或い
はH2のガスが上方に向って流れ外管18は上端で複数
(図では2本のみ示しである)に分岐してノズル18A
になって下方にあるウニノS12に向って反応ガスが流
れるようになっている。なお反応ガスの流れの細部は後
述する。
Below the bell jar 14 is a cylindrical body 15 made of quartz that is concentric with the bell jar 14 and has a small gap in close proximity that does not impede the rotation of the susceptor assembly 11. Both the bell jar 14 and the cylindrical body 15 are made of stainless steel. They are placed in close contact on a pace plate 16 made of Note that the cylindrical body 15 is a susceptor assembly 1, and the cylindrical body 15 is a susceptor assembly 1.
The space formed in the cylindrical body [5] is called a reaction chamber, and the rotating shaft [3] passes through the pace plate 16 in an airtight manner. A quartz ring 19A is placed between the lower inner periphery of the bell jar 14 and the lower outer periphery of the cylindrical body 15 in order to prevent release of metal ions from the surface of the pace plate 16A. A hole 19B is provided for discharging gas from the reaction chamber to the outside. At the center of rotation axis 3, fixed inner tube 7 outer tube 8 double tubes are provided, and N2 or H2 gas flows upward from inner tube 17 and outer tube 18. The nozzle 18A branches into a plurality of nozzles (only two are shown in the figure) at the upper end.
The reactant gas flows towards the UNINO S12 located below. Note that the details of the flow of the reaction gas will be described later.

ベルジャ14の下部外周には、これを取り囲み、ベース
プレート16の外周に配置されたペース20とによりベ
ルジャ14側のみを開放した排気ダクト21が設けられ
、この排気ダクト21は第2図に示す排気管22に接続
されている。排気l゛クト】上には、多数のランプ23
を有するランプハウス24が、第2図に示す工すに、ベ
ルジャ14を取り囲んで配置さnている。ランプノ)ウ
ス24の背面側にはA冷却流体供給部25が形成され、
A冷却流体供給部25には不図示の送風機および冷却機
からの冷却仝気が吹き込まれ、冷却空ンプ23お工びベ
ルジャ14&c吹きつけてこれら八 を冷却する工うになっている。
An exhaust duct 21 is provided on the outer periphery of the lower part of the bell jar 14, surrounding it and opening only on the bell jar 14 side with a pace 20 arranged on the outer periphery of the base plate 16. This exhaust duct 21 is an exhaust pipe shown in FIG. 22. Above the exhaust port are numerous lamps 23.
A lamp house 24 having a lamp housing 24 is disposed surrounding the bell jar 14 in the structure shown in FIG. A cooling fluid supply section 25 is formed on the back side of the lamp head 24,
Cooling air is blown into the A cooling fluid supply section 25 from a blower and a cooler (not shown), and is blown through the cooling air pump 23 and the bell jar 14&c to cool these parts.

ペース20には排気ダクト217c@mして昇降および
回転機構28が設けてあり、同機構28に上端に腕29
が固着され、腕29の先端は把持具30にエリベルジャ
14の」外部に固着した把持部31 fcll!脱可能
に把持している。また腕29の先端は把持具32にエフ
B冷却流体供給部33f、取付けている。、B冷却流体
供給533の下端はランプハウス24の上面に載置され
ると共に、その内壁34には多数の孔35があけられて
いるたd〕A冷却流体供給部25と同様に冷却空気がベ
ルジャ14の上部に吹きつけられる。ここでペルジャト
1とB冷却流体供給部33とは腕29に取付けらrして
いるfcぬ、同時に昇降可能であり、ベルジャ14の下
面がノズル18Aの上方まで上昇した後は腕29を旋回
させることにエリベルジャ14お工び13冷却流体供給
部33を側刃へ旋回するこ24は端部Aお工ひBが互論
シて回動自在に連結さf’L、下側中央は切離さnる工
うになっておジ、同図に点線で示した立置に移動可能に
なっている。
The pace 20 is provided with an exhaust duct 217c@m and an elevating and rotating mechanism 28, and an arm 29 is attached to the upper end of the mechanism 28.
is fixed, and the tip of the arm 29 is attached to the gripping tool 30. It is removably gripped. Furthermore, an F-B cooling fluid supply section 33f is attached to the gripping tool 32 at the tip of the arm 29. , the lower end of the B cooling fluid supply section 533 is placed on the upper surface of the lamp house 24, and its inner wall 34 is provided with a number of holes 35. It is sprayed onto the top of Belljar 14. Here, the perjacto 1 and the B cooling fluid supply section 33 are attached to the arm 29, and can be raised and lowered at the same time, and after the lower surface of the bell jar 14 rises above the nozzle 18A, the arm 29 is rotated. In particular, turning the cooling fluid supply part 33 of the Eliberja 14 to the side blade 24 means that the ends A and B are rotatably connected to each other f'L, and the lower center is separated. As the construction progresses, it can be moved to the vertical position shown by the dotted line in the figure.

Aお工びB冷却流体供給部25および33から吹き出さ
Iした冷却空気はベルジャ14の外周あ・工びランプ2
3を冷却しながら下降し、排気l°タクト′ 21内に入り7j (&図の上方に示した排気管22か
ら外部に強制的に排出さ71.る。反応ガスの流れるノ
ズル18Aは図に示す工うにこの例では放射状に8本設
けてあり、先端近くには下向きの孔36(第1図参照)
が1個あけてあり、かっこの孔36は8本のノズル18
Aの2本或いは4本を組にして回転@13の軸心からの
距離を第3図囚。
The cooling air blown out from the cooling fluid supply parts 25 and 33 is sent to the outer periphery of the bell jar 14 and the lamp 2.
3 descends while cooling the gas, enters the exhaust gas tact' 21 and is forcibly discharged to the outside from the exhaust pipe 22 shown in the upper part of the figure.The nozzle 18A through which the reaction gas flows is shown in the figure. In this example, there are eight sea urchins arranged radially, and there is a downward hole 36 near the tip (see Figure 1).
The hole 36 in parentheses has eight nozzles 18.
Use two or four of A as a set and measure the distance from the axis of rotation @13 in Figure 3.

aにR1,R2で示すように、変えることに工9、軸心
に対し勾配を有するサセプタ組立体1】上に配列されて
いるウェハ12の全体に対して反応カスがニジ均一に接
触するようにしである。なお、ノズルxA本数を適宜に
定め、各々のノズル孔36が軸方向に配列されたウェハ
12にそれぞれ順次対応させるようにしてもよ論。
As shown by R1 and R2 in Fig. 9, the susceptor assembly 1 has a slope with respect to the axial center so that the reaction residue uniformly contacts the entire wafers 12 arranged on the susceptor assembly 1. It's Nishide. Note that the number of nozzles xA may be determined as appropriate, and each nozzle hole 36 may be made to correspond sequentially to the wafers 12 arranged in the axial direction.

矢に前述した実施例の動作を説明する。昇降等の機構2
8にニジベルジャ】4とB冷却流体供給部33を上昇さ
せ、次いでランプハウス24を第28にニジベルジャ1
4とB冷却流体供給部33を下降させて第1図の状態に
する。この状態で内管17と外管】8からN2ガスを噴
出して空気をパージし、空気のパージが終了した後、N
2カスにエフ前記N2ガスをパージし、次いでランプ2
3に工り加熱する。加熱によりウェハ】2が所定温度に
達すると外管18従ってノズル18AからN2カスと共
にyラン等の反応ガスを噴出させることに、Cり気相成
長を行なう。各ノズル18Aの孔36は、第3図(2)
、■に示したように、サセプタ組立体11の回転軸心か
らの距離R1,R2が異なっているため、勾配をもって
配列されているウェハ】2の全域にわたって反応ガスが
よジ一様に接触し、均一な膜厚が得られる。
The operation of the embodiment described above will be explained with reference to the arrows. Lifting mechanism 2
8 to the rainbow bell jar] 4 and B cooling fluid supply section 33, and then move the lamp house 24 to the 28th rainbow bell jar 1.
4 and B cooling fluid supply section 33 are lowered to the state shown in FIG. In this state, N2 gas is jetted out from the inner tube 17 and the outer tube 8 to purge the air, and after the air purge is completed,
Purge the above N2 gas to lamp 2, and then
Step 3 and heat. When the wafer 2 reaches a predetermined temperature by heating, a reaction gas such as y-lan is spouted from the outer tube 18 and hence the nozzle 18A together with N2 sludge, thereby performing carbon vapor phase growth. The hole 36 of each nozzle 18A is shown in FIG. 3 (2).
, ■, since the distances R1 and R2 from the rotational axis of the susceptor assembly 11 are different, the reaction gas is in uniform contact with the entire area of the wafers 2 which are arranged with an inclination. , a uniform film thickness can be obtained.

このとき内管17からはそのままN2カスを噴出させる
ことに工りベルジャ14の上部空間をN2カスで充満せ
しめ、もってベルジャ14の上VA壁面の冷却と上部壁
面への反応ガスの接触を阻止する。・−そしてこルらの
ガスはベースプレート16の穴19Bから排出される。
At this time, the N2 scum is directly ejected from the inner pipe 17 to fill the upper space of the bell jar 14 with N2 scum, thereby preventing the cooling of the upper VA wall surface of the bell jar 14 and the contact of the reaction gas with the upper wall surface. . -These gases are discharged from the hole 19B of the base plate 16.

このときサセプ夕組立体−1−9=とベースプレート1
6の間に円筒体ユニ 15があるため、ガスがサセプタ組立体に≠の下部に回
り込んでゴミを舞い上げ几り、ベルジャ14内のガス流
を乱したりすることなく円滑に排出される。ランプ23
による加熱と同時に送風機および冷却機からの冷却空気
は、Aお工びB冷却流体供給部25および33の孔26
お工び;35分通ってベルジャ14お工びランプ2:<
vc吹@つけらn1ランプ23とベルジャ】4を冷却し
た後ベルジャ14に沿って下降し、排気ダク)21から
排気管22により強制的に排気される。この風量は石英
ベルジャ】4の大きさによるが数】nrr?/分から数
lnnm’/分と極めて大量であるが、排気ダクト21
はベルジャ14の下方を囲んで円周上に太き(/″また
め排気抵抗は小さく排気管22から吸引することにより
円滑な排気が可能である。
At this time, the susceptor assembly -1-9= and the base plate 1
Since there is a cylindrical unit 15 between the bell jars 14 and 6, gas flows around the susceptor assembly to the bottom of the bell jar 14, blows up dust, and is smoothly discharged without disturbing the gas flow inside the bell jar 14. . lamp 23
At the same time as heating by
Work; 35 minutes to Bellja 14 work lamp 2:<
After cooling the vc blower n1 lamp 23 and bell jar 4, it descends along the bell jar 14 and is forcibly exhausted from the exhaust duct 21 through the exhaust pipe 22. This air volume depends on the size of the quartz bell jar [4] nrr? /min to several lnnm'/min, but the exhaust duct 21
surrounds the lower part of the bell jar 14 and is thick on the circumference (/''), so the exhaust resistance is small and suction from the exhaust pipe 22 allows smooth exhaust.

一定時間気相成長が行われた後ランプ23を消して加熱
を停止すると共に、両管]72よび18からN2カスの
みを噴出烙せて反応ガスのパージを行いながらベルジャ
14を介してウニノ・12を冷却し、次いでN2カスを
停止してN2カスを噴出することにエフベルジャ14内
をN2ガスにする。最後にベルジャ14等を昇降等の機
構28、に工り上昇させると共に、ランプハウス24f
開いてウェハ12を取り出せば一連の気相成長作業は終
了する。なふ・ベルジャ14の洗浄が必な場合11ベル
ジヤ14を上昇後昇降)よび回転機構28により側方へ
旋回させた後、下降させて台(図示せず)上に着床させ
、ベルジャ14を把持具3oから離脱してか田洗浄する
After vapor phase growth has been carried out for a certain period of time, the lamp 23 is turned off to stop the heating, and the unino 12 is cooled, and then the N2 scum is stopped and the N2 scum is spouted to turn the inside of the F-Verjar 14 into N2 gas. Finally, the bell jar 14 etc. are raised by raising and lowering the mechanism 28, and the lamp house 24f is raised.
When the wafer 12 is opened and the wafer 12 is taken out, the series of vapor phase growth operations is completed. If it is necessary to clean the bell jar 14, move the bell jar 14 up and down) and turn it to the side using the rotation mechanism 28, then lower it and place it on a stand (not shown). It is separated from the gripping tool 3o and washed.

〔発明の効果〕〔Effect of the invention〕

本発明の気相成長装置は以上説明したように、ベースプ
レートを貫通して上方に伸びる回Ei&て取付けしnか
つ軸方向に勾配を有するバレル型のサセプタと、1:1
1心からの距離が短かい側のサセプタ端部側に、ほぼサ
セプタの表面に沿って軸方向へ反応ガスを供給する複数
本のノズルを設けると共に、該ノズル孔のサセプタ軸心
からの距離を変化させるようにyt波した。
As explained above, the vapor phase growth apparatus of the present invention includes a barrel-shaped susceptor that extends upwardly through the base plate, is attached to the barrel-shaped susceptor, and has a slope in the axial direction.
A plurality of nozzles are provided on the end of the susceptor on the side having a shorter distance from the susceptor center, and a plurality of nozzles are provided for supplying the reaction gas in the axial direction almost along the surface of the susceptor, and the distance of the nozzle holes from the susceptor axis is varied. I made a yt wave to make it happen.

この溝b′i、VCよりサセプタに取付けた多数のウェ
ハは、サセプタが軸方向に勾配を有することと共にノズ
ル化が°サセプタ軸心からの距離が変化していることに
エリ反応ガスに対し一様に吻ツがっ多)量チj砂に接す
るため気相成長の膜厚さぽ−定でかつ、短時間(て成長
して生産性の高(へ利点を有する。
A large number of wafers attached to the susceptor through the grooves b'i and VC have an axially sloped susceptor and a nozzle structure that is uniform for reactant gas because the distance from the susceptor axis changes. Since it is in contact with a large amount of sand, the thickness of the vapor-phase grown film is constant, and it grows in a short period of time, which has the advantage of high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し第1図は断面図、第2図は
第1図の2−2線断面図、第3図囚、0はノズル孔とサ
セプタの関係を示す部分拡大断面図である。 11・・・サセプタ組立体、】2・・・ウェハ、13・
・・回転軸、14・・・ベルジャ、】5・・・円筒俸、
16・・・ベースプレート、】7・・・内骨、】8・・
・外管、18A・・・ノズル、23・・・ランプ、24
・・・ランプハウス、25.33・・・(冷却流体供給
部、28・・・昇降お工び回転礪構、36・・・ノズル
孔。 出頭人  東芝機械株式会社 第1図 升2図 升3図
The figures show one embodiment of the present invention. Figure 1 is a cross-sectional view, Figure 2 is a cross-sectional view taken along the line 2-2 in Figure 1, and Figure 3 (0) is a partially enlarged cross-section showing the relationship between the nozzle hole and the susceptor. It is a diagram. 11... Susceptor assembly, ]2... Wafer, 13...
...rotating shaft, 14... bell jar, ]5... cylindrical salary,
16... Base plate, ]7... Inner bone, ]8...
・Outer tube, 18A... Nozzle, 23... Lamp, 24
... Lamp house, 25.33... (Cooling fluid supply section, 28... Lifting and rotating structure, 36... Nozzle hole. Appearance: Toshiba Machine Co., Ltd. Figure 1, Figure 2) Figure 3

Claims (1)

【特許請求の範囲】 1、軸方向に勾配を有するバレル型のサセプタを備えた
気相成長装置において、軸心からの距離が短かい側のサ
セプタ端部側に、ほぼサセプタの表面に沿つて軸方向へ
反応ガスを供給する複数本のノズルを設けると共に、該
ノズル孔のサセプタ軸心からの距離を変化させたことを
特徴とする気相成長装置。 2、サセプタ細心からノズル孔までの距離がサセプタの
軸方向に配列されるウェハの各々に対応して定められて
いることを特徴とする特許請求の範囲第1項記載の気相
成長装置。
[Claims] 1. In a vapor phase growth apparatus equipped with a barrel-shaped susceptor having a slope in the axial direction, the susceptor is placed on the end side of the susceptor on the side where the distance from the axis is shorter, substantially along the surface of the susceptor. A vapor phase growth apparatus characterized in that a plurality of nozzles are provided for supplying a reaction gas in the axial direction, and the distance of the nozzle holes from the susceptor axis is varied. 2. The vapor phase growth apparatus according to claim 1, wherein the distance from the fine point of the susceptor to the nozzle hole is determined corresponding to each of the wafers arranged in the axial direction of the susceptor.
JP20947684A 1984-10-05 1984-10-05 Gas phase growth apparatus Granted JPS6186497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20947684A JPS6186497A (en) 1984-10-05 1984-10-05 Gas phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20947684A JPS6186497A (en) 1984-10-05 1984-10-05 Gas phase growth apparatus

Publications (2)

Publication Number Publication Date
JPS6186497A true JPS6186497A (en) 1986-05-01
JPH0310596B2 JPH0310596B2 (en) 1991-02-14

Family

ID=16573476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20947684A Granted JPS6186497A (en) 1984-10-05 1984-10-05 Gas phase growth apparatus

Country Status (1)

Country Link
JP (1) JPS6186497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027746A (en) * 1988-03-22 1991-07-02 U.S. Philips Corporation Epitaxial reactor having a wall which is protected from deposits
US5160545A (en) * 1989-02-03 1992-11-03 Applied Materials, Inc. Method and apparatus for epitaxial deposition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132531A (en) * 1974-07-16 1976-03-19 Solvay Arukiruasetofuenonno seiho
JPS5480071A (en) * 1977-12-09 1979-06-26 Hitachi Ltd Vapor growth method for semiconductor layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132531A (en) * 1974-07-16 1976-03-19 Solvay Arukiruasetofuenonno seiho
JPS5480071A (en) * 1977-12-09 1979-06-26 Hitachi Ltd Vapor growth method for semiconductor layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027746A (en) * 1988-03-22 1991-07-02 U.S. Philips Corporation Epitaxial reactor having a wall which is protected from deposits
US5160545A (en) * 1989-02-03 1992-11-03 Applied Materials, Inc. Method and apparatus for epitaxial deposition

Also Published As

Publication number Publication date
JPH0310596B2 (en) 1991-02-14

Similar Documents

Publication Publication Date Title
US5888304A (en) Heater with shadow ring and purge above wafer surface
JP3398936B2 (en) Semiconductor processing equipment
US5505779A (en) Integrated module multi-chamber CVD processing system and its method for processing substrates
TWI414626B (en) CVD reactor with slidable substrate carrier
US8591655B2 (en) Apparatus for the preparation of film
JPS63213672A (en) Rapid heating cvd apparatus
WO2007097199A1 (en) Heat treatment equipment, heater and its manufacturing method
JPH021116A (en) Heat treatment apparatus
KR20200010086A (en) Heat treatment apparatus and heat treatment method
KR100274754B1 (en) Film growth apparatus and film growth method
JP2603909B2 (en) CVD apparatus, multi-chamber type CVD apparatus and substrate processing method thereof
JPS6046029A (en) Equipment for manufacturing semiconductor
JPS6186497A (en) Gas phase growth apparatus
JP4110646B2 (en) CVD equipment
JPH0310597B2 (en)
JPS6186494A (en) Gas phase growth apparatus
JPH0249280B2 (en) KISOSEICHOSOCHI
JP4665204B2 (en) Thermal processing chamber
JPS6186498A (en) Gas phase growth apparatus
JP2805589B2 (en) Low pressure chemical vapor deposition equipment
CN220579386U (en) Vapor deposition equipment
JPS62257720A (en) Vapor growth device
JPS6254081A (en) Vapor growth device
KR100651631B1 (en) Rtcvd chamber which can improve uniformity of film deposition
CN219195131U (en) Wafer base of film forming device