JPS6186498A - Gas phase growth apparatus - Google Patents

Gas phase growth apparatus

Info

Publication number
JPS6186498A
JPS6186498A JP20947784A JP20947784A JPS6186498A JP S6186498 A JPS6186498 A JP S6186498A JP 20947784 A JP20947784 A JP 20947784A JP 20947784 A JP20947784 A JP 20947784A JP S6186498 A JPS6186498 A JP S6186498A
Authority
JP
Japan
Prior art keywords
susceptor
gas
phase growth
nozzles
nozzle holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20947784A
Other languages
Japanese (ja)
Inventor
Masayuki Nozawa
野沢 昌幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP20947784A priority Critical patent/JPS6186498A/en
Publication of JPS6186498A publication Critical patent/JPS6186498A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form the broad gas flow and to make the film thickness of gas phase growth uniform by providing plural nozzles for feeding gas to the end part side of a susceptor and making the directions of gas injection of the nozzle holes different. CONSTITUTION:A barrel type susceptor assembly body 11 is fitted to a rotary axis 13 lengthened upward by perforating a base plate 16. Plural nozzles 18A for feeding the reaction gas are provided to one end part side of the susceptor 11. Every nozzle holes 36 of these nozzles 18A are slantingly provided in such shape that they are mutually faced. Thereby two reaction gas flow in ected from the nozzle holes 36 are allowed to collide against each other in the position close to the upper part of the surface of the susceptor assembly body 11 and the broad gas flow directed downward is formed. By this mechanism, the film thickness of gas phase growth for many wafers fitted on the susceptor 11 is made uniform and the velocity of gas phase growth is accelerated.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明にシリコン等の半導体物質基板(以下ウェハと力
う)に/リコン結晶浄全気相成侵させるバレル型の気相
成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a barrel-type vapor phase growth apparatus for performing pure vapor phase deposition of silicon crystal onto a semiconductor material substrate (hereinafter referred to as a wafer) such as silicon.

〔従来技9トi〕 従来のバレル型気相成長装置は、サセプタの一端部側に
ノズルを設け、サセプタの回転軸心tて沿って反応ガス
を供給するようになってカた。この場合反応ガスの流n
は縞状足なって略層流となり、ウェハに対する反応ガス
の接触が積極的に行なわルず、成長運度が遅いと共に、
縞状の流れであるため気相1茂長の膜厚が均一にならな
い欠点があった。
[Prior Art 9-i] A conventional barrel-type vapor phase growth apparatus has a nozzle provided at one end of a susceptor to supply a reaction gas along the rotation axis t of the susceptor. In this case the flow of reactant gas n
The flow becomes striped and almost laminar, and the reaction gas does not come into active contact with the wafer, resulting in slow growth.
Because of the striped flow, there was a drawback that the film thickness of the vapor phase was not uniform.

〔発明の目的〕[Purpose of the invention]

本発明にこのような欠点全除去したものでその目的は、
サセプタに取付けた多数のウェハに対して反応ガスを、
lニジ均一にかつ積極的に接触させ、気相成長の膜厚K
を均一にして品質の高力気相成長層を能率的に形成させ
ることのできる装置を提供することにある。
The present invention completely eliminates these drawbacks, and its purpose is to
Reactant gas is applied to a large number of wafers attached to a susceptor.
The film thickness K of vapor phase growth is
It is an object of the present invention to provide an apparatus that can uniformly form a high-strength vapor phase growth layer of high quality efficiently.

〔発明の安息〕[Rest of invention]

本発明の気相成長装置に、バレル型のサセプタと有する
気相成長装置において、サセプタの一端部側に反応ガス
供給用の複数本のノズルを配置し、該ノズルのノズル孔
をサセプタの表面に略沿うと共にそれらのガス噴出方向
をサセプタの動方向に対しそれぞれ異なる角度に設定し
たことを特徴にしている。
In the vapor phase growth apparatus of the present invention, a plurality of nozzles for supplying a reaction gas are arranged on one end side of the susceptor, and the nozzle holes of the nozzles are arranged on the surface of the susceptor. It is characterized in that the directions of gas ejection are set at different angles with respect to the moving direction of the susceptor.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を示した図について説明する。第
1図においてサセプタ組立体11は複数枚の短冊状をし
たサセプタが多角形状に配置されると共に、細心に対し
勾配を有しかつ上面ふ・工び下面にフタ状体にエリおお
わnてお9その外周には多数のウェハ12が取付けであ
る。サセプタ組立体11は上下のフタ状体に固着したセ
ラミックス等の非金属製かつ中空の回転軸】3に工9両
方向へ回転さnる工うになされており、その外周お工び
上方は石英製のベルジャ14にエリおおわれている。
A diagram showing an embodiment of the present invention will be described below. In FIG. 1, the susceptor assembly 11 has a plurality of strip-shaped susceptors arranged in a polygonal shape, and has a carefully sloped top surface and a lid-like body on the bottom surface. 9. A large number of wafers 12 are attached to its outer circumference. The susceptor assembly 11 is made of a hollow rotating shaft made of non-metallic material such as ceramics fixed to the upper and lower lid-like bodies, and is designed to rotate in both directions. It is completely covered by Belljar 14.

ベルジャ】4の下方にはこれと同心かつサセプタ組立体
11の回転を妨げない近接したわずかな隙間を有する位
置に石英製の円筒体15があり、ベルジャ14お工び円
筒体15は共にステンレス鋼製のベースグレート16上
に密接した状態で載置さtして層る。なお円筒体15は
サセプタ組立体してベルジャ14とサセプタ組立体11
および円筒体】5にエリ形成される空間を反応室といい
、回転軸13はベースプレート16を気密に貫通してい
る。ベルジャ14の下側内周と円筒体15の下側外周と
の間VCはベースグレート16表面から△ 金属イオンの放出を阻止するため石英リング19Aが敷
かれており、この石英リング19Aとヘ−スプレート1
6には反応室のガスを外部に排出する几めの孔19Bが
あけである。
Below the bell jar 4, there is a cylindrical body 15 made of quartz that is concentric with the susceptor assembly 4 and has a small gap in close proximity thereto that does not hinder the rotation of the susceptor assembly 11. Both the bell jar 14 and the cylindrical body 15 are made of stainless steel. The base plates 16 are placed in close contact with each other and layered. The cylindrical body 15 is assembled into a susceptor assembly, and the belljar 14 and the susceptor assembly 11 are assembled together.
The space formed in the cylindrical body 5 is called a reaction chamber, and the rotating shaft 13 passes through the base plate 16 in an airtight manner. A quartz ring 19A is laid between the lower inner periphery of the bell jar 14 and the lower outer periphery of the cylindrical body 15. spray plate 1
6 is provided with a narrow hole 19B for discharging gas from the reaction chamber to the outside.

回転@13の中心にはそれぞれ固定の内管17お工び外
管18の2重管が設けられ、内管17からはN2或いは
H2のガスが上方に向って流れ外管18は上端で複数(
図では2本のみ示しである)に分岐してノズル18Aに
なって下方にあるウェハ12に向って反応ガスが流詐る
ようになっているUなン反応ガスの流れの細部は後述す
る。
At the center of the rotation @ 13, a double pipe of a fixed inner pipe 17 and an outer pipe 18 is provided, and N2 or H2 gas flows upward from the inner pipe 17, and the outer pipe 18 has a plurality of fixed pipes at its upper end. (
The details of the flow of the reactant gas will be described later.

ベルジャ】4の下部外周[は、これを取り囲み、ベース
グレート16の外周に配置されたベース2(1とにエリ
ベルジャ1aljlllのみを開放した排気ダクト21
が設けられ、この排気l゛クト]は第2図Vこ示す排気
管22に接続されてhる。排気ダクト21上には、多数
のランプ23を有するランプハウス24が、第2図に示
すように、ベルジャ14を取り囲んで配置さnている。
The lower outer periphery of the bell jar] 4 is an exhaust duct 21 that surrounds this and opens only the bell jar 1aljllll to the base 2 (1), which is placed on the outer periphery of the base grate 16.
is provided, and this exhaust pipe is connected to an exhaust pipe 22 shown in FIG. 2V. A lamp house 24 having a large number of lamps 23 is arranged on the exhaust duct 21, surrounding the bell jar 14, as shown in FIG.

ランプハウス24の背面4411にはA冷却流体供給部
25が形成づγし、kl/frDj流体供給部25には
不図示の送風機お工び冷却機からの冷却生気が吹き込ま
れ、冷却空を冷却する工うになっている。
A cooling fluid supply section 25 is formed on the back surface 4411 of the lamp house 24, and cooling fresh air is blown from a blower or cooler (not shown) into the kl/frDj fluid supply section 25 to cool the cooling air. It is supposed to be done.

ベース20にμ排気ダクト21Vc隣接して昇降お↓ひ
回弘機(428が設けてあり、同機構28は上蔦r腕2
9が固着され、腕29の先端は把持具3 Otic上ジ
ベルジャ140頂部に固着した把持部31を離脱可能に
把持している。また腕29の先端は把持具32にエリ1
3冷却流体供給部33を取付けている。B冷却流体供給
部33の下端はランプハウス24の上面に載置されると
共に、その内壁34には多数の孔35があけられている
ためA冷却流体供給部25と同様に冷却空気がベルジャ
14の上部に吹きつけられる。ここでベルジャ14とB
冷却流体供給部33とは腕29に取付けら几ているため
、同時に昇降可能であり、ベルジャ14の下面がノズル
18Aの上方まで上昇した後は腕29を旋回させること
にエリベルジャ14お工ぴB冷却流体供給部33を側方
へ旋回するこ24は端部Aお工びBが互いに回動自在に
連結はれ、下側中央は切離されるようになっており、同
図に点線で示した位置に移動可能になっている。
A lifting and lowering mechanism (428) is provided adjacent to the μ exhaust duct 21Vc on the base 20.
9 is fixed, and the tip of the arm 29 removably grips a gripping part 31 fixed to the top of the gripping tool 3 Otic upper jibber jar 140. Also, the tip of the arm 29 is attached to the gripper 32 with an edge 1.
3. A cooling fluid supply section 33 is attached. The lower end of the B cooling fluid supply section 33 is placed on the upper surface of the lamp house 24, and the inner wall 34 has a large number of holes 35, so that cooling air is supplied to the bell jar 14 in the same way as the A cooling fluid supply section 25. sprayed onto the top of the Here Bellja 14 and B
Since the cooling fluid supply section 33 is attached to the arm 29, it can be raised and lowered at the same time, and once the lower surface of the bell jar 14 has risen above the nozzle 18A, the arm 29 must be rotated. When the cooling fluid supply section 33 is turned laterally, the ends A and B are rotatably connected to each other, and the lower center is separated, as shown by the dotted line in the figure. It can be moved to any position.

Aお工びB冷却流体供給部25お工び3:3がら吹き出
された冷却空気はベルジャ14の外周あ・工びランプ2
3を冷却しながら下降し、排気ダクト21内に入った後
回の上方に示した排気管22から外部に強制的に排出さ
れる。反応ガスの流れるノズル18Ai−4図に示すよ
うにこの例では放射状に8本設けてあり、先端近(には
下向きの孔36(第1図参照)が1個あけてあり、かつ
この孔36は8本のノズル11’lAの2本を組にして
第3を 図に示すように、それぞれのノズル孔36p互いに向き
合う形で傾斜して設けることにより、噴出した2つの反
応ガスの流れがサセプタ組立体】1の表面の上方寄り位
置で衝突して下向きの広いガスR,を形成するようにな
っている。
The cooling air blown out from the cooling fluid supply section 25 is sent to the outer periphery of the bell jar 14 and the lamp 2.
3 descends while being cooled, enters an exhaust duct 21, and is then forcibly discharged to the outside through an exhaust pipe 22 shown above. In this example, eight nozzles 18Ai-4 through which the reaction gas flows are provided radially, as shown in Figure 1, and there is one downward hole 36 (see Figure 1) near the tip. As shown in the figure, two of the eight nozzles 11'lA are arranged as a set, and the third nozzle hole 36p is provided at an angle facing each other, so that the flows of the two ejected reaction gases are directed to the susceptor. Assembly] Collision occurs at a position near the upper side of the surface of 1 to form a downward wide gas R.

次に前述した実施例の動作を説明する。昇降等の機構2
8によりベルジャ14とB冷却流体供給部33を上昇さ
せ、次いでランプノ・ウス24を第28にエフペルジャ
】4とB冷却流体供給部33を下降させて第1図の状態
にする。この状態で内管17と外管18からN2ガスを
噴出して空気をパージし、空気のパージが終了した後、
H2カスニヨり前記N2ガスをパージし、次いでランプ
23により加熱する。加熱にエリウニノS12が所定温
度に達すると外管18従ってノズル18AからN2ガス
と共にシラン等の反応ガスft噴出させることにエリ気
相成長を行なうが、本装置のノズル孔36は隣合う2つ
が互いに向き合わさnているため、各ノズル孔36から
噴出した反応ガスは、サセプタ組立体1】とベルジャ1
4との間の空間の上部寄りで衝突して下向きの広いガス
流金生じ、ウェハ12の全体にエフ均一に接触すると共
に、反応ガスの動きが活発になるため、接触の強さが増
し、気相成長層の形成が促進される。
Next, the operation of the embodiment described above will be explained. Lifting mechanism 2
8, the belljar 14 and the B cooling fluid supply section 33 are raised, and then the lamp jar 24 is lowered to the position shown in FIG. In this state, N2 gas is jetted out from the inner tube 17 and outer tube 18 to purge the air, and after the air purge is completed,
The H2 gas is then purged of the N2 gas, and then heated by the lamp 23. When the heating process reaches a predetermined temperature, the reaction gas such as silane is ejected from the outer tube 18 and the nozzle 18A together with N2 gas to perform vapor phase growth. Because they face each other, the reaction gas ejected from each nozzle hole 36 flows between the susceptor assembly 1 and the bell jar 1.
The collision near the upper part of the space between the wafer 12 and the wafer 12 generates a wide downward gas flow, which uniformly contacts the entire wafer 12, and the movement of the reaction gas becomes active, increasing the strength of the contact. Formation of a vapor phase growth layer is promoted.

このとき内管17からはそのままN2ガスを噴出させる
ことに工9ベルジャ14の上部空間をN2ガスで充満せ
しめ、もってベルジャ14の上部壁面の冷却と上部壁面
への反応カスの接触を阻止する。そしてこnらのガスは
ベースグレート】6の穴19Bから排出さ几る。このと
きサセプ夕組立体、1=4とベースプレート16の間に
円筒体L 15があるため、ガスがサセプタ組立体≠葎の下部に回
り込んでゴミを舞い上げたり、ベルジャ14内のガス流
を乱したりすることな(円滑に排出される。ランプ23
による加熱と同時に送風機および冷却機からの冷却空気
は、AおよびB冷却流体供給部25および33の孔26
および35を通ってベルジャ14お工びランプ23に吹
きつけられ、ランプ23とベルジャ14を冷却した後ベ
ルジャ14に沿って下降し、排気ダクト21から排気管
22にエフ強制的に排気さルる。この風量は石英ベルジ
ャ]4の大きさによるが数10−7分から数1nOi/
分と極めて大量であるが、排気ダクト21はベルジャ1
4の下方を囲んで円周上に太きいため排気抵抗は小さく
排気管22から吸引することにエリ円滑な排気が可能で
ある。
At this time, N2 gas is directly jetted from the inner tube 17 to fill the upper space of the bell jar 14 with N2 gas, thereby cooling the upper wall surface of the bell jar 14 and preventing reaction scum from coming into contact with the upper wall surface. These gases are discharged from hole 19B of base grade 6. At this time, since the cylindrical body L 15 exists between the susceptor assembly 1=4 and the base plate 16, the gas may flow around the susceptor assembly ≠ the lower part of the husk and kick up dust, or the gas flow inside the belljar 14 may be Do not disturb (smoothly discharged. Lamp 23
The cooling air from the blower and cooler is simultaneously heated by the holes 26 of the A and B cooling fluid supplies 25 and 33.
The air is blown through the bell jar 14 and the lamp 23 through 35, cools the lamp 23 and the bell jar 14, descends along the bell jar 14, and is forcibly exhausted from the exhaust duct 21 to the exhaust pipe 22. . This air volume depends on the size of the quartz bell jar] 4, but it ranges from several 10-7 to several 1 nOi/
Although the exhaust duct 21 is extremely large in size, the belljar 1
Since the circumference is thick surrounding the lower part of the exhaust pipe 22, the exhaust resistance is small and suction from the exhaust pipe 22 allows smooth exhaust.

一定時間気相成長が行われた後ランプ23f:消して加
熱を停止すると共に、両管17および18からN2ガス
のみを噴出させて反応ガスのパージを行いながらベルジ
ャ14ft介してウェハ12を冷却し、次いでN2ガス
を停止してN2ガスを噴出することにエリベルジャ14
内をN2ガスにする。最後にベルジャ】4等を昇降等の
機構28にjり上昇させると共に、ランプノ・ウス24
を開いてウェハ12を取り出せば一連の気相成長作業は
終了する。なおベルジャ14の洗浄が必要な場合はベル
ジャ14を上昇後昇降お工び回転機構28により側方へ
旋回させた後、下降させて台(図示せず)上に着床させ
、ベルジャ】4を把持具30から離脱してd洗浄する。
After vapor phase growth has been performed for a certain period of time, the lamp 23f is turned off to stop heating, and the wafer 12 is cooled through a 14ft bell jar while purging the reaction gas by blowing out only N2 gas from both tubes 17 and 18. Then, the N2 gas was stopped and the N2 gas was spouted out.
Turn the inside into N2 gas. Finally, the bell jar] 4 etc. is raised through the elevating mechanism 28, and the Lampnous 24
When the wafer 12 is opened and the wafer 12 is taken out, the series of vapor phase growth operations is completed. If it is necessary to clean the bell jar 14, after raising the bell jar 14, turn it to the side using the lifting/lowering/rotating mechanism 28, then lower it and place it on a stand (not shown). Remove from the gripper 30 and clean.

前述した実施例は、互いに隣合う2本のノズル18Aの
孔36を向き合わせるように傾斜させる例を示し友が、
3本のノズル18Alt対にして中央のノズル孔36は
下向きにするなど、種々の組合せが可能である。
In the embodiment described above, the holes 36 of two adjacent nozzles 18A are inclined so as to face each other.
Various combinations are possible, such as forming a pair of three nozzles 18Alt with the central nozzle hole 36 facing downward.

〔発明の効果〕〔Effect of the invention〕

本発明の気相成長装置は以上説明したように、ベースプ
レートを貫通して上方に伸びる回転軸に取付けられたバ
レル型の#肯≠竿守やサセプタの、一端部側に反応ガス
供給用の複数のノズルを配置し、このノズルのノズル孔
をサセプタの表面に略沿つと共にそれらのガス噴出方向
をサセプタの、確万句に対しそルぞル異なる角度に設定
した。
As explained above, the vapor phase growth apparatus of the present invention has a barrel-shaped rod guard or susceptor, which is attached to a rotating shaft that extends upward through a base plate, and has a plurality of reactor gas supply ports on one end side. The nozzles of these nozzles were arranged so that their nozzle holes were approximately along the surface of the susceptor, and their gas ejection directions were set at different angles with respect to the direction of the susceptor.

この構成によりサセプタに取付けた多数のウェハに、ノ
ズル孔から噴出した反応ガスが互に衝突して混合され広
いガス流を形IN、するため気相成長の膜厚が均一にな
ると共に成長速度が促進される利点を有する。
With this configuration, the reaction gas ejected from the nozzle holes collides with and mixes with a large number of wafers attached to the susceptor, forming a wide gas flow, which makes the film thickness of the vapor phase growth uniform and increases the growth rate. has the advantage of being promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し第1図は断面図、第2図に
第1図の2−2線断面図、第3図はノズル孔部の部分拡
大横断面図である。 1】・・・サセプタ組立体、12・・・ウニノ1.13
・・・回転棚、】4・・・ベルジャ、15・・・円筒体
、16・・・ベースプレート、17・・・内管、18・
・・外管、18A・・・ノズル、23・・・ランプ、2
4・・・う/ジノ1ウス、25.33・・・冷却流体供
給部、28・・・昇降お工び回転機構、36・・・ノズ
ル孔。
The drawings show one embodiment of the present invention; FIG. 1 is a sectional view, FIG. 2 is a sectional view taken along the line 2--2 in FIG. 1, and FIG. 3 is a partially enlarged cross-sectional view of a nozzle hole. 1]...Susceptor assembly, 12...Unino 1.13
... Rotating shelf, ]4... Bell jar, 15... Cylindrical body, 16... Base plate, 17... Inner tube, 18...
...Outer tube, 18A...Nozzle, 23...Lamp, 2
4...U/Jino1us, 25.33...Cooling fluid supply section, 28...Elevating/lowering and rotating mechanism, 36...Nozzle hole.

Claims (1)

【特許請求の範囲】 1、バレル型のサセプタを有する気相成長装置において
、サセプタの一端部側に反応ガス供給用の複数本のノズ
ルを配置し、該ノズルのノズル孔をサセプタの表面に略
沿うと共にそれらのガス噴出方向を前記サセプタの軸方
向に対しそれぞれ異なる角度に設定したことを特徴とす
る気相成長装置。 2、隣り合うノズル孔が2つずつ対をなして互いに向き
合う側に傾斜して開口されていることを特徴とする特許
請求の範囲第1項記載の気相成長装置。
[Claims] 1. In a vapor phase growth apparatus having a barrel-shaped susceptor, a plurality of nozzles for supplying a reaction gas are arranged on one end side of the susceptor, and the nozzle holes of the nozzles are arranged approximately on the surface of the susceptor. A vapor phase growth apparatus characterized in that the directions of gas ejection are set at different angles with respect to the axial direction of the susceptor. 2. The vapor phase growth apparatus according to claim 1, wherein two adjacent nozzle holes form pairs and are opened at an angle toward opposite sides.
JP20947784A 1984-10-05 1984-10-05 Gas phase growth apparatus Pending JPS6186498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20947784A JPS6186498A (en) 1984-10-05 1984-10-05 Gas phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20947784A JPS6186498A (en) 1984-10-05 1984-10-05 Gas phase growth apparatus

Publications (1)

Publication Number Publication Date
JPS6186498A true JPS6186498A (en) 1986-05-01

Family

ID=16573490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20947784A Pending JPS6186498A (en) 1984-10-05 1984-10-05 Gas phase growth apparatus

Country Status (1)

Country Link
JP (1) JPS6186498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961399A (en) * 1988-03-22 1990-10-09 U.S. Philips Corporation Epitaxial growth reactor provided with a planetary support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132531A (en) * 1974-07-16 1976-03-19 Solvay Arukiruasetofuenonno seiho
JPS5480071A (en) * 1977-12-09 1979-06-26 Hitachi Ltd Vapor growth method for semiconductor layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132531A (en) * 1974-07-16 1976-03-19 Solvay Arukiruasetofuenonno seiho
JPS5480071A (en) * 1977-12-09 1979-06-26 Hitachi Ltd Vapor growth method for semiconductor layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961399A (en) * 1988-03-22 1990-10-09 U.S. Philips Corporation Epitaxial growth reactor provided with a planetary support

Similar Documents

Publication Publication Date Title
TWI806986B (en) Substrate processing apparatus and method
TWI405266B (en) Heat treatment apparatus, heater and manufacturing method thereof
JP2018107255A (en) Film deposition apparatus, film deposition method and heat insulation member
US20050199182A1 (en) Apparatus for the preparation of film
KR20010009968A (en) Thin Film Deposition Apparatus for Semiconductor Device
JP2009503875A (en) Gas manifold valve cluster
JP2005129712A (en) Shower head structure and film forming device employing it
JPH04348031A (en) Chemical vapor growth equipment
JP7055075B2 (en) Heat treatment equipment and heat treatment method
TW202121580A (en) Pedestal with multi-zone heating
TWM579649U (en) Showerhead and process chamber incorporating same
KR20230088467A (en) Thermal Uniform Deposition Station
JP3342118B2 (en) Processing equipment
JPH021116A (en) Heat treatment apparatus
JPS6186498A (en) Gas phase growth apparatus
JP7325343B2 (en) GAS SUPPLY STRUCTURE AND SUBSTRATE PROCESSING APPARATUS
JP4665204B2 (en) Thermal processing chamber
KR20190001931A (en) Cleaning nozzle lid body, heat treatment apparatus and cleaning method of lid body for heat treatment apparatus
JP2005317734A (en) Substrate processing equipment
JPH0310596B2 (en)
CN116752106B (en) Physical vapor deposition apparatus for reactive sputtering
JPH11243086A (en) Single wafer processing cvd device
JPH0249279B2 (en) KISOSEICHOSOCHI
JP2792886B2 (en) Chemical vapor deposition equipment
JP2963145B2 (en) Method and apparatus for forming CVD film