JP7325343B2 - GAS SUPPLY STRUCTURE AND SUBSTRATE PROCESSING APPARATUS - Google Patents

GAS SUPPLY STRUCTURE AND SUBSTRATE PROCESSING APPARATUS Download PDF

Info

Publication number
JP7325343B2
JP7325343B2 JP2020001606A JP2020001606A JP7325343B2 JP 7325343 B2 JP7325343 B2 JP 7325343B2 JP 2020001606 A JP2020001606 A JP 2020001606A JP 2020001606 A JP2020001606 A JP 2020001606A JP 7325343 B2 JP7325343 B2 JP 7325343B2
Authority
JP
Japan
Prior art keywords
gas
tubular member
gas supply
holes
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020001606A
Other languages
Japanese (ja)
Other versions
JP2021109997A (en
Inventor
清振 温
朋幸 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2020001606A priority Critical patent/JP7325343B2/en
Priority to KR1020200185704A priority patent/KR20210089578A/en
Priority to CN202011627128.2A priority patent/CN113088930B/en
Publication of JP2021109997A publication Critical patent/JP2021109997A/en
Application granted granted Critical
Publication of JP7325343B2 publication Critical patent/JP7325343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本開示は、ガス供給構造及び基板処理装置に関する。 The present disclosure relates to gas supply structures and substrate processing apparatuses.

上下方向に複数の基板を棚状に並べて保持した基板保持具を縦型の反応容器内に搬入し、ガスインジェクタから反応容器内に成膜ガスを供給することにより、複数の基板に対して熱処理を行う熱処理装置が知られている(例えば、特許文献1参照)。ガスインジェクタは、反応容器内に上下方向に伸びるように配置される筒状のインジェクタ本体と、上下方向に沿ってインジェクタ本体と一体となるように設けられる筒状のガス導入管とを備える。インジェクタ本体には、上下方向に沿って複数のガス供給孔が形成されている。ガス導入管は、成膜ガスを受け入れる下部側のガス受入口と、インジェクタ本体の内部空間に連通し、当該内部空間に成膜ガスを導入するガス導入口とを備える。 A substrate holder holding a plurality of substrates arranged vertically in a shelf shape is carried into a vertical reaction vessel, and a film forming gas is supplied from a gas injector into the reaction vessel to perform heat treatment on the plurality of substrates. is known (see, for example, Patent Document 1). The gas injector includes a cylindrical injector body arranged to extend vertically in the reaction vessel, and a cylindrical gas introduction pipe provided integrally with the injector body along the vertical direction. A plurality of gas supply holes are formed in the injector body along the vertical direction. The gas introduction pipe includes a gas inlet on the lower side that receives the film forming gas, and a gas inlet that communicates with the internal space of the injector body and introduces the film forming gas into the internal space.

特開2018-81956号公報JP 2018-81956 A

本開示は、ガスの指向性を調整できる技術を提供する。 The present disclosure provides a technology capable of adjusting gas directivity.

本開示の一態様によるガス供給構造は、基板処理装置の処理容器内にガスを供給するガス供給構造であって、ガス供給部材と、前記ガス供給部材に形成されるガス吐出部であり、前記ガス供給部材を貫通する複数の貫通孔を含むガス吐出部と、を有し、前記複数の貫通孔は、前記ガス供給部材における前記ガスの出口側において合流前記ガス供給部材は、内部にガス流路が形成される管状部材を含み、前記ガス吐出部は、前記管状部材の軸方向に沿って間隔を有して複数形成されるA gas supply structure according to an aspect of the present disclosure is a gas supply structure for supplying a gas into a processing container of a substrate processing apparatus, comprising a gas supply member and a gas discharge section formed in the gas supply member, a gas discharge part including a plurality of through-holes penetrating a gas supply member, the plurality of through-holes converge on the gas outlet side of the gas supply member, and the gas supply member is provided inside the gas supply member. A tubular member in which a gas flow path is formed is included, and a plurality of the gas ejection portions are formed at intervals along the axial direction of the tubular member.

本開示によれば、ガスの指向性を調整できる。 According to the present disclosure, directivity of gas can be adjusted.

第1の実施形態の基板処理装置の構成例を示す図1 is a diagram showing a configuration example of a substrate processing apparatus according to a first embodiment; FIG. ガス供給管の一例を示す図A diagram showing an example of a gas supply pipe ガス供給管の別の一例を示す図The figure which shows another example of a gas supply pipe ガス供給管の更に別の一例を示す図The figure which shows another example of a gas supply pipe ガス供給管の更に別の一例を示す図The figure which shows another example of a gas supply pipe ガス供給管の更に別の一例を示す図The figure which shows another example of a gas supply pipe ガス供給管の更に別の一例を示す図The figure which shows another example of a gas supply pipe ガス供給管から吐出されるガスの指向性を説明するための図A diagram for explaining the directivity of the gas discharged from the gas supply pipe. 第2の実施形態の基板処理装置の構成例を示す図FIG. 4 is a diagram showing a configuration example of a substrate processing apparatus according to a second embodiment; シャワーヘッドの一例を示す図Diagram showing an example of a shower head 第3の実施形態の基板処理装置の構成例を示す図FIG. 11 is a diagram showing a configuration example of a substrate processing apparatus according to a third embodiment; ガス供給管から吐出されるガスの指向性のシミュレーション結果を示す図The figure which shows the directivity simulation result of the gas discharged from a gas supply pipe.

以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。 Non-limiting exemplary embodiments of the present disclosure will now be described with reference to the accompanying drawings. In all the attached drawings, the same or corresponding members or parts are denoted by the same or corresponding reference numerals, and overlapping descriptions are omitted.

〔第1の実施形態〕
(基板処理装置)
図1を参照し、第1の実施形態の基板処理装置の構成例について説明する。図1は、第1の実施形態の基板処理装置の構成例を示す図である。
[First embodiment]
(substrate processing equipment)
A configuration example of the substrate processing apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a configuration example of a substrate processing apparatus according to a first embodiment.

基板処理装置1は、複数の基板Wに対し、一括で成膜処理、エッチング処理等の各種の処理を実行する装置である。基板は、例えばシリコンウエハ等の半導体ウエハであってよい。基板処理装置1は、基板Wを収容する処理容器10を有する。 The substrate processing apparatus 1 is an apparatus for collectively performing various processes such as a film forming process and an etching process on a plurality of substrates W. As shown in FIG. The substrate may be, for example, a semiconductor wafer, such as a silicon wafer. The substrate processing apparatus 1 has a processing container 10 in which substrates W are accommodated.

処理容器10は、下端が開放された有天井の略円筒形状の内管12と、下端が開放されて内管12の外側を覆う有天井の略円筒形状の外管14とを有する。内管12及び外管14は、石英等の耐熱性材料により形成されており、同軸状に配置されて二重管構造となっている。処理容器10内には、複数の基板Wを上下方向に間隔を有して略水平に保持する基板保持具16が搬入出される。 The processing container 10 has a substantially cylindrical inner tube 12 with an open bottom end and a substantially cylindrical outer tube 14 with an open bottom end covering the inner tube 12 . The inner tube 12 and the outer tube 14 are made of a heat-resistant material such as quartz, and are coaxially arranged to form a double tube structure. A substrate holder 16 for holding a plurality of substrates W at intervals in the vertical direction and substantially horizontally is carried into and out of the processing chamber 10 .

内管12の天井部は、例えば平坦になっている。内管12の一側には、その長手方向(上下方向)に沿ってガスノズルを収容するノズル収容部18が形成されている。ノズル収容部18は、内管12の側壁の一部を外側へ向けて突出させて凸部20を形成し、凸部20内をノズル収容部18として形成している。また、ノズル収容部18に対向させて内管12の反対側の側壁には、その長手方向(上下方向)に沿って開口22が形成されている。 The ceiling of the inner tube 12 is flat, for example. One side of the inner tube 12 is formed with a nozzle accommodating portion 18 that accommodates a gas nozzle along its longitudinal direction (vertical direction). The nozzle accommodating portion 18 is formed by projecting a portion of the side wall of the inner pipe 12 outward to form a convex portion 20 , and the inside of the convex portion 20 is formed as the nozzle accommodating portion 18 . An opening 22 is formed along the longitudinal direction (vertical direction) of the side wall of the inner tube 12 opposite to the nozzle accommodating portion 18 .

開口22は、内管12内のガスを排気できるように形成されたガス排気口である。開口22の長さは、基板保持具16の長さと同じであるか、又は、基板保持具16の長さよりも長く上下方向へそれぞれ延びるようにして形成されている。 The opening 22 is a gas exhaust port formed to exhaust the gas inside the inner tube 12 . The length of the openings 22 is the same as the length of the substrate holder 16, or longer than the length of the substrate holder 16 so as to extend vertically.

処理容器10の下端は、例えばステンレス鋼により形成される略円筒形状のマニホールド30によって支持されている。マニホールド30の上端にはフランジ部32が形成されており、フランジ部32上に外管14の下端を設置して支持するようになっている。フランジ部32と外管14の下端との間にはOリング等のシール部材34を介在させて外管14内を気密状態にしている。 A lower end of the processing container 10 is supported by a substantially cylindrical manifold 30 made of, for example, stainless steel. A flange portion 32 is formed at the upper end of the manifold 30, and the lower end of the outer tube 14 is placed on the flange portion 32 to support it. A sealing member 34 such as an O-ring is interposed between the flange portion 32 and the lower end of the outer tube 14 to keep the inside of the outer tube 14 airtight.

マニホールド30の内壁には、円環状の支持部36が設けられている。支持部36は、内管12の下端を支持する。マニホールド30の下端の開口には、蓋部38がOリング等のシール部材40を介して気密に取り付けられており、処理容器10の下端の開口の側、即ち、マニホールド30の開口を気密に塞ぐようになっている。蓋部38は、例えばステンレス鋼により形成される。 An annular support portion 36 is provided on the inner wall of the manifold 30 . The support portion 36 supports the lower end of the inner tube 12 . A lid portion 38 is airtightly attached to the opening at the lower end of the manifold 30 via a sealing member 40 such as an O-ring to airtightly close the opening at the lower end of the processing container 10, that is, the opening of the manifold 30. It's like The lid portion 38 is made of stainless steel, for example.

蓋部38の中央部には、磁性流体シール部42を介して回転軸44が貫通させて設けられている。回転軸44の下部は、ボートエレベータよりなる昇降機構46のアーム48に回転自在に支持されており、モータによって回転されるようになっている。 A rotary shaft 44 is provided through the central portion of the lid portion 38 via a magnetic fluid seal portion 42 . A lower portion of the rotary shaft 44 is rotatably supported by an arm 48 of an elevating mechanism 46 comprising a boat elevator, and is rotated by a motor.

回転軸44の上端には、回転プレート50が設けられている。回転プレート50上には、石英製の保温台52を介して基板Wを保持する基板保持具16が載置される。従って、昇降機構46を昇降させることによって蓋部38と基板保持具16とは一体として上下動し、基板保持具16を処理容器10内に対して搬出入できるようになっている。 A rotating plate 50 is provided at the upper end of the rotating shaft 44 . A substrate holder 16 for holding a substrate W is mounted on the rotating plate 50 via a heat insulating base 52 made of quartz. Therefore, by raising and lowering the elevating mechanism 46 , the lid portion 38 and the substrate holder 16 are vertically moved together, so that the substrate holder 16 can be carried in and out of the processing container 10 .

ガス供給部60は、マニホールド30に設けられており、内管12内に成膜ガス、エッチングガス、パージガス等の各種のガスを導入する。ガス供給部60は、複数(例えば3本)の長さの異なる石英製のガスノズル62,64,66を有する。各ガスノズル62,64,66は、内管12内にその長手方向に沿って設けられると共に、その基端部がL字状に屈曲されてマニホールド30を貫通するようにして支持されている。ガスノズル62,64,66は、内管12のノズル収容部18内に周方向に沿って一列になるように設置されている。 A gas supply unit 60 is provided in the manifold 30 and introduces various gases such as a film forming gas, an etching gas, and a purge gas into the inner pipe 12 . The gas supply unit 60 has a plurality (eg, three) of quartz gas nozzles 62, 64, 66 with different lengths. Each of the gas nozzles 62 , 64 , 66 is provided in the inner tube 12 along its longitudinal direction, and is supported so as to penetrate the manifold 30 with its base end bent in an L-shape. The gas nozzles 62 , 64 , 66 are installed in a row along the circumferential direction inside the nozzle accommodating portion 18 of the inner pipe 12 .

ガスノズル62には、内管12内の上部において、その長手方向に沿って所定の間隔で複数のガス吐出部62Aが形成されている。各ガス吐出部62Aは、内管12の中心の側に設けられており、内管12内にガスを吐出する。ただし、各ガス吐出部62Aは、内管12の壁面の側に設けられていてもよい。なお、ガス吐出部62Aの詳細については後述する。 The gas nozzle 62 is formed with a plurality of gas ejection portions 62A at predetermined intervals along the longitudinal direction in the upper portion of the inner tube 12 . Each gas discharge part 62A is provided on the center side of the inner pipe 12 and discharges gas into the inner pipe 12 . However, each gas discharge part 62A may be provided on the wall surface side of the inner tube 12 . Details of the gas discharge section 62A will be described later.

ガスノズル64には、内管12内の中央部において、その長手方向に沿って所定の間隔で複数のガス吐出部64Aが形成されている。各ガス吐出部64Aは、内管12の中心の側に設けられており、内管12内にガスを吐出する。ただし、各ガス吐出部64Aは、内管12の壁面の側に設けられていてもよい。なお、ガス吐出部64Aの詳細については後述する。 The gas nozzle 64 is formed with a plurality of gas ejection portions 64A at predetermined intervals along the longitudinal direction in the central portion of the inner tube 12 . Each gas discharge part 64A is provided on the center side of the inner pipe 12 and discharges gas into the inner pipe 12 . However, each gas discharge part 64A may be provided on the wall surface side of the inner tube 12 . Details of the gas discharge section 64A will be described later.

ガスノズル66には、内管12内の下部において、その長手方向に沿って所定の間隔で複数のガス吐出部66Aが形成されている。各ガス吐出部66Aは、内管12の中心の側に設けられており、内管12内にガスを吐出する。ただし、各ガス吐出部66Aは、内管12の壁面の側に設けられていてもよい。なお、ガス吐出部66Aの詳細については後述する。 In the gas nozzle 66, a plurality of gas ejection portions 66A are formed at predetermined intervals along the longitudinal direction in the lower portion of the inner tube 12. As shown in FIG. Each gas discharge part 66A is provided on the center side of the inner pipe 12 and discharges gas into the inner pipe 12 . However, each gas discharge part 66A may be provided on the wall surface side of the inner tube 12 . Details of the gas discharge section 66A will be described later.

このように、ガス供給部60は、高さ方向における異なる位置にガスを供給するガスノズル62,64,66を有するので、内管12内の上部、中央部、下部にそれぞれ独立してガスを吐出できる。 As described above, the gas supply unit 60 has the gas nozzles 62, 64, and 66 that supply gases to different positions in the height direction, so that the gas is discharged to the upper, middle, and lower portions of the inner tube 12 independently. can.

マニホールド30の上部の側壁であって、支持部36の上方には、ガス出口70が形成されており、内管12と外管14との間の空間部72を介して開口22より排出される内管12内のガスを排気できるようになっている。ガス出口70には、排気機構74が設けられる。排気機構74は、排気通路76、圧力調整弁78及び真空ポンプ80を含む。排気通路76は、ガス出口70に接続されている。圧力調整弁78及び真空ポンプ80は、排気通路76に介設されており、処理容器10内の圧力を制御しながら処理容器10内を排気する。 A gas outlet 70 is formed on the upper side wall of the manifold 30 and above the support portion 36, and the gas is discharged from the opening 22 through a space 72 between the inner tube 12 and the outer tube 14. Gas in the inner tube 12 can be exhausted. An exhaust mechanism 74 is provided at the gas outlet 70 . The exhaust mechanism 74 includes an exhaust passage 76 , a pressure regulating valve 78 and a vacuum pump 80 . An exhaust passage 76 is connected to the gas outlet 70 . A pressure regulating valve 78 and a vacuum pump 80 are interposed in the exhaust passage 76 to exhaust the inside of the processing container 10 while controlling the pressure inside the processing container 10 .

外管14の外周側には、外管14を覆うように略円筒形状の加熱部90が設けられている。加熱部90は、基板Wを加熱する。 A substantially cylindrical heating portion 90 is provided on the outer peripheral side of the outer tube 14 so as to cover the outer tube 14 . The heating unit 90 heats the substrate W. As shown in FIG.

また、基板処理装置1には、制御部95が設けられている。制御部95は、例えばコンピュータであり、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を備える。CPUは、ROM又は補助記憶装置に格納されたプログラムに基づいて動作し、基板処理装置1の動作を制御する。制御部95は、基板処理装置1の内部に設けられていてもよく、外部に設けられていてもよい。 Further, the substrate processing apparatus 1 is provided with a control section 95 . The control unit 95 is, for example, a computer, and includes a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), auxiliary storage device, and the like. The CPU operates based on programs stored in the ROM or auxiliary storage device, and controls the operation of the substrate processing apparatus 1 . The control unit 95 may be provided inside the substrate processing apparatus 1 or may be provided outside.

(ガス供給管)
図2~図7を参照し、図1の基板処理装置1のガスノズル62,64,66として利用可能なガス供給管の構成例について説明する。
(Gas supply pipe)
Configuration examples of gas supply pipes that can be used as the gas nozzles 62, 64, and 66 of the substrate processing apparatus 1 of FIG. 1 will be described with reference to FIGS.

図2は、ガス供給管の一例を示す図である。図2(a)は貫通孔を正面から見た図であり、図2(b)はガス供給管の縦断面を示す図であり、図2(c)はガス供給管の横断面を示す図である。 FIG. 2 is a diagram showing an example of a gas supply pipe. 2(a) is a front view of the through-hole, FIG. 2(b) is a vertical cross-sectional view of the gas supply pipe, and FIG. 2(c) is a cross-sectional view of the gas supply pipe. is.

ガス供給管110は、管状部材111及びガス吐出部112を有する。 The gas supply pipe 110 has a tubular member 111 and a gas discharge section 112 .

管状部材111は、処理容器内に、該処理容器の長手方向に沿って設けられる。管状部材111は、内部にガス流路Fを形成する。管状部材111は、本例では、断面形状が円形である。ただし、管状部材111は、断面形状が長円、楕円、矩形等であってもよい。管状部材111は、例えば石英により形成される。 The tubular member 111 is provided inside the processing container along the longitudinal direction of the processing container. The tubular member 111 forms a gas flow path F inside. The tubular member 111 has a circular cross-sectional shape in this example. However, the cross-sectional shape of the tubular member 111 may be oval, elliptical, rectangular, or the like. The tubular member 111 is made of quartz, for example.

ガス吐出部112は、管状部材111の軸方向(以下、単に「軸方向」ともいう。)に沿って間隔を有して複数形成される。各ガス吐出部112は、管状部材111の管壁を貫通する2つの貫通孔112a,112bを含む。 A plurality of gas ejection portions 112 are formed at intervals along the axial direction of the tubular member 111 (hereinafter also simply referred to as “axial direction”). Each gas discharge part 112 includes two through holes 112 a and 112 b penetrating through the tube wall of the tubular member 111 .

貫通孔112a,112bは、管状部材111内に形成されるガス流路Fを流れるガスを、管状部材111外に吐出するガス孔である。貫通孔112aと貫通孔112bとは、ガスの入口側(管状部材111の内壁側)において管状部材111の軸方向(鉛直方向)に離間し、ガスの出口側(管状部材111の外壁側)において合流する。言い換えると、貫通孔112a及び貫通孔112bは、管状部材111の内壁側から外壁側に向けて管状部材111の軸方向において異なる方向に延在し、管状部材111の外壁側において合流する。図2に示される例では、貫通孔112aは、管状部材111の内壁側から外壁側に向けて管状部材111の軸方向において上方から下方に延在する。また、貫通孔112bは、管状部材111の内壁側から外壁側に向けて管状部材111の軸方向において下方から上方に延在する。そして、貫通孔112aと貫通孔112bとは、管状部材111の外壁側において合流する。 The through-holes 112 a and 112 b are gas holes for discharging the gas flowing through the gas flow path F formed inside the tubular member 111 to the outside of the tubular member 111 . The through-holes 112a and 112b are spaced apart in the axial direction (vertical direction) of the tubular member 111 on the gas inlet side (the inner wall side of the tubular member 111), and are spaced apart on the gas outlet side (the outer wall side of the tubular member 111). merge. In other words, the through-holes 112 a and 112 b extend in different directions in the axial direction of the tubular member 111 from the inner wall side to the outer wall side of the tubular member 111 and merge on the outer wall side of the tubular member 111 . In the example shown in FIG. 2 , the through-hole 112 a extends downward in the axial direction of the tubular member 111 from the inner wall side to the outer wall side of the tubular member 111 . Further, the through hole 112b extends from the bottom to the top in the axial direction of the tubular member 111 from the inner wall side to the outer wall side of the tubular member 111 . The through holes 112 a and 112 b join on the outer wall side of the tubular member 111 .

貫通孔112a,112bは、本例では、断面形状が円形である。ただし、貫通孔112a,112bは、断面形状が長円、楕円、矩形等であってもよい。 The through holes 112a and 112b have a circular cross-sectional shape in this example. However, the cross-sectional shape of the through holes 112a and 112b may be oval, elliptical, rectangular, or the like.

図3は、ガス供給管の別の一例を示す図である。図3(a)は貫通孔を正面から見た図であり、図3(b)はガス供給管の縦断面を示す図であり、図3(c)はガス供給管の横断面を示す図である。 FIG. 3 is a diagram showing another example of the gas supply pipe. 3(a) is a front view of the through-hole, FIG. 3(b) is a vertical cross-sectional view of the gas supply pipe, and FIG. 3(c) is a cross-sectional view of the gas supply pipe. is.

ガス供給管120は、管状部材121及びガス吐出部122を有する。 The gas supply pipe 120 has a tubular member 121 and a gas discharge section 122 .

管状部材121は、処理容器内に、該処理容器の長手方向に沿って設けられる。管状部材121は、内部にガス流路Fを形成する。管状部材121は、本例では、断面形状が円形である。ただし、管状部材121は、断面形状が長円、楕円、矩形等であってもよい。管状部材121は、例えば石英により形成される。 The tubular member 121 is provided inside the processing container along the longitudinal direction of the processing container. The tubular member 121 forms a gas flow path F inside. The tubular member 121 has a circular cross-sectional shape in this example. However, the cross-sectional shape of the tubular member 121 may be oval, elliptical, rectangular, or the like. The tubular member 121 is made of quartz, for example.

ガス吐出部122は、管状部材121の軸方向(以下、単に「軸方向」ともいう。)に沿って間隔を有して複数形成される。各ガス吐出部122は、管状部材121の管壁を貫通する2つの貫通孔122a,122bを含む。 A plurality of gas discharge portions 122 are formed at intervals along the axial direction of the tubular member 121 (hereinafter also simply referred to as “axial direction”). Each gas discharge part 122 includes two through holes 122 a and 122 b penetrating through the tube wall of the tubular member 121 .

貫通孔122a,122bは、管状部材121内に形成されるガス流路Fを流れるガスを、管状部材121外に吐出するガス孔である。貫通孔122aと貫通孔122bとは、ガスの入口側(管状部材121の内壁側)において管状部材121の軸方向に垂直な方向(水平方向)に離間し、ガスの出口側(管状部材121の外壁側)において合流する。言い換えると、貫通孔122a及び貫通孔122bは、管状部材121の内壁側から外壁側に向けて管状部材121の軸方向に垂直な方向において異なる方向に延在し、管状部材121の外壁側において合流する。図3に示される例では、貫通孔122aは、管状部材121の内壁側から外壁側に向けて管状部材121の軸方向に垂直な方向において貫通孔122bの方向に延在する。また、貫通孔122bは、管状部材121の内壁側から外壁側に向けて管状部材121の軸方向に垂直な方向において貫通孔122aの方向に延在する。そして、貫通孔122aと貫通孔122bとは、管状部材121の外壁側において合流する。 The through-holes 122 a and 122 b are gas holes for discharging the gas flowing through the gas flow path F formed inside the tubular member 121 to the outside of the tubular member 121 . The through-holes 122a and 122b are spaced apart in a direction (horizontal direction) perpendicular to the axial direction of the tubular member 121 on the gas inlet side (the inner wall side of the tubular member 121) and on the gas outlet side (the inner wall side of the tubular member 121). outside wall side). In other words, the through holes 122a and 122b extend in different directions perpendicular to the axial direction of the tubular member 121 from the inner wall side to the outer wall side of the tubular member 121, and merge on the outer wall side of the tubular member 121. do. In the example shown in FIG. 3, the through hole 122a extends from the inner wall side of the tubular member 121 toward the outer wall side in the direction perpendicular to the axial direction of the tubular member 121 in the direction of the through hole 122b. Further, the through hole 122b extends in the direction perpendicular to the axial direction of the tubular member 121 from the inner wall side of the tubular member 121 toward the outer wall side in the direction of the through hole 122a. The through holes 122 a and 122 b join on the outer wall side of the tubular member 121 .

貫通孔122a,122bは、本例では、断面形状が円形である。ただし、貫通孔122a,122bは、断面形状が長円、楕円、矩形等であってもよい。 The through holes 122a and 122b have a circular cross-sectional shape in this example. However, the cross-sectional shape of the through holes 122a and 122b may be oval, elliptical, rectangular, or the like.

図4は、ガス供給管の更に別の一例を示す図である。図4(a)は貫通孔を正面から見た図であり、図4(b)はガス供給管の縦断面を示す図であり、図4(c)はガス供給管の横断面を示す図である。 FIG. 4 is a diagram showing still another example of the gas supply pipe. 4(a) is a front view of the through hole, FIG. 4(b) is a longitudinal section of the gas supply pipe, and FIG. 4(c) is a cross section of the gas supply pipe. is.

ガス供給管130は、管状部材131及びガス吐出部132を有する。 The gas supply pipe 130 has a tubular member 131 and a gas discharge portion 132 .

管状部材131は、処理容器内に、該処理容器の長手方向に沿って設けられる。管状部材131は、内部にガス流路Fを形成する。管状部材131は、本例では、断面形状が円形である。ただし、管状部材131は、断面形状が長円、楕円、矩形等であってもよい。管状部材131は、例えば石英により形成される。 The tubular member 131 is provided inside the processing container along the longitudinal direction of the processing container. The tubular member 131 forms a gas flow path F inside. The tubular member 131 has a circular cross-sectional shape in this example. However, the cross-sectional shape of the tubular member 131 may be oval, elliptical, rectangular, or the like. The tubular member 131 is made of quartz, for example.

ガス吐出部132は、管状部材131の軸方向(以下、単に「軸方向」ともいう。)に沿って間隔を有して複数形成される。各ガス吐出部132は、管状部材131の管壁を貫通する3つの貫通孔132a,132b,132cを含む。 A plurality of gas discharge portions 132 are formed at intervals along the axial direction of the tubular member 131 (hereinafter also simply referred to as “axial direction”). Each gas discharge part 132 includes three through holes 132 a , 132 b , 132 c penetrating through the tube wall of the tubular member 131 .

貫通孔132a,132b,132cは、管状部材131内に形成されるガス流路Fを流れるガスを、管状部材131外に吐出するガス孔である。貫通孔132a、貫通孔132b及び貫通孔132cは、ガスの入口側(管状部材131の内壁側)において互いに離間し、ガスの出口側(管状部材131の外壁側)において合流する。言い換えると、貫通孔132aと貫通孔132bとは、管状部材131の内壁側から外壁側に向けて管状部材131の軸方向及び該軸方向に垂直な方向において異なる方向に延在し、管状部材131の外壁側において合流する。また、貫通孔132bと貫通孔132cとの関係及び貫通孔132cと貫通孔132aとの関係についても、貫通孔132aと貫通孔132bとの関係と同様である。図4に示される例では、貫通孔132aは、管状部材131の内壁側から外壁側に向けて管状部材131の軸方向において上方から下方に延在する。また、貫通孔132bは、管状部材131の内壁側から外壁側に向けて管状部材131の軸方向において下方から上方に延在し、管状部材131の軸方向に垂直な方向において貫通孔132cの方向に延在する。また、貫通孔132cは、管状部材131の内壁側から外壁側に向けて管状部材131の軸方向において下方から上方に延在し、管状部材131の軸方向に垂直な方向において貫通孔132bの方向に延在する。そして、貫通孔132a、貫通孔132b及び貫通孔132cは、管状部材131の外壁側において合流する。 The through holes 132 a , 132 b , 132 c are gas holes for discharging gas flowing through the gas flow path F formed inside the tubular member 131 to the outside of the tubular member 131 . The through-holes 132a, 132b, and 132c are separated from each other on the gas inlet side (the inner wall side of the tubular member 131) and join on the gas outlet side (the outer wall side of the tubular member 131). In other words, the through-holes 132a and 132b extend in different directions in the axial direction of the tubular member 131 from the inner wall side toward the outer wall side of the tubular member 131 and in directions perpendicular to the axial direction. merge on the outer wall side of Also, the relationship between the through holes 132b and 132c and the relationship between the through holes 132c and 132a are the same as the relationship between the through holes 132a and 132b. In the example shown in FIG. 4, the through-hole 132a extends downward in the axial direction of the tubular member 131 from the inner wall side to the outer wall side of the tubular member 131 . The through-hole 132b extends from the bottom to the top in the axial direction of the tubular member 131 from the inner wall side to the outer wall side of the tubular member 131, and extends in the direction perpendicular to the axial direction of the tubular member 131 toward the through-hole 132c. extend to The through-hole 132c extends from the bottom to the top in the axial direction of the tubular member 131 from the inner wall side to the outer wall side of the tubular member 131, and extends in the direction perpendicular to the axial direction of the tubular member 131 toward the through-hole 132b. extend to The through holes 132 a , 132 b , and 132 c join together on the outer wall side of the tubular member 131 .

貫通孔132a,132b,132cは、本例では、断面形状が円形である。ただし、貫通孔132a,132b,132cは、断面形状が長円、楕円、矩形等であってもよい。 The through holes 132a, 132b, and 132c have circular cross-sectional shapes in this example. However, the cross-sectional shape of the through holes 132a, 132b, 132c may be oval, elliptical, rectangular, or the like.

図5は、ガス供給管の更に別の一例を示す図である。図5(a)は貫通孔を正面から見た図であり、図5(b)はガス供給管の縦断面を示す図であり、図5(c)はガス供給管の横断面を示す図である。 FIG. 5 is a diagram showing still another example of the gas supply pipe. 5(a) is a front view of the through hole, FIG. 5(b) is a longitudinal section of the gas supply pipe, and FIG. 5(c) is a cross section of the gas supply pipe. is.

ガス供給管140は、管状部材141及びガス吐出部142を有する。 The gas supply pipe 140 has a tubular member 141 and a gas discharge section 142 .

管状部材141は、処理容器内に、該処理容器の長手方向に沿って設けられる。管状部材141は、内部にガス流路Fを形成する。管状部材141は、本例では、断面形状が円形である。ただし、管状部材141は、断面形状が長円、楕円、矩形等であってもよい。管状部材141は、例えば石英により形成される。 The tubular member 141 is provided inside the processing container along the longitudinal direction of the processing container. The tubular member 141 forms a gas flow path F inside. The tubular member 141 has a circular cross-sectional shape in this example. However, the cross-sectional shape of the tubular member 141 may be oval, elliptical, rectangular, or the like. The tubular member 141 is made of quartz, for example.

ガス吐出部142は、管状部材141の軸方向(以下、単に「軸方向」ともいう。)に沿って間隔を有して複数形成される。各ガス吐出部142は、管状部材141の管壁を貫通する4つの貫通孔142a,142b,142c,142dを含む。 A plurality of gas discharge portions 142 are formed at intervals along the axial direction of the tubular member 141 (hereinafter also simply referred to as “axial direction”). Each gas discharge part 142 includes four through-holes 142a, 142b, 142c, 142d passing through the tube wall of the tubular member 141. As shown in FIG.

貫通孔142a,142b,142c,142dは、管状部材141内に形成されるガス流路Fを流れるガスを、管状部材141外に吐出するガス孔である。貫通孔142a、貫通孔142b、貫通孔142c及び貫通孔142dは、ガスの入口側(管状部材141の内壁側)において互いに離間し、ガスの出口側(管状部材141の外壁側)において合流する。貫通孔142a、貫通孔142b、貫通孔142c及び貫通孔142dは、管状部材141の内壁側から外壁側に向けて管状部材141の軸方向及び/又は該軸方向に垂直な方向において異なる方向に延在し、管状部材141の外壁側において合流する。 The through holes 142 a , 142 b , 142 c , 142 d are gas holes for discharging the gas flowing through the gas flow path F formed inside the tubular member 141 to the outside of the tubular member 141 . The through-holes 142a, 142b, 142c, and 142d are separated from each other on the gas inlet side (the inner wall side of the tubular member 141) and join on the gas outlet side (the outer wall side of the tubular member 141). The through holes 142a, 142b, 142c, and 142d extend in different directions in the axial direction of the tubular member 141 and/or in a direction perpendicular to the axial direction from the inner wall side of the tubular member 141 toward the outer wall side. and merge on the outer wall side of the tubular member 141 .

貫通孔142a,142b,142c,142dは、本例では、断面形状が円形である。ただし、貫通孔142a,142b,142c,142dは、断面形状が長円、楕円、矩形等であってもよい。 The through holes 142a, 142b, 142c, and 142d have circular cross-sectional shapes in this example. However, the cross-sectional shape of the through holes 142a, 142b, 142c, and 142d may be oval, elliptical, rectangular, or the like.

図6は、ガス供給管の更に別の一例を示す図である。図6(a)は貫通孔を正面から見た図であり、図6(b)はガス供給管の縦断面を示す図であり、図6(c)はガス供給管の横断面を示す図である。 FIG. 6 is a diagram showing still another example of the gas supply pipe. 6(a) is a front view of the through-hole, FIG. 6(b) is a vertical cross-sectional view of the gas supply pipe, and FIG. 6(c) is a cross-sectional view of the gas supply pipe. is.

ガス供給管150は、管状部材151及びガス吐出部152を有する。 The gas supply pipe 150 has a tubular member 151 and a gas discharge portion 152 .

管状部材151は、処理容器内に、該処理容器の長手方向に沿って設けられる。管状部材151は、内部にガス流路Fを形成する。管状部材151は、本例では、断面形状が円形である。ただし、管状部材151は、断面形状が長円、楕円、矩形等であってもよい。管状部材151は、例えば石英により形成される。 The tubular member 151 is provided inside the processing container along the longitudinal direction of the processing container. The tubular member 151 forms a gas flow path F inside. The tubular member 151 has a circular cross-sectional shape in this example. However, the cross-sectional shape of the tubular member 151 may be oval, elliptical, rectangular, or the like. The tubular member 151 is made of quartz, for example.

ガス吐出部152は、管状部材151の軸方向(以下、単に「軸方向」ともいう。)に沿って間隔を有して複数形成される。各ガス吐出部152は、管状部材151の管壁を貫通する4つの貫通孔152a,152b,152c,152dを含む。 A plurality of gas discharge portions 152 are formed at intervals along the axial direction of the tubular member 151 (hereinafter also simply referred to as “axial direction”). Each gas discharge part 152 includes four through-holes 152a, 152b, 152c, 152d passing through the tube wall of the tubular member 151. As shown in FIG.

貫通孔152a,152b,152c,152dは、管状部材151内に形成されるガス流路Fを流れるガスを、管状部材151外に吐出するガス孔である。貫通孔152a、貫通孔152b、貫通孔152c及び貫通孔152dは、ガスの入口側(管状部材151の内壁側)において管状部材151の軸方向(鉛直方向)に離間し、ガスの出口側(管状部材151の外壁側)において合流する。言い換えると、貫通孔152a、貫通孔152b、貫通孔152c及び貫通孔152dは、管状部材151の内壁側から外壁側に向けて管状部材151の軸方向において異なる方向に延在し、管状部材151の外壁側において合流する。図6に示される例では、貫通孔152a及び貫通孔152bは、管状部材151の内壁側から外壁側に向けて管状部材151の軸方向において上方から下方に延在する。また、貫通孔152c及び貫通孔152dは、管状部材151の内壁側から外壁側に向けて管状部材151の軸方向において下方から上方に延在する。そして、貫通孔152a、貫通孔152b、貫通孔152c及び貫通孔152dは、管状部材151の外壁側において合流する。 The through holes 152 a , 152 b , 152 c , 152 d are gas holes for discharging the gas flowing through the gas flow path F formed inside the tubular member 151 to the outside of the tubular member 151 . The through-holes 152a, 152b, 152c, and 152d are spaced apart in the axial direction (vertical direction) of the tubular member 151 on the gas inlet side (the inner wall side of the tubular member 151) and on the gas outlet side (the tubular member 151). merge at the outer wall side of the member 151). In other words, the through-hole 152a, the through-hole 152b, the through-hole 152c, and the through-hole 152d extend in different directions in the axial direction of the tubular member 151 from the inner wall side to the outer wall side of the tubular member 151. Join on the outer wall side. In the example shown in FIG. 6 , the through holes 152 a and 152 b extend downward in the axial direction of the tubular member 151 from the inner wall side to the outer wall side of the tubular member 151 . The through-holes 152c and 152d extend from the bottom to the top in the axial direction of the tubular member 151 from the inner wall side to the outer wall side of the tubular member 151 . The through holes 152 a , 152 b , 152 c , and 152 d join together on the outer wall side of the tubular member 151 .

貫通孔152a,152b,152c,152dは、本例では、断面形状が円形である。ただし、貫通孔152a,152b,152c,152dは、断面形状が長円、楕円、矩形等であってもよい。 The through holes 152a, 152b, 152c, and 152d have circular cross-sectional shapes in this example. However, the cross-sectional shape of the through holes 152a, 152b, 152c, and 152d may be oval, elliptical, rectangular, or the like.

図7は、ガス供給管の更に別の一例を示す図である。図7(a)は貫通孔を正面から見た図であり、図7(b)はガス供給管の縦断面を示す図であり、図7(c)はガス供給管の横断面を示す図である。 FIG. 7 is a diagram showing still another example of the gas supply pipe. 7(a) is a front view of the through-hole, FIG. 7(b) is a longitudinal section of the gas supply pipe, and FIG. 7(c) is a cross section of the gas supply pipe. is.

ガス供給管160は、管状部材161及びガス吐出部162を有する。 The gas supply pipe 160 has a tubular member 161 and a gas discharge section 162 .

管状部材161は、処理容器内に、該処理容器の長手方向に沿って設けられる。管状部材161は、内部にガス流路Fを形成する。管状部材161は、本例では、断面形状が円形である。ただし、管状部材161は、断面形状が長円、楕円、矩形等であってもよい。管状部材161は、例えば石英により形成される。 The tubular member 161 is provided inside the processing container along the longitudinal direction of the processing container. The tubular member 161 forms a gas flow path F inside. The tubular member 161 has a circular cross-sectional shape in this example. However, the cross-sectional shape of the tubular member 161 may be oval, elliptical, rectangular, or the like. The tubular member 161 is made of quartz, for example.

ガス吐出部162は、管状部材161の軸方向(以下、単に「軸方向」ともいう。)に沿って間隔を有して複数形成される。各ガス吐出部162は、管状部材161の管壁を貫通する4つの貫通孔162a,162b,162c,162dを含む。 A plurality of gas discharge portions 162 are formed at intervals along the axial direction of the tubular member 161 (hereinafter also simply referred to as “axial direction”). Each gas discharge part 162 includes four through-holes 162a, 162b, 162c, 162d passing through the tube wall of the tubular member 161. As shown in FIG.

貫通孔162a,162b,162c,162dは、管状部材161内に形成されるガス流路Fを流れるガスを、管状部材161外に吐出するガス孔である。貫通孔162a、貫通孔162b、貫通孔162c及び貫通孔162dは、ガスの入口側(管状部材161の内壁側)において管状部材161の軸方向に垂直な方向(水平方向)に離間し、ガスの出口側(管状部材161の外壁側)において合流する。言い換えると、貫通孔162a、貫通孔162b、貫通孔162c及び貫通孔162dは、管状部材161の内壁側から外壁側に向けて管状部材161の軸方向に垂直な方向において異なる方向に延在し、管状部材161の外壁側において合流する。図7に示される例では、貫通孔162a及び貫通孔162bは、管状部材161の内壁側から外壁側に向けて管状部材161の軸方向に垂直な方向において貫通孔162c及び貫通孔162dの方向に延在する。また、貫通孔162c及び貫通孔162dは、管状部材161の内壁側から外壁側に向けて管状部材161の軸方向に垂直な方向において貫通孔162a及び貫通孔162bの方向に延在する。そして、貫通孔162a、貫通孔162b、貫通孔162c及び貫通孔162dは、管状部材161の外壁側において合流する。 The through holes 162 a , 162 b , 162 c , 162 d are gas holes for discharging gas flowing through the gas flow path F formed inside the tubular member 161 to the outside of the tubular member 161 . The through holes 162a, 162b, 162c, and 162d are spaced apart in a direction (horizontal direction) perpendicular to the axial direction of the tubular member 161 on the gas inlet side (the inner wall side of the tubular member 161). They merge on the outlet side (outer wall side of tubular member 161). In other words, the through holes 162a, 162b, 162c, and 162d extend in different directions perpendicular to the axial direction of the tubular member 161 from the inner wall side to the outer wall side of the tubular member 161, They join on the outer wall side of the tubular member 161 . In the example shown in FIG. 7, the through-holes 162a and 162b extend in the direction perpendicular to the axial direction of the tubular member 161 from the inner wall side to the outer wall side of the tubular member 161 in the direction of the through-holes 162c and 162d. Extend. The through holes 162c and 162d extend from the inner wall side of the tubular member 161 toward the outer wall side in the direction perpendicular to the axial direction of the tubular member 161 in the direction of the through holes 162a and 162b. The through holes 162 a , 162 b , 162 c , and 162 d join together on the outer wall side of the tubular member 161 .

貫通孔162a,162b,162c,162dは、本例では、断面形状が円形である。ただし、貫通孔162a,162b,162c,162dは、断面形状が長円、楕円、矩形等であってもよい。 The through holes 162a, 162b, 162c, and 162d have circular cross-sectional shapes in this example. However, the cross-sectional shape of the through holes 162a, 162b, 162c, and 162d may be oval, elliptical, rectangular, or the like.

以上、図2~図7を参照し、図1の基板処理装置1のガスノズル62,64,66として利用可能なガス供給管の構成例を説明したが、本開示はこれに限定されない。図2~図7においては、各ガス吐出部が2~4つの貫通孔を含む場合を説明したが、例えば各ガス吐出部は5つ以上の貫通孔を含んでいてもよい。 Although configuration examples of gas supply pipes that can be used as the gas nozzles 62, 64, and 66 of the substrate processing apparatus 1 of FIG. 1 have been described above with reference to FIGS. 2 to 7, the present disclosure is not limited thereto. In FIGS. 2 to 7, the case where each gas discharge part includes 2 to 4 through-holes has been described, but each gas discharge part may include, for example, 5 or more through-holes.

(ガスの指向性)
図8を参照し、ガス供給管から吐出されるガスの指向性について説明する。図8は、ガス供給管から吐出されるガスの指向性を説明するための図である。図8においては、一例として、内管12内に前述したガス供給管120(図3参照)が設けられている場合を示す。
(gas directivity)
The directivity of the gas discharged from the gas supply pipe will be described with reference to FIG. FIG. 8 is a diagram for explaining the directivity of the gas discharged from the gas supply pipe. FIG. 8 shows, as an example, the case where the gas supply pipe 120 (see FIG. 3) described above is provided inside the inner pipe 12 .

図8に示されるように、ガス供給管120は、管状部材121及び複数のガス吐出部122を有する。 As shown in FIG. 8 , the gas supply pipe 120 has a tubular member 121 and a plurality of gas ejection portions 122 .

管状部材121は、内管12内に該内管12の長手方向に沿って設けられる。 The tubular member 121 is provided inside the inner tube 12 along the longitudinal direction of the inner tube 12 .

複数のガス吐出部122は、管状部材121の軸方向に沿って間隔を有して形成される。また、複数のガス吐出部122は、管状部材121における内管12の中心の側に設けられる。各ガス吐出部122は、管状部材121の管壁を貫通する2つの貫通孔122a,122bを含む。貫通孔122aと貫通孔122bとは、ガスの入口側(管状部材121の内壁側)において管状部材121の軸方向に垂直な方向(水平方向)に離間し、ガスの出口側(管状部材121の外壁側)において合流する。 A plurality of gas ejection portions 122 are formed at intervals along the axial direction of the tubular member 121 . Also, the plurality of gas discharge sections 122 are provided on the center side of the inner tube 12 in the tubular member 121 . Each gas discharge part 122 includes two through holes 122 a and 122 b penetrating through the tube wall of the tubular member 121 . The through-holes 122a and 122b are spaced apart in a direction (horizontal direction) perpendicular to the axial direction of the tubular member 121 on the gas inlet side (the inner wall side of the tubular member 121) and on the gas outlet side (the inner wall side of the tubular member 121). outside wall side).

係るガス供給管120においては、管状部材121の内部に形成されたガス流路Fにガスが供給されると、ガス流路Fを流れるガスは、複数のガス吐出部122を介して基板Wに向けて吐出される。このとき、各ガス吐出部122が管状部材121の管壁を貫通し、管壁におけるガスの出口側において合流する2つの貫通孔122a,122bを有するので、吐出されるガスは2つの貫通孔122a,122bの合流部において衝突する。これにより、図8の矢印Aで示されるように、各ガス吐出部122から吐出されるガスの上下方向への拡散性が向上する。その結果、基板面間にガスが十分拡散され、基板処理の面間均一性が向上する。このように、第1の実施形態によれば、ガスの指向性を調整できる。 In the gas supply pipe 120, when the gas is supplied to the gas flow path F formed inside the tubular member 121, the gas flowing through the gas flow path F reaches the substrate W through the plurality of gas discharge portions 122. It is discharged towards. At this time, each gas discharge part 122 has two through-holes 122a and 122b that pass through the tube wall of the tubular member 121 and join on the gas outlet side of the tube wall, so that the gas to be discharged passes through the two through-holes 122a. , 122b at the junction. As a result, as indicated by the arrow A in FIG. 8, the diffusibility of the gas discharged from each gas discharge section 122 in the vertical direction is improved. As a result, the gas is sufficiently diffused between the substrate surfaces, and the inter-surface uniformity of the substrate processing is improved. Thus, according to the first embodiment, the directivity of gas can be adjusted.

〔第2の実施形態〕
(基板処理装置)
図9を参照し、第2の実施形態の基板処理装置について説明する。図9は、第2の実施形態の基板処理装置の構成例を示す図である。
[Second embodiment]
(substrate processing equipment)
A substrate processing apparatus according to the second embodiment will be described with reference to FIG. FIG. 9 is a diagram showing a configuration example of a substrate processing apparatus according to the second embodiment.

基板処理装置2は、基板Wを1枚ずつ処理する装置である。基板は、例えばシリコンウエハ等の半導体ウエハであってよい。基板処理装置2は、処理容器210、支持部220、ガス供給部230及び排気部240を含む。 The substrate processing apparatus 2 is an apparatus for processing substrates W one by one. The substrate may be, for example, a semiconductor wafer, such as a silicon wafer. The substrate processing apparatus 2 includes a processing container 210 , a support section 220 , a gas supply section 230 and an exhaust section 240 .

処理容器210は、内部を減圧可能に構成される。一実施形態において、処理容器210は、本体部211、天井部212、保持部213、シャワーヘッド214、底部215及びガス出口216を含む。本体部211は、略円筒形状を有する。天井部212は、本体部211の上端に固定される。保持部213は、天井部212に取り付けられ、シャワーヘッド214を保持する。シャワーヘッド214は、ガス供給部230から導入される処理ガスを複数のガス吐出部214bを介して処理容器210内にシャワー状に供給する。シャワーヘッド214の詳細については後述する。底部215は、本体部211の下端の開口を覆うように本体部211の下端に固定される。ガス出口216は、底部215に設けられる。 The processing container 210 is configured such that the inside thereof can be decompressed. In one embodiment, processing vessel 210 includes body portion 211 , ceiling portion 212 , holding portion 213 , showerhead 214 , bottom portion 215 and gas outlet 216 . The body portion 211 has a substantially cylindrical shape. The ceiling portion 212 is fixed to the upper end of the body portion 211 . The holding part 213 is attached to the ceiling part 212 and holds the shower head 214 . The shower head 214 supplies the processing gas introduced from the gas supply unit 230 into the processing container 210 in the form of a shower via a plurality of gas discharge units 214b. Details of the shower head 214 will be described later. The bottom portion 215 is fixed to the lower end of the main body portion 211 so as to cover the opening at the lower end of the main body portion 211 . A gas outlet 216 is provided at the bottom 215 .

支持部220は、処理容器210内において基板Wを支持するように構成される載置台である。一実施形態において、支持部220は、ベース部221及び載置部222を含む。ベース部221は、処理容器210の底部に固定される。載置部222は、ベース部221の上端に固定され、上面に基板Wを載置する。 The support part 220 is a mounting table configured to support the substrate W inside the processing container 210 . In one embodiment, the support portion 220 includes a base portion 221 and a mounting portion 222 . The base portion 221 is fixed to the bottom portion of the processing container 210 . The mounting part 222 is fixed to the upper end of the base part 221 and mounts the substrate W on its upper surface.

ガス供給部230は、シャワーヘッド214に処理ガスを導入する。一実施形態において、ガス供給部230は、ガス供給源、ガス配管、バルブ及び流量制御器を含む。 A gas supply unit 230 introduces a processing gas to the showerhead 214 . In one embodiment, gas supply 230 includes a gas supply, gas lines, valves and flow controllers.

排気部240は、ガス出口216に接続される。一実施形態において、排気部240は、圧力制御器及び真空ポンプを含む。 Exhaust 240 is connected to gas outlet 216 . In one embodiment, exhaust 240 includes a pressure controller and a vacuum pump.

(シャワーヘッド)
図10を参照し、図9の基板処理装置2のシャワーヘッド214の構成例について説明する。図10は、シャワーヘッド214の一例を示す図であり、シャワーヘッド214の一部を拡大した断面を示す。
(shower head)
A configuration example of the shower head 214 of the substrate processing apparatus 2 of FIG. 9 will be described with reference to FIG. FIG. 10 is a diagram showing an example of the shower head 214, showing a cross section of a part of the shower head 214 enlarged.

シャワーヘッド214は、内部にガス流路Fを形成する。シャワーヘッド214は、シャワープレート214a及びガス吐出部214bを有する。 The showerhead 214 forms a gas flow path F inside. The shower head 214 has a shower plate 214a and a gas discharge part 214b.

シャワープレート214aは、本例では、円板形状である。シャワープレート214aは、例えば金属により形成される。 The shower plate 214a is disc-shaped in this example. The shower plate 214a is made of metal, for example.

ガス吐出部214bは、シャワープレート214aの面内において間隔を有して複数形成される。各ガス吐出部214bは、シャワープレート214aを貫通する2つの貫通孔214b1,214b2を含む。 A plurality of gas ejection portions 214b are formed at intervals in the plane of the shower plate 214a. Each gas discharge part 214b includes two through holes 214b1 and 214b2 passing through the shower plate 214a.

貫通孔214b1,214b2は、ガス流路Fを流れるガスを、処理容器210内に吐出するガス孔である。貫通孔214b1と貫通孔214b2とは、ガスの入口側(シャワープレート214aの上面側)において離間し、ガスの出口側(シャワープレート214aの下面側)において合流する。言い換えると、貫通孔214b1及び貫通孔214b2は、シャワープレート214aの上面側から下面側に向けて異なる方向に延在し、シャワープレート214aの下面側において合流する。 The through holes 214 b 1 and 214 b 2 are gas holes for discharging the gas flowing through the gas flow path F into the processing container 210 . The through-holes 214b1 and 214b2 are separated from each other on the gas inlet side (upper surface side of the shower plate 214a) and join on the gas outlet side (lower surface side of the shower plate 214a). In other words, the through-holes 214b1 and 214b2 extend in different directions from the upper surface side to the lower surface side of the shower plate 214a and merge on the lower surface side of the shower plate 214a.

貫通孔214b1,214b2は、本例では、断面形状が円形である。ただし、貫通孔214b1,214b2は、断面形状が長円、楕円、矩形等であってもよい。 The through holes 214b1 and 214b2 have a circular cross-sectional shape in this example. However, the cross-sectional shape of the through holes 214b1 and 214b2 may be oval, elliptical, rectangular, or the like.

係るシャワーヘッド214においては、内部に形成されたガス流路Fにガスが供給されると、ガス流路Fを流れるガスは、複数のガス吐出部214bを介して基板Wに向けて吐出される。このとき、各ガス吐出部214bがシャワープレート214aを貫通し、シャワープレート214aにおけるガスの出口側において合流する2つの貫通孔214b1,214b2を有する。そのため、吐出されるガスは2つの貫通孔214b1,214b2の合流部において衝突する。これにより、各ガス吐出部214bから吐出されるガスの水平方向への拡散性が向上する。その結果、基板面内にガスが十分拡散され、基板処理の面内均一性が向上する。このように、第2の実施形態によれば、ガスの指向性を調整できる。 In the shower head 214, when the gas is supplied to the gas flow path F formed inside, the gas flowing through the gas flow path F is discharged toward the substrate W via the plurality of gas discharge portions 214b. . At this time, each gas discharge part 214b has two through holes 214b1 and 214b2 that pass through the shower plate 214a and merge on the gas outlet side of the shower plate 214a. Therefore, the discharged gas collides at the junction of the two through holes 214b1 and 214b2. This improves the diffusivity in the horizontal direction of the gas discharged from each gas discharge portion 214b. As a result, the gas is sufficiently diffused within the substrate surface, and the in-plane uniformity of the substrate processing is improved. Thus, according to the second embodiment, the directivity of gas can be adjusted.

なお、第2の実施形態では、ガス吐出部214bが2つの貫通孔214b1,214b2を含む場合を説明したが、本開示はこれに限定されない。例えば、ガス吐出部214bは第1の実施形態の基板処理装置1のガス吐出部と同様、3つ以上の貫通孔を含んでいてもよい。 In addition, in the second embodiment, the case where the gas discharge portion 214b includes the two through holes 214b1 and 214b2 has been described, but the present disclosure is not limited to this. For example, the gas discharge part 214b may include three or more through-holes like the gas discharge part of the substrate processing apparatus 1 of the first embodiment.

〔第3の実施形態〕
図11を参照し、第3の実施形態の基板処理装置について説明する。図11は、第3の実施形態の基板処理装置の構成例を示す図である。
[Third embodiment]
A substrate processing apparatus according to the third embodiment will be described with reference to FIG. FIG. 11 is a diagram showing a configuration example of a substrate processing apparatus according to the third embodiment.

基板処理装置3は、処理容器310内に設けられた回転テーブル321の回転方向に複数の基板Wを載置し、回転テーブル321を回転させた状態で該回転方向に沿って離間して設けられた複数のガス供給部から処理ガスを供給し、基板Wを処理する装置である。基板は、例えばシリコンウエハ等の半導体ウエハであってよい。基板処理装置3は、処理容器310、支持部320、ガス供給部330及び排気部340を含む。 The substrate processing apparatus 3 is provided with a plurality of substrates W placed in the rotation direction of a turntable 321 provided in the processing container 310 and spaced apart along the rotation direction while the turntable 321 is being rotated. This apparatus processes a substrate W by supplying a processing gas from a plurality of gas supply units. The substrate may be, for example, a semiconductor wafer, such as a silicon wafer. The substrate processing apparatus 3 includes a processing vessel 310 , a support section 320 , a gas supply section 330 and an exhaust section 340 .

処理容器310は、内部を減圧可能に構成される。一実施形態において、処理容器310は、容器本体311、天板312、ガスノズル313、シャワーヘッド314及びガス出口315を含む。 The processing container 310 is configured such that the inside thereof can be decompressed. In one embodiment, processing vessel 310 includes vessel body 311 , top plate 312 , gas nozzle 313 , showerhead 314 and gas outlet 315 .

容器本体311は、有底の略円筒形状を有する。 The container body 311 has a substantially cylindrical shape with a bottom.

天板312は、容器本体311の上面に対して、例えばOリング等のシール部材(図示せず)を介して気密に着脱可能に配置される。 The top plate 312 is airtightly and detachably arranged on the upper surface of the container body 311 via a sealing member (not shown) such as an O-ring.

ガスノズル313は、回転テーブル321の上方であって、回転テーブル321の回転方向における一部の領域に設けられる。ガスノズル313は、処理容器310の外周壁から処理容器310内に導入され、容器本体311の半径方向に沿って回転テーブル321に対して水平に延びるように取り付けられる。ガスノズル313は、例えば石英により形成される。ガスノズル313は、軸方向に沿って形成される複数のガス吐出部(図示せず)を有し、ガス供給部330から導入される処理ガスを複数のガス吐出部314bを介して処理容器310内に供給する。ガスノズル313としては、第1の実施形態において説明したガス供給管110,120,130,140,150,160を利用できる。 The gas nozzle 313 is provided above the turntable 321 and in a partial area in the rotation direction of the turntable 321 . The gas nozzle 313 is introduced into the processing container 310 from the outer peripheral wall of the processing container 310 and is attached so as to extend horizontally with respect to the rotary table 321 along the radial direction of the container body 311 . The gas nozzle 313 is made of quartz, for example. The gas nozzle 313 has a plurality of gas discharge portions (not shown) formed along the axial direction, and the processing gas introduced from the gas supply portion 330 is introduced into the processing container 310 through the plurality of gas discharge portions 314b. supply to As the gas nozzle 313, the gas supply pipes 110, 120, 130, 140, 150, 160 described in the first embodiment can be used.

シャワーヘッド314は、回転テーブル321の上方であって、回転テーブル321の回転方向における一部の領域に設けられる。シャワーヘッド314は、回転テーブル321の周方向においてガスノズル313と離間して設けられる。シャワーヘッド314は、ガス供給部330から導入される処理ガスを複数のガス吐出部314bを介して処理容器310内にシャワー状に供給する。シャワーヘッド314としては、第2の実施形態において説明したシャワーヘッド214を利用できる。 The shower head 314 is provided above the turntable 321 and in a partial area in the rotation direction of the turntable 321 . The shower head 314 is provided apart from the gas nozzle 313 in the circumferential direction of the rotary table 321 . The shower head 314 supplies the processing gas introduced from the gas supply unit 330 into the processing container 310 in the form of a shower via a plurality of gas discharge units 314b. As the shower head 314, the shower head 214 described in the second embodiment can be used.

ガス出口315は、容器本体311の底部に設けられる。 A gas outlet 315 is provided at the bottom of the container body 311 .

支持部320は、処理容器310内において基板Wを支持するように構成される。一実施形態において、支持部320は、回転テーブル321、接続部322及び回転軸323を含む。 The support part 320 is configured to support the substrate W within the processing vessel 310 . In one embodiment, the support part 320 includes a rotary table 321 , a connecting part 322 and a rotary shaft 323 .

回転テーブル321は、処理容器310内に設けられ、処理容器310の中心に回転中心を有する。回転テーブル321の上面には、回転方向(周方向)に沿って複数(例えば、6枚)の基板Wが載置される。 The rotary table 321 is provided inside the processing container 310 and has a rotation center at the center of the processing container 310 . A plurality of (for example, six) substrates W are placed on the upper surface of the rotary table 321 along the rotation direction (circumferential direction).

接続部322は、略円筒形状を有し、回転テーブル321の中心部にて回転テーブル321と回転軸323とを接続する。 The connecting portion 322 has a substantially cylindrical shape and connects the rotating table 321 and the rotating shaft 323 at the central portion of the rotating table 321 .

回転軸323は、接続部322の下端に接続される。回転軸323は、容器本体311の底部を貫通し、その下端が回転軸323を鉛直軸回りに回転させる駆動部(図示せず)に取り付けられている。 The rotating shaft 323 is connected to the lower end of the connecting portion 322 . The rotating shaft 323 penetrates the bottom of the container body 311, and the lower end thereof is attached to a drive section (not shown) that rotates the rotating shaft 323 around a vertical axis.

ガス供給部330は、ガスノズル313及びシャワーヘッド314に処理ガスを導入する。一実施形態において、ガス供給部330は、ガス供給源、ガス配管、バルブ及び流量制御器を含む。 The gas supply unit 330 introduces processing gas to the gas nozzle 313 and the showerhead 314 . In one embodiment, gas supply 330 includes a gas supply, gas lines, valves and flow controllers.

排気部340は、ガス出口315に接続される。一実施形態において、排気部340は、圧力制御器及び真空ポンプを含む。 Exhaust 340 is connected to gas outlet 315 . In one embodiment, exhaust 340 includes a pressure controller and a vacuum pump.

係る基板処理装置3によれば、ガスノズル313及びシャワーヘッド314を有する。ガスノズル313は、ガス吐出部を有し、ガス吐出部は管壁を貫通する複数の貫通孔であって、管壁におけるガスの出口側において合流する複数の貫通孔を含む。これにより、ガス吐出部から吐出されるガスは複数の貫通孔の合流部において衝突する。そのため、ガス吐出部から吐出されるガスの水平方向への拡散性が向上する。その結果、基板面内にガスが十分拡散され、基板処理の面内均一性が向上する。 The substrate processing apparatus 3 has the gas nozzle 313 and the shower head 314 . The gas nozzle 313 has a gas discharge portion, and the gas discharge portion includes a plurality of through holes penetrating the pipe wall and merging on the gas outlet side of the pipe wall. As a result, the gas discharged from the gas discharge portion collides at the confluence portion of the plurality of through holes. Therefore, the diffusibility in the horizontal direction of the gas discharged from the gas discharge portion is improved. As a result, the gas is sufficiently diffused within the substrate surface, and the in-plane uniformity of the substrate processing is improved.

また、シャワーヘッド314は、ガス吐出部314bを有し、ガス吐出部314bはシャワープレートを貫通する複数の貫通孔であって、シャワープレートにおけるガスの出口側において合流する複数の貫通孔を含む。これにより、ガス吐出部314bから吐出されるガスは複数の貫通孔の合流部において衝突する。そのため、ガス吐出部314bから吐出されるガスの水平方向への拡散性が向上する。その結果、基板面内にガスが十分拡散され、基板処理の面内均一性が向上する。 The shower head 314 also has a gas discharge portion 314b, and the gas discharge portion 314b includes a plurality of through holes penetrating the shower plate and merging on the gas outlet side of the shower plate. As a result, the gas discharged from the gas discharge portion 314b collides at the junction of the plurality of through holes. Therefore, the diffusivity in the horizontal direction of the gas discharged from the gas discharge portion 314b is improved. As a result, the gas is sufficiently diffused within the substrate surface, and the in-plane uniformity of the substrate processing is improved.

このように、第3の実施形態によれば、ガスの指向性を調整できる。 Thus, according to the third embodiment, the directivity of gas can be adjusted.

〔評価結果〕
次に、ガス供給管に形成されるガス吐出部の形状を変更したときに、ガス吐出部から吐出されるガスの指向性の変化について、シミュレーションにより評価した。図12は、ガス供給管から吐出されるガスの指向性のシミュレーション結果を示す図である。
〔Evaluation results〕
Next, simulation was performed to evaluate the change in the directivity of the gas discharged from the gas discharge part when the shape of the gas discharge part formed in the gas supply pipe was changed. FIG. 12 is a diagram showing simulation results of directivity of gas discharged from a gas supply pipe.

図12の左側の図は、図2に示されるガス供給管110を用いた場合のガスの指向性のシミュレーション結果であり、上段に縦断面を示し、下段に横断面を示す。 The diagram on the left side of FIG. 12 shows the simulation result of gas directivity when the gas supply pipe 110 shown in FIG. 2 is used.

図12の左側の図に示されるように、ガス供給管110は、管状部材111及びガス吐出部112を含む。ガス吐出部112は、管状部材111の内壁側において管状部材111の軸方向に離間し、管状部材111の外壁側において合流する2つの貫通孔112a,112bを含む。この場合、ガス吐出部112から吐出されるガスは、管状部材111の軸方向に垂直な方向に拡がっている。この結果から、管状部材111の内壁側において管状部材111の軸方向に離間し、管状部材111の外壁側において合流する2つの貫通孔112a,112bを含むガス吐出部112を用いると、水平方向のガスの拡散性が向上することが分かる。これにより、基板面内にガスが十分拡散され、基板処理の面内均一性が向上する。 As shown in the left diagram of FIG. 12 , the gas supply pipe 110 includes a tubular member 111 and a gas discharge section 112 . Gas discharge portion 112 includes two through holes 112a and 112b that are spaced apart in the axial direction of tubular member 111 on the inner wall side of tubular member 111 and join on the outer wall side of tubular member 111 . In this case, the gas discharged from the gas discharge part 112 spreads in the direction perpendicular to the axial direction of the tubular member 111 . From this result, using the gas discharge part 112 including two through-holes 112a and 112b separated in the axial direction of the tubular member 111 on the inner wall side of the tubular member 111 and joining on the outer wall side of the tubular member 111, horizontal It can be seen that the gas diffusibility is improved. As a result, the gas is sufficiently diffused within the substrate surface, and the in-plane uniformity of the substrate processing is improved.

図12の右側の図は、図3に示されるガス供給管120を用いた場合のガスの指向性のシミュレーション結果であり、上段に縦断面を示し、下段に横断面を示す。 The diagrams on the right side of FIG. 12 show the simulation results of gas directivity when the gas supply pipe 120 shown in FIG. 3 is used.

図12の右側の図に示されるように、ガス供給管120は、管状部材121及びガス吐出部122を含む。ガス吐出部122は、管状部材121の内壁側において管状部材121の軸方向に垂直な方向に離間し、管状部材121の外壁側において合流する2つの貫通孔122a,122bを含む。この場合、ガス吐出部122から吐出されるガスは、管状部材121の軸方向に拡がっている。この結果から、管状部材121の内壁側において管状部材121の軸方向に垂直な方向に離間し、管状部材121の外壁側において合流する2つの貫通孔122a,122bを含むガス吐出部122を用いると、鉛直方向のガスの拡散性が向上することが分かる。これにより、基板面間にガスが十分拡散され、基板処理の面間均一性が向上する。 As shown in the diagram on the right side of FIG. 12 , the gas supply pipe 120 includes a tubular member 121 and a gas discharge section 122 . Gas discharge portion 122 includes two through holes 122a and 122b that are spaced apart in the direction perpendicular to the axial direction of tubular member 121 on the inner wall side of tubular member 121 and join on the outer wall side of tubular member 121 . In this case, the gas discharged from the gas discharge part 122 spreads in the axial direction of the tubular member 121 . From this result, it can be seen that using the gas discharge part 122 including two through-holes 122a and 122b that are spaced apart in the direction perpendicular to the axial direction of the tubular member 121 on the inner wall side of the tubular member 121 and join on the outer wall side of the tubular member 121 , the diffusivity of the gas in the vertical direction is improved. As a result, the gas is sufficiently diffused between the substrate surfaces, and the uniformity of the substrate processing is improved.

なお、上記の実施形態において、ガス供給管及びシャワーヘッドはガス供給構造の一例であり、管状部材及びシャワープレートはガス供給部材の一例である。 In the above embodiments, the gas supply pipe and the showerhead are examples of the gas supply structure, and the tubular member and the shower plate are examples of the gas supply member.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The above-described embodiments may be omitted, substituted or modified in various ways without departing from the scope and spirit of the appended claims.

1 基板処理装置
10 処理容器
110,120,130,140,150,160 ガス供給管
111,121,131,141,151,161 管状部材
112,122,132,142,152,162 ガス吐出部
112a,122a,132a,142a,152a,162a 貫通孔
112b,122b,132b,142b,152b,162b 貫通孔
2 基板処理装置
210 処理容器
214 シャワーヘッド
214a シャワープレート
214b ガス吐出部
214b1,214b2 貫通孔
3 基板処理装置
310 処理容器
313 ガスノズル
314 シャワーヘッド
314b ガス吐出部
1 Substrate Processing Apparatus 10 Processing Containers 110, 120, 130, 140, 150, 160 Gas Supply Pipes 111, 121, 131, 141, 151, 161 Tubular Members 112, 122, 132, 142, 152, 162 Gas Discharge Part 112a, 122a, 132a, 142a, 152a, 162a Through holes 112b, 122b, 132b, 142b, 152b, 162b Through hole 2 Substrate processing apparatus 210 Processing container 214 Shower head 214a Shower plate 214b Gas ejection parts 214b1, 214b2 Through hole 3 Substrate processing apparatus 310 processing container 313 gas nozzle 314 shower head 314b gas discharge unit

Claims (7)

基板処理装置の処理容器内にガスを供給するガス供給構造であって、
ガス供給部材と、
前記ガス供給部材に形成されるガス吐出部であり、前記ガス供給部材を貫通する複数の貫通孔を含むガス吐出部と、
を有し、
前記複数の貫通孔は、前記ガス供給部材における前記ガスの出口側において合流
前記ガス供給部材は、内部にガス流路が形成される管状部材を含み、
前記ガス吐出部は、前記管状部材の軸方向に沿って間隔を有して複数形成される、
ガス供給構造。
A gas supply structure for supplying gas into a processing container of a substrate processing apparatus,
a gas supply member;
a gas discharge portion formed in the gas supply member, the gas discharge portion including a plurality of through holes penetrating through the gas supply member;
has
the plurality of through-holes merge on the gas outlet side of the gas supply member;
The gas supply member includes a tubular member having a gas flow path formed therein,
A plurality of the gas ejection portions are formed at intervals along the axial direction of the tubular member,
gas supply structure.
前記複数の貫通孔は、前記管状部材の内壁側において前記軸方向に離間し、前記管状部材の外壁側において合流する2つ以上の貫通孔を含む、
請求項に記載のガス供給構造。
The plurality of through-holes include two or more through-holes spaced apart in the axial direction on the inner wall side of the tubular member and joining on the outer wall side of the tubular member,
The gas supply structure according to claim 1 .
前記複数の貫通孔は、前記管状部材の内壁側において前記軸方向に垂直な方向に離間し、前記管状部材の外壁側において合流する2つ以上の貫通孔を含む、
請求項又はに記載のガス供給構造。
The plurality of through-holes include two or more through-holes that are spaced apart in a direction perpendicular to the axial direction on the inner wall side of the tubular member and join on the outer wall side of the tubular member,
The gas supply structure according to claim 1 or 2 .
前記管状部材は、前記処理容器内に前記処理容器の長手方向に沿って設けられ、
複数の前記ガス吐出部は、前記管状部材の前記処理容器の中心の側に設けられる、
請求項乃至のいずれか一項に記載のガス供給構造。
The tubular member is provided in the processing container along the longitudinal direction of the processing container,
The plurality of gas discharge units are provided on the center side of the processing container of the tubular member,
The gas supply structure according to any one of claims 1 to 3 .
前記管状部材は、前記処理容器内に前記処理容器の長手方向に沿って設けられ、
複数の前記ガス吐出部は、前記管状部材の前記処理容器の壁面の側に設けられる、
請求項乃至のいずれか一項に記載のガス供給構造。
The tubular member is provided in the processing container along the longitudinal direction of the processing container,
The plurality of gas discharge units are provided on the wall surface side of the processing container of the tubular member,
The gas supply structure according to any one of claims 1 to 3 .
複数の基板を上下方向に間隔を有して略水平に収容する処理容器と、
前記処理容器内に前記処理容器の長手方向に沿って設けられるガス供給管と、
を備え、
前記ガス供給管は、
内部にガス流路が形成される管状部材と、
前記管状部材の軸方向に沿って間隔を有して形成される複数のガス吐出部であり、前記管状部材の管壁を貫通する複数の貫通孔を含む複数のガス吐出部と、
を有し、
前記複数のガス吐出部のうち少なくとも1つに含まれる前記複数の貫通孔は、前記管壁におけるガスの出口側において合流する、
基板処理装置。
a processing container that accommodates a plurality of substrates substantially horizontally at intervals in the vertical direction;
a gas supply pipe provided in the processing container along the longitudinal direction of the processing container;
with
The gas supply pipe is
a tubular member in which a gas flow path is formed;
a plurality of gas discharge portions formed at intervals along the axial direction of the tubular member, the plurality of gas discharge portions including a plurality of through-holes passing through a wall of the tubular member;
has
the plurality of through-holes included in at least one of the plurality of gas discharge portions merge on the gas outlet side of the pipe wall;
Substrate processing equipment.
処理容器と、
前記処理容器内に設けられ、回転方向に沿って複数の基板を載置する回転テーブルと、
前記回転テーブルの回転方向における一部の領域に、前記回転テーブルに対向して設けられるガス供給管と、
を備え、
前記ガス供給管は、
内部にガス流路が形成される管状部材と、
前記管状部材の軸方向に沿って間隔を有して形成される複数のガス吐出部であり、前記管状部材の管壁を貫通する複数の貫通孔を含む複数のガス吐出部と、
を有し、
前記複数のガス吐出部のうち少なくとも1つに含まれる前記複数の貫通孔は、前記管壁におけるガスの出口側において合流する、
基板処理装置。
a processing vessel;
a rotary table provided in the processing container on which a plurality of substrates are placed along the direction of rotation;
a gas supply pipe provided facing the rotary table in a partial area in the rotation direction of the rotary table;
with
The gas supply pipe is
a tubular member in which a gas flow path is formed;
a plurality of gas discharge portions formed at intervals along the axial direction of the tubular member, the plurality of gas discharge portions including a plurality of through-holes passing through a wall of the tubular member;
has
the plurality of through-holes included in at least one of the plurality of gas discharge portions merge on the gas outlet side of the pipe wall;
Substrate processing equipment.
JP2020001606A 2020-01-08 2020-01-08 GAS SUPPLY STRUCTURE AND SUBSTRATE PROCESSING APPARATUS Active JP7325343B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020001606A JP7325343B2 (en) 2020-01-08 2020-01-08 GAS SUPPLY STRUCTURE AND SUBSTRATE PROCESSING APPARATUS
KR1020200185704A KR20210089578A (en) 2020-01-08 2020-12-29 Gas supply structure and substrate processing apparatus
CN202011627128.2A CN113088930B (en) 2020-01-08 2020-12-31 Gas supply structure and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020001606A JP7325343B2 (en) 2020-01-08 2020-01-08 GAS SUPPLY STRUCTURE AND SUBSTRATE PROCESSING APPARATUS

Publications (2)

Publication Number Publication Date
JP2021109997A JP2021109997A (en) 2021-08-02
JP7325343B2 true JP7325343B2 (en) 2023-08-14

Family

ID=76663748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020001606A Active JP7325343B2 (en) 2020-01-08 2020-01-08 GAS SUPPLY STRUCTURE AND SUBSTRATE PROCESSING APPARATUS

Country Status (3)

Country Link
JP (1) JP7325343B2 (en)
KR (1) KR20210089578A (en)
CN (1) CN113088930B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202335039A (en) * 2022-02-07 2023-09-01 日商國際電氣股份有限公司 Gas supplier, processing apparatus, and method of manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235660A (en) 1997-07-14 2004-08-19 Asml Us Inc Single body injector and evaporation chamber
JP2018021216A (en) 2016-08-01 2018-02-08 東京エレクトロン株式会社 Film deposition apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380091B2 (en) * 1995-06-09 2003-02-24 株式会社荏原製作所 Reactive gas injection head and thin film vapor phase growth apparatus
JP6448502B2 (en) * 2015-09-09 2019-01-09 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6737139B2 (en) 2016-11-14 2020-08-05 東京エレクトロン株式会社 Gas injector and vertical heat treatment equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235660A (en) 1997-07-14 2004-08-19 Asml Us Inc Single body injector and evaporation chamber
JP2018021216A (en) 2016-08-01 2018-02-08 東京エレクトロン株式会社 Film deposition apparatus

Also Published As

Publication number Publication date
CN113088930A (en) 2021-07-09
KR20210089578A (en) 2021-07-16
CN113088930B (en) 2024-10-01
JP2021109997A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US10475641B2 (en) Substrate processing apparatus
JP6820816B2 (en) Substrate processing equipment, reaction tubes, semiconductor equipment manufacturing methods, and programs
JP4739057B2 (en) Heat treatment apparatus, heater and manufacturing method thereof
JP2018056232A (en) Gas introduction mechanism and processing device
US11367633B2 (en) Heat treatment apparatus and heat treatment method
KR100634451B1 (en) Apparatus for manufacturing semiconductor device
JP7325343B2 (en) GAS SUPPLY STRUCTURE AND SUBSTRATE PROCESSING APPARATUS
KR102003585B1 (en) Substrate holder and substrate processing apparatus
CN110993498A (en) Injector, and substrate processing apparatus and substrate processing method using the same
JP2003303819A (en) Substrate treatment apparatus and method of manufacturing semiconductor device
JP2001015481A (en) Etching device
JP2018148099A (en) Substrate processing apparatus
CN115732358A (en) Substrate processing apparatus
US11725284B2 (en) Substrate processing apparatus and substrate processing method
JP2022002253A (en) Gas nozzle, substrate processing apparatus and substrate processing method
JP2001077042A (en) Vertical type heat-treating device
KR20230039537A (en) Substrate processing apparatus
TW202428073A (en) Substrate processing apparatus and baffles
JP6339029B2 (en) Deposition equipment
JP2023161935A (en) Substrate treatment apparatus
KR20240134748A (en) Substrate processing apparatus
KR20240041238A (en) Substrate processing apparatus and substrate processing method
JP2022118629A (en) Processing apparatus and processing method
JPH06318555A (en) Heat treating furnace
JPS6186498A (en) Gas phase growth apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230801

R150 Certificate of patent or registration of utility model

Ref document number: 7325343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150