JPS6186421A - Preparation of white electroconductive powder - Google Patents

Preparation of white electroconductive powder

Info

Publication number
JPS6186421A
JPS6186421A JP59209267A JP20926784A JPS6186421A JP S6186421 A JPS6186421 A JP S6186421A JP 59209267 A JP59209267 A JP 59209267A JP 20926784 A JP20926784 A JP 20926784A JP S6186421 A JPS6186421 A JP S6186421A
Authority
JP
Japan
Prior art keywords
water
alkali
powder
soluble
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209267A
Other languages
Japanese (ja)
Inventor
Koichi Yamada
興一 山田
Mitsutoshi Murase
村瀬 光俊
Kazuo Horinouchi
堀ノ内 和夫
Yasuhiro Hamaguchi
濱口 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Aluminum Smelting Co
Original Assignee
Sumitomo Aluminum Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Aluminum Smelting Co filed Critical Sumitomo Aluminum Smelting Co
Priority to JP59209267A priority Critical patent/JPS6186421A/en
Publication of JPS6186421A publication Critical patent/JPS6186421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To prepare the title powder having superior electroconductivity with a very simple method by calcining a deposited material obtd. by adding an alkali (carbonate) to a mixture of a water-soluble Zn compd. and a water-soluble metal compd. in a specified proportion in a reducing atmosphere. CONSTITUTION:A water-soluble Zn compd. (e.g. ZnCl2) and 0.05-5pts.wt. (expressed in terms of oxide in the calcined compsn.) at least one water-soluble metal compd. selected from Al2O3, SnO2, In2O3, and Ga2O3 [e.g. Al(NO33] are added to 100pts.wt. ZnO, and the mixture is mixed in water and stirred thoroughly. An amt. of caustic alkali (e.g. NaOH) or alkali carbonate (e.g. Na2CO3) corresponding to 99.9-50% for the theoretically equiv. amt. for neutralization is added to the soln. to cause deposition of precipitate, which is filtered, washed with water, dried, and if necessary, crushed to disintegrated to agglomerated particles, then calcined at 500-800 deg.C in a reducing atmosphere, such as H2 or CO.

Description

【発明の詳細な説明】 本発明は導電性を付与するためにプラスチックあるいは
ゴム等に混合する酸化亜鉛を主成分とした白色導電性粉
末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a white conductive powder containing zinc oxide as a main component, which is mixed into plastics, rubber, etc. in order to impart conductivity.

近年IC産業や電子産業分野ではプラスチック、ゴム製
部材等に発生する静電気により機器に機能障害が生じる
ことが判明し、この対策としてプラスチックやゴム等の
基体中にカーボンや酸化亜鉛等の導電性フィラーを添加
、混合することが提案されている。
In recent years, in the IC and electronic industries, it has been discovered that static electricity generated in plastic and rubber components causes functional problems in devices.As a countermeasure, conductive fillers such as carbon and zinc oxide are used in base materials such as plastic and rubber. It is proposed to add and mix.

一般に導電性酸化亜鉛粉末を合成する方法として特公昭
55−19896号公報、特公昭55−19897号公
報にみられる如く酸化亜鉛末に活性化剤であるA1、G
a、Inの酸化物を添加した原材料を容器内に供給し、
この容器を還元性雰囲気或いは酸化性雰囲気下に置き、
600〜1100℃の温度条件下に焼成する方法や特開
昭56−69266号公報にみられる如く水溶性亜鉛塩
とAjL Ga、In等の水溶性金属塩をアルカリ或い
は炭酸アルカリで中和させる所謂湿式生成法で共沈させ
て得た析出物を窒素雰囲気中600〜1000℃の温度
で焼成する方法が知られてい。
In general, as a method for synthesizing conductive zinc oxide powder, activators A1, G
a. Supplying the raw material to which In oxide is added into the container,
Place this container under a reducing atmosphere or an oxidizing atmosphere,
A method of firing under a temperature condition of 600 to 1,100°C, and a so-called method of neutralizing a water-soluble zinc salt and a water-soluble metal salt such as AjL Ga, In, etc. with an alkali or alkali carbonate as seen in JP-A No. 56-69266. A method is known in which a precipitate obtained by coprecipitation by a wet production method is fired at a temperature of 600 to 1000° C. in a nitrogen atmosphere.

湿式生成法は上述の固体混合法に比べて極めて微粒子の
粉末の製造が可能という利点を有するものの粉末自体の
導電性が悪いという欠点があった。
Although the wet production method has the advantage of being able to produce extremely fine powder particles compared to the solid mixing method described above, it has the disadvantage that the powder itself has poor electrical conductivity.

かかる事情下に鑑み、本発明者らは湿式生成法による導
電性低下理由を鋭意検討した結果、粉末の導電性を低下
させる原因が粉末中に塩の形態にまで至らないLi、N
a、に等の化合物の存在にあることを見出し、本発明を
完成するに至った。
In view of these circumstances, the inventors of the present invention have diligently investigated the reason for the decrease in conductivity due to the wet production method, and have found that the cause of the decrease in the conductivity of the powder is Li and N, which do not reach the salt form in the powder.
The present invention was completed based on the discovery that the present invention lies in the presence of compounds such as a and .

すなわち本発明は、焼成後の組成が酸化物換算で酸化亜
鉛100重量部に対し酸化アルミニウム、酸化錫、酸化
インジウムおよび酸化ガリウムの少なくとも1種が0.
05〜5重量部となる如く水溶性亜鉛化合物とアルミニ
ウム、スズ、インジウムおよびガリウムの少なくとも1
種の水溶性金属化合物を加え、次いでアルカリ或いは炭
酸アルカリを添加、撹拌して中和共沈せしめ、得られた
析出物を濾過、水洗し、必要に応じ脱水、乾燥し、還元
性雰囲気下500〜800℃の温度で焼成する白色導電
性粉末の!!遣方法に於いて、水溶性亜鉛化合物に対す
るアルカリ或いは炭酸アルカリの量を中和理論反応当量
未満となる如く存在させて中和共沈せし、めることを特
徴とする白色導電性粉末の製造方法を提供するにある。
That is, in the present invention, the composition after firing is such that at least one of aluminum oxide, tin oxide, indium oxide, and gallium oxide is added to 100 parts by weight of zinc oxide in terms of oxide.
05 to 5 parts by weight of a water-soluble zinc compound and at least one of aluminum, tin, indium and gallium.
Add a seed water-soluble metal compound, then add an alkali or alkali carbonate, stir to neutralize and coprecipitate, filter the obtained precipitate, wash with water, dehydrate if necessary, dry, and incubate for 500 minutes under a reducing atmosphere. A white conductive powder that is fired at a temperature of ~800℃! ! In the process, the amount of alkali or alkali carbonate relative to the water-soluble zinc compound is present in an amount less than the theoretical reaction equivalent for neutralization, and the white conductive powder is prepared by neutralization and co-precipitation. We are here to provide you with a method.

以下本発明方法を更に詳細に説明する。The method of the present invention will be explained in more detail below.

本発明の実施に際し適用される水溶性亜鉛化合物として
は焼成後酸化亜鉛を形成するものであれば特にその種類
は制限されないが、例えば硫酸亜鉛、塩化亜鉛、硝酸亜
鉛または酢酸亜鉛或いはこれらの混合物等が挙げられる
The water-soluble zinc compound that can be used in carrying out the present invention is not particularly limited as long as it forms zinc oxide after calcination, but examples include zinc sulfate, zinc chloride, zinc nitrate, zinc acetate, and mixtures thereof. can be mentioned.

他方水溶性全屈化合物としては焼成後酸化アルミニウム
、酸化錫、酸化インジウム或いは酸化ガリウムを形成す
るものであればよく、アルミニウム、錫、インジウムお
よびガリウムの塩化物、硝酸塩、硫酸塩または酢酸塩お
よびアルカリ金属塩更にはこれらの混合物が適用される
。より具体的には塩化アルミニウム、硝酸アルミニウム
、硫酸アルミニウム、酢酸アルミニウム、アルミン酸ソ
ーダ、ミョウバン、カリウムミョウバン等の水溶閉アル
ミニウム化合物、塩化第一錫、塩化第二錫、硫酸第二錫
、ヘキサヒドロオキシ錫酸ナトリウム、ヘキサクロロ錫
酸カリウム等の水溶性錫化合物、塩化インジウム、硝酸
インジウム等の水溶性インジウム化合物および塩化ガリ
ウム、硝酸ガリウム、硫酸カリウム、ソーダと酸化ガリ
ウムとの混合物等が挙げられる。
On the other hand, the water-soluble total bending compound may be any compound that forms aluminum oxide, tin oxide, indium oxide or gallium oxide after calcination, such as chlorides, nitrates, sulfates or acetates of aluminum, tin, indium and gallium, and alkalis. Metal salts and also mixtures thereof are applicable. More specifically, water-soluble closed aluminum compounds such as aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum acetate, sodium aluminate, alum, potassium alum, stannous chloride, tin chloride, tin sulfate, hexahydroxy Examples include water-soluble tin compounds such as sodium stannate and potassium hexachlorostannate, water-soluble indium compounds such as indium chloride and indium nitrate, and mixtures of gallium chloride, gallium nitrate, potassium sulfate, and soda and gallium oxide.

水溶性亜鉛化合物に対する上記水溶性金属化合物の添加
混合割合は焼成後の形態として酸化亜鉛100重量部に
対し酸化物換算で0.05〜5重量部、好ましくは0.
1〜2重量部の範囲で用いられる。
The mixing ratio of the water-soluble metal compound to the water-soluble zinc compound is 0.05 to 5 parts by weight, preferably 0.05 to 5 parts by weight in terms of oxide, per 100 parts by weight of zinc oxide in the form after firing.
It is used in a range of 1 to 2 parts by weight.

酸化亜鉛に対する水溶性金属化合物の添加混合割合が上
述の範囲を外れる場合には体積固有抵抗値の低いフィラ
ー粉末を得ることができない。
If the mixing ratio of the water-soluble metal compound to zinc oxide is out of the above-mentioned range, filler powder with a low volume resistivity value cannot be obtained.

所定量の水溶性亜鉛化合物に水溶性金属化合物を加え十
分に撹拌混合した溶液には次いで公知の方法に従い水酸
化ナトリウム、水酸化カリウム、水酸化アンモニウム、
水酸化リチウム等のアルカリ或いは炭酸ナトリウム、炭
酸水素ナトリウム等の炭酸アルカリを添加、撹拌して中
和し、沈澱を析出させる。就中、中和反応に1吏用する
アルカリ或いは炭酸アルカリとしては廉価であるとの理
由より水酸化ナトリウムおよび炭酸ナトリウムが推奨さ
れる。
A water-soluble metal compound is added to a predetermined amount of a water-soluble zinc compound, and the solution is sufficiently stirred and mixed. Next, sodium hydroxide, potassium hydroxide, ammonium hydroxide,
An alkali such as lithium hydroxide or an alkali carbonate such as sodium carbonate or sodium bicarbonate is added and stirred to neutralize and precipitate. Among these, sodium hydroxide and sodium carbonate are recommended as the alkali or alkali carbonate used in the neutralization reaction because they are inexpensive.

本発明の特徴はかかる中和共沈工程にあり、中和に供さ
れるアルカリ或いは炭酸アルカリの量は水溶性亜鉛化合
物に対して中和理論反応当量未満の存在下で実施される
。具体的には中和時に於ける反応温度或いは撹拌条件に
より一義的ではないが中和理論反応当量の99.9〜5
0%、好ましくは99〜90%の範囲内であればよく、
99.9%を越える場合には得られる酸化亜鉛を主体と
する粉末の導電性が著しく悪化するので好ましくなく、
他方50%未満の場合には当然のことながら析出収率が
低下するので好ましくなく、反応調整の容易さおよび収
率から99〜90%の範囲で実施することが推奨される
The feature of the present invention is such a neutralization coprecipitation step, in which the amount of alkali or alkali carbonate used for neutralization is less than the theoretical reaction equivalent for neutralization with respect to the water-soluble zinc compound. Specifically, it is not unique depending on the reaction temperature or stirring conditions during neutralization, but the theoretical reaction equivalent of neutralization is 99.9 to 5.
0%, preferably within the range of 99 to 90%,
If it exceeds 99.9%, the conductivity of the resulting powder mainly composed of zinc oxide will deteriorate significantly, which is not preferable.
On the other hand, when it is less than 50%, the precipitation yield naturally decreases, which is not preferable, and it is recommended to carry out the reaction in the range of 99 to 90% from the viewpoint of ease of reaction adjustment and yield.

このようにして中和共沈処理して反応を完了せしめた後
の析出物と78液は公知の方法により濾別し、分捕され
た析出物は水洗、乾燥し、必要に応じて粉砕又は解砕し
て凝集粒をほぐした後例えば水素、−酸化炭素等の還元
性雰囲気下500〜800℃の温度で焼成される。還元
性ガスを適用する場合には爆発の危険性を防止するとい
う意味から予め窒素等で焼成炉内を置換し、その後還元
性ガスを導入して焼成する方法或いは還元性ガス−窒素
ガスの混合ガスを用いる方法等が挙げられるが焼成後の
体積固有抵抗値が優れている点より水素或いは水素−窒
素雰囲気下での焼成方法が推奨される。
After completing the reaction through neutralization coprecipitation treatment, the precipitate and 78 liquid are filtered out by a known method, and the separated precipitate is washed with water, dried, and crushed or crushed as necessary. After being crushed to loosen agglomerated particles, it is fired at a temperature of 500 to 800° C. in a reducing atmosphere such as hydrogen or carbon oxide. When using a reducing gas, in order to prevent the risk of explosion, the inside of the firing furnace is replaced with nitrogen, etc., and then the reducing gas is introduced and fired, or a mixture of reducing gas and nitrogen gas is used. Although methods using gas may be mentioned, a method of firing in a hydrogen or hydrogen-nitrogen atmosphere is recommended because the volume resistivity after firing is excellent.

本発明において粉体の焼成温度が500℃より低い場合
には体積固有抵抗値が高く、他方800℃を越える場合
には粉体単位重量当たりの導電性付与効果が低下し好ま
しくない。
In the present invention, if the firing temperature of the powder is lower than 500°C, the volume resistivity will be high, while if it exceeds 800°C, the effect of imparting electrical conductivity per unit weight of the powder will be reduced, which is not preferred.

又本発明方法の実施に際し、中和共沈後の析出物を水洗
するに先立ち希薄な酸、例えば塩酸、硫酸、硝酸、酢酸
等での洗浄、更には水洗後の乾燥に先立ち析出物を60
〜100℃の温度で水中、又は水蒸気中で加熱処理する
ことも本発明方法の効果を妨げるものではない。
Furthermore, when carrying out the method of the present invention, the precipitate after neutralization and coprecipitation is washed with dilute acid such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, etc. prior to washing the precipitate with water, and furthermore, the precipitate is washed with 60% water before drying after washing with water.
Heat treatment in water or steam at a temperature of ~100°C does not impede the effectiveness of the method of the present invention.

以上詳述した如く、本発明方法は水溶性亜鉛化合物と活
性化剤としての水溶性金属化合物を混合し、これをアル
カリで中和1.共沈せしめ、該共沈物を水洗、乾燥、焼
成することにより導電性酸化亜鉛粉末を得る方法におい
て、単に中和時に於ける水溶性亜鉛化合物に対するアル
カリ或いは炭酸アルカリの量を中和理論反応当量未満の
範囲で存在せしめるという極めて簡単な方法によりフィ
ラーとしての導電性を著しく向上せしめることに成功し
たものであり、その産業的価値は頗る大なるものである
As detailed above, the method of the present invention involves mixing a water-soluble zinc compound and a water-soluble metal compound as an activator, and neutralizing the mixture with an alkali.1. In the method of obtaining conductive zinc oxide powder by coprecipitation, washing with water, drying, and calcination of the coprecipitate, the amount of alkali or alkali carbonate relative to the water-soluble zinc compound at the time of neutralization is simply calculated as the neutralization theoretical reaction equivalent. By using an extremely simple method of making the filler exist in a range of less than 100%, we succeeded in significantly improving the conductivity of the filler, and its industrial value is enormous.

以下本発明方法を実施例により更に詳細に説明するが、
本発明はかかる実施例により制限されるものではない。
The method of the present invention will be explained in more detail by examples below.
The present invention is not limited to these examples.

尚本文中に於いて理論反応当量とは、添加されるすべて
の塩を丁度中和するに必要な量とし、アルカリの全当量
を酸の全当量で割った値を当量比とした。
In the text, the theoretical reaction equivalent is the amount necessary to just neutralize all the salts added, and the equivalent ratio is the value obtained by dividing the total equivalent of alkali by the total equivalent of acid.

実施例 1 塩化亜鉛64.64kg、硝酸アルミニウム(9水和物
)1.65kgおよび塩化第二錫(5水和物)1.55
kgを1.5mの水に溶解し、十分に撹拌しなからGa
Q、11kg、苛性ソーダ1.1kg。
Example 1 64.64 kg of zinc chloride, 1.65 kg of aluminum nitrate (nanahydrate) and 1.55 kg of tinnic chloride (pentahydrate)
Dissolve kg in 1.5 m of water and stir well.
Q, 11 kg, caustic soda 1.1 kg.

炭酸ソーダ48kgを含有する水溶液o、  25rr
iを加え、中和共沈させ(当量比:0.95)、濾別し
て得た析出物を3mの水で水洗後スラリー濃度300 
g/j?に調整し、密封容器中に入れ、温度80℃で1
6時間加熱処理を施した後500℃で3時間乾燥した後
解砕し粉末とした。
Aqueous solution o containing 48 kg of soda carbonate, 25rr
i, neutralized and co-precipitated (equivalence ratio: 0.95), and the precipitate obtained by filtration was washed with 3 m of water, and the slurry concentration was 300.
g/j? Place in a sealed container and heat at 80°C.
After heat treatment for 6 hours, the mixture was dried at 500° C. for 3 hours and then crushed into powder.

この粉末を水素雰囲気下700℃の温度で3時間焼成し
、白色導電性粉末を得た。この白色導電性粉末の粉末抵
抗は1Ωcmであった。
This powder was fired at a temperature of 700° C. for 3 hours in a hydrogen atmosphere to obtain a white conductive powder. The powder resistance of this white conductive powder was 1 Ωcm.

次いで得られた粉末を市販のウレタン樹脂に対し50重
量%の割合で充填し、ロール混練後厚さ50μのウレタ
ンフィルムに成形した。このフィルムの体積固有抵抗値
は5 X 1 (fQcmであった。
Next, the obtained powder was filled in a commercially available urethane resin at a ratio of 50% by weight, and after kneading with rolls, it was formed into a 50 μm thick urethane film. The volume resistivity value of this film was 5×1 (fQcm).

又ポリプロピレン樹脂に対し50重量%の割合で充填し
、ロール混練した後70μのシート状に成形した。該シ
ートの体積固有抵抗値は8×105Ωcmであった。
The mixture was filled in a proportion of 50% by weight based on the polypropylene resin, kneaded with rolls, and then molded into a 70μ sheet. The volume resistivity value of the sheet was 8×10 5 Ωcm.

実施例 2 塩化亜鉛64.64kgと硝酸アルミニウム(9水和物
)1.65kgを1.6mの水に溶解し、十分に撹拌し
ながら炭酸ソーダ48kgを含有する水溶液0..25
mを加え、中和共沈させ(当量比二0.94)、濾別し
て得た析出物を3mの水で水洗後スラリー濃度300 
g/lに調整し、密封容器中に入れ、温度80℃で16
時間加熱処理を施した後500℃で3時間乾燥した後解
砕し粉末とした。
Example 2 64.64 kg of zinc chloride and 1.65 kg of aluminum nitrate (nonahydrate) were dissolved in 1.6 m of water, and while thoroughly stirring, an aqueous solution containing 48 kg of soda carbonate was added. .. 25
m was added, neutralized and coprecipitated (equivalence ratio 20.94), and the precipitate obtained by filtration was washed with 3 m of water, and the slurry concentration was 300.
g/l, put it in a sealed container, and heat it at 80°C for 16
After being subjected to heat treatment for a period of time, it was dried at 500° C. for 3 hours and then crushed to form a powder.

この粉末を水素雰囲気下700℃の温度で3時間焼成し
、白色導電性粉末を得た。この白色導電性粉末の粉末抵
抗は20Ωcn+であった。
This powder was fired at a temperature of 700° C. for 3 hours in a hydrogen atmosphere to obtain a white conductive powder. The powder resistance of this white conductive powder was 20Ωcn+.

次いで得られた粉末を市販のウレタン樹脂に対し50重
量%の割合で充填し、ロール混練後厚さ50μのウレタ
ンフィルムに成形した。このフィルムの体積固有抵抗値
は5×10Ωcmであった。
Next, the obtained powder was filled in a commercially available urethane resin at a ratio of 50% by weight, and after kneading with rolls, it was formed into a 50 μm thick urethane film. The volume resistivity value of this film was 5×10 Ωcm.

又ポリプロピレン樹脂に対し50重量%の割合で充填し
、ロール混練した後70μのシート状に成形した。該シ
ートの体積固有抵抗値はI X 107Ωcmであった
The mixture was filled in a proportion of 50% by weight based on the polypropylene resin, kneaded with rolls, and then molded into a 70μ sheet. The volume resistivity value of the sheet was I x 107 Ωcm.

実施例 3 塩化亜鉛6.464kg、硝酸アルミニウム(9水和物
)165gおよび塩化インジうム105gを1601の
水に熔解し、十分に撹拌しながら炭酸ソーダ4.9gを
熔解した水溶液252を加え、中和共沈させ(当量比:
0.95)、濾別して得た析出物を300βの水で水洗
後400℃で3時間乾燥した後解砕し粉末とした。
Example 3 6.464 kg of zinc chloride, 165 g of aluminum nitrate (nonahydrate) and 105 g of indium chloride were dissolved in 1601 water, and while stirring thoroughly, an aqueous solution 252 in which 4.9 g of soda carbonate was dissolved was added. Neutralized and coprecipitated (equivalent ratio:
0.95), the precipitate obtained by filtration was washed with 300β water, dried at 400° C. for 3 hours, and then crushed into powder.

この粉末を水素雰囲気下700℃の温度で3時間焼成し
、白色導電性粉末を得た。この白色導電性粉末の粉末抵
抗は7Ωcmであった。
This powder was fired at a temperature of 700° C. for 3 hours in a hydrogen atmosphere to obtain a white conductive powder. The powder resistance of this white conductive powder was 7 Ωcm.

次いで得られた粉末を市販のウレタン樹脂に対し50重
量%の割合で充填し、ロール混練後厚さ50μのウレタ
ンフィルムに成形した。このフィダ ルムの体積固有抵抗値は8×10Ωcmであった。
Next, the obtained powder was filled in a commercially available urethane resin at a ratio of 50% by weight, and after kneading with rolls, it was formed into a 50 μm thick urethane film. The volume resistivity value of this Fidalum was 8×10 Ωcm.

又ポリプロピレン樹脂に対し50重量%の割合で充填し
、ロール混練した後70μのシート状に成形した。該シ
ートの体積固有抵抗値は2×106Ωcmであった。
The mixture was filled in a proportion of 50% by weight based on the polypropylene resin, kneaded with rolls, and then molded into a 70μ sheet. The volume resistivity value of the sheet was 2×10 6 Ωcm.

比較例 1 実施例1における炭酸ソーダの量を53kgとした以外
全く同様の方法で白色導電性粉末を得た(当量比:1.
05)。この粉末の粉末抵抗値は300Ωcmであり、
実施例と同様にして得たウレボリプロピレンシートのそ
れは3×10Ωcmであった。
Comparative Example 1 A white conductive powder was obtained in exactly the same manner as in Example 1 except that the amount of soda carbonate was changed to 53 kg (equivalent ratio: 1.
05). The powder resistance value of this powder is 300Ωcm,
The ureboripropylene sheet obtained in the same manner as in the example had a resistance of 3×10 Ωcm.

比較例 2 実施例2における炭酸ソーダの量を56kgとした以外
全く同様の方法で白色導電性粉末を得た(当量比:1.
10)。この粉末の粉末抵抗値は500Ωcmであり、
実施例と同様にして得たウレタンフィルムの体積固有抵
抗値は6×10Ωcm、ポリプロピレンシートのそれは
3×10Ωcmであった。
Comparative Example 2 A white conductive powder was obtained in exactly the same manner as in Example 2 except that the amount of soda carbonate was changed to 56 kg (equivalent ratio: 1.
10). The powder resistance value of this powder is 500Ωcm,
The volume resistivity of the urethane film obtained in the same manner as in the example was 6 x 10 Ωcm, and that of the polypropylene sheet was 3 x 10 Ωcm.

比較例 3 実施例3における炭酸ソーダの量を5.3kgとした以
外全(同様の方法で白色導電性粉末を得た(当量比:1
.03)。この粉末の粉末抵抗値は80Ωcmてあり、
実施例と同様にして得たウレタンフィルムの体積固有抵
抗値は2×10Ωcm、ポリプロピレンシートのそれは
6 X 107Ω・・であ。
Comparative Example 3 All samples were prepared in Example 3 except that the amount of soda carbonate was changed to 5.3 kg (white conductive powder was obtained in the same manner (equivalent ratio: 1).
.. 03). The powder resistance value of this powder is 80Ωcm,
The volume resistivity of the urethane film obtained in the same manner as in the example was 2 x 10 Ωcm, and that of the polypropylene sheet was 6 x 10 7 Ω.

た。Ta.

Claims (1)

【特許請求の範囲】[Claims] 焼成後の組成が酸化物換算で酸化亜鉛100重量部に対
し酸化アルミニウム、酸化錫、酸化インジウムおよび酸
化ガリウムの少なくとも1種が0.05〜5重量部とな
る如く水溶性亜鉛化合物とアルミニウム、スズ、インジ
ウムおよびガリウムの少なくとも1種の水溶性金属化合
物を加え、次いでアルカリ或いは炭酸アルカリを添加、
撹拌して中和共沈せしめ、得られた析出物を濾過、水洗
し、必要に応じ脱水、乾燥し、還元性雰囲気下500〜
800℃の温度で焼成する白色導電性粉末の製造方法に
於いて、水溶性亜鉛化合物に対するアルカリ或いは炭酸
アルカリの量を中和理論反応当量未満となる如く存在さ
せて中和共沈せしめることを特徴とする白色導電性粉末
の製造方法。
A water-soluble zinc compound, aluminum, and tin are mixed so that the composition after firing is 0.05 to 5 parts by weight of at least one of aluminum oxide, tin oxide, indium oxide, and gallium oxide per 100 parts by weight of zinc oxide. , adding at least one water-soluble metal compound of indium and gallium, and then adding an alkali or alkali carbonate,
Stir to neutralize and coprecipitate, filter the obtained precipitate, wash with water, dehydrate and dry if necessary, and heat to 500 ~
A method for producing a white conductive powder which is fired at a temperature of 800°C, characterized in that the amount of alkali or alkali carbonate relative to the water-soluble zinc compound is present in an amount less than the theoretical reaction equivalent for neutralization, thereby causing neutralization coprecipitation. A method for producing a white conductive powder.
JP59209267A 1984-10-05 1984-10-05 Preparation of white electroconductive powder Pending JPS6186421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209267A JPS6186421A (en) 1984-10-05 1984-10-05 Preparation of white electroconductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209267A JPS6186421A (en) 1984-10-05 1984-10-05 Preparation of white electroconductive powder

Publications (1)

Publication Number Publication Date
JPS6186421A true JPS6186421A (en) 1986-05-01

Family

ID=16570113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209267A Pending JPS6186421A (en) 1984-10-05 1984-10-05 Preparation of white electroconductive powder

Country Status (1)

Country Link
JP (1) JPS6186421A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281153A (en) * 1985-06-07 1986-12-11 Sumitomo Bakelite Co Ltd Production of electrically conductive film
FR2607417A1 (en) * 1986-12-02 1988-06-03 Europ Composants Electron METHOD OF MANUFACTURING BY COPRECIPITATION OF DOPED POWDERS BASED ON ZINC OXIDE
JPH01126228A (en) * 1987-11-11 1989-05-18 Hakusui Chem Ind Ltd Production of electrically conductive zinc oxide fine powder
WO1995033688A1 (en) * 1994-06-06 1995-12-14 Nippon Shokubai Co., Ltd. Fine zinc oxide particles, process for producing the same, and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281153A (en) * 1985-06-07 1986-12-11 Sumitomo Bakelite Co Ltd Production of electrically conductive film
FR2607417A1 (en) * 1986-12-02 1988-06-03 Europ Composants Electron METHOD OF MANUFACTURING BY COPRECIPITATION OF DOPED POWDERS BASED ON ZINC OXIDE
JPH01126228A (en) * 1987-11-11 1989-05-18 Hakusui Chem Ind Ltd Production of electrically conductive zinc oxide fine powder
WO1995033688A1 (en) * 1994-06-06 1995-12-14 Nippon Shokubai Co., Ltd. Fine zinc oxide particles, process for producing the same, and use thereof
EP0893409A1 (en) * 1994-06-06 1999-01-27 Nippon Shokubai Co., Ltd. Zinc oxide-based fine particles, process for producing the same, and use thereof
US6200680B1 (en) 1994-06-06 2001-03-13 Nippon Shokubai Co., Ltd. Fine zinc oxide particles, process for producing the same, and use thereof

Similar Documents

Publication Publication Date Title
JP5069865B2 (en) High purity magnesium hydroxide powder and method for producing the same
JPH0328125A (en) Needle-like conductive zinc oxide and its manufacture
KR19990021989A (en) Spherical aggregated basic cobalt carbonate (II) and spherical aggregated cobalt hydroxide (II), preparation method thereof and use thereof
JPH0323220A (en) Preparation of white electrically- conductive zinc oxide
CN1222467C (en) Method of preparing bimetal oxide and hydrotalcite
CN105540623A (en) Method for preparing nanometer magnesia
US5866493A (en) Method of manufacturing a sintered body of indium tin oxide
JPS6186421A (en) Preparation of white electroconductive powder
CN108977675A (en) A kind of method that anti-charging precipitating-baking inphases prepare low sulfur content rare earth oxide
CN113104871A (en) Method for preparing magnesium-aluminum hydrotalcite from magnesite
CN108502911B (en) Barite purifying and whitening agent and purifying and whitening method thereof
CN102070207B (en) Method for preparing nano nickel oxide
JPS6335571B2 (en)
JPH06227815A (en) Production of electrically conductive fine powder
JP2002274847A (en) Method of preparing needle zinc oxide
JP2827616B2 (en) Zinc stannate powder for encapsulant and its production method and use
JPS63277511A (en) Production of magnesium hydroxide and surface-treated magnesium hydroxide
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JPS6183627A (en) Production of powdery zirconium oxide
JPS6140338A (en) Preparation of electrically conductive white filler
JPH04321523A (en) Production of tricobalt tetroxide
US2384428A (en) Production of zirconia
CN113666412B (en) Preparation method of bamboo-like nano indium tin oxide powder
CN102230222B (en) Preparation method of strontium carbonate whisker with high length-diameter (L-D) ratio
CN110713209B (en) Preparation method for reducing particle size of sodium pyroantimonate