JPS6185772A - Manufacture of cadmium anode plate - Google Patents
Manufacture of cadmium anode plateInfo
- Publication number
- JPS6185772A JPS6185772A JP59205765A JP20576584A JPS6185772A JP S6185772 A JPS6185772 A JP S6185772A JP 59205765 A JP59205765 A JP 59205765A JP 20576584 A JP20576584 A JP 20576584A JP S6185772 A JPS6185772 A JP S6185772A
- Authority
- JP
- Japan
- Prior art keywords
- cadmium
- active substance
- substrate
- nitrate
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/26—Processes of manufacture
- H01M4/28—Precipitating active material on the carrier
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
ビ)産業上の利用分野
本発明はアルカリ蓄電池用の焼結式カドミウム陰極板の
製造方法にかかり、特にその化成工程の簡略化に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION B) Industrial Application Field The present invention relates to a method for manufacturing a sintered cadmium cathode plate for an alkaline storage battery, and particularly relates to the simplification of the chemical formation process.
(ロ) 従来の技術
従来、焼結式カドミウム陰極板は、多孔性ニッケル焼結
板に硝酸カドミウム水溶液を含浸した後アルカリ処理を
行なうことで硝酸カドミウムを水酸化カドミウムに変化
させ、次いで水洗及び乾燥を行なうという一連の操作を
繰り返すことにより基板中に所望量の活物質を充填して
作製されており、こうして作製された陰極板は一般に(
1)極板中の不純物の除去、(2)活物質の充電効率の
向上、(3)極板への柔軟性の付与を目的として、比較
的低電流で充放電を1〜数回行なう化成処理がなされる
。(b) Conventional technology Conventionally, a sintered cadmium cathode plate has been produced by impregnating a porous sintered nickel plate with an aqueous cadmium nitrate solution and then treating it with an alkali to convert the cadmium nitrate into cadmium hydroxide, followed by washing with water and drying. By repeating a series of operations, the substrate is filled with a desired amount of active material, and the cathode plate produced in this way is generally (
A chemical conversion process in which charging and discharging are performed one to several times at a relatively low current for the purposes of 1) removing impurities in the electrode plate, (2) improving the charging efficiency of the active material, and (3) imparting flexibility to the electrode plate. Processing is done.
特に硝酸カドミウムを出発物質として基板中に活物質を
充填してなる陰極板は不純物としての硝酸根が残留し、
この硝酸根を除去せずに電池を組み立てた場合、即ち化
成処理を行なわずして電池を組み立てた場合には充電保
存特性が著しく低下する現象が起こるため、極板中の不
純物の除去は行なう必要がある。しかしながら、上述し
た化成処理では不純物の除去は達成されるが、化成のた
めの工数が大幅に増加するため作業性が悪く、また処理
時間が長いため極板の連続処理には不向きであった。In particular, in cathode plates made of cadmium nitrate as a starting material and filled with active material in the substrate, nitrate radicals remain as impurities.
If a battery is assembled without removing these nitrate radicals, that is, without chemical conversion treatment, the charge storage characteristics will be significantly reduced, so impurities in the electrode plates should be removed. There is a need. However, although the above-mentioned chemical conversion treatment achieves the removal of impurities, the number of man-hours required for chemical conversion is significantly increased, resulting in poor workability, and the treatment time is long, making it unsuitable for continuous treatment of electrode plates.
また特開昭54−148235号公報では、活物質充填
後のカドミウム陰極板を加熱処理し次いでアルカリ溶液
中で充電及び放電する方法が提案されている。この方法
も硝酸根の除去は容易に達成することができるが、空気
中で加熱処理を行なうと活物質保持体であるニッケル焼
結基板が酸化され、ニッケル焼結基板と活物質との間に
導電性の悪い酸化ニッケルが生成して極板の充放電特性
に悪影響を及ぼすという欠点があった。Further, Japanese Patent Application Laid-Open No. 148235/1984 proposes a method in which a cadmium cathode plate filled with an active material is heat treated and then charged and discharged in an alkaline solution. Although this method can also easily remove nitrate radicals, heat treatment in air oxidizes the nickel sintered substrate, which is the active material support, and creates a gap between the nickel sintered substrate and the active material. The drawback was that nickel oxide, which has poor conductivity, was produced, which adversely affected the charging and discharging characteristics of the electrode plate.
i/S 発明が解決しようとする間層点本発明は不純
物除去等を目的として行なわれる活物質充填後のカドミ
ウム陰極板の化成処理による大幅な工数の増加及び処理
時間の増大を加熱処理によって抑制すると共に、該加熱
処理で生じる基板の酸化による充電効率の低下を抑制せ
んとするものである。i/S The interlayer point that the invention aims to solve The present invention suppresses the significant increase in man-hours and processing time due to chemical conversion treatment of the cadmium cathode plate after filling the active material, which is performed for the purpose of removing impurities, etc. by heat treatment. At the same time, it is intended to suppress a decrease in charging efficiency due to oxidation of the substrate caused by the heat treatment.
に)問題点を解決するための手段
本発明は活物質が充填されたカドミウム陰極板を不活性
雰囲気中にて加熱処理した後アルカリ溶液中で充電を行
ない、その後水洗及び乾燥を行なうものである。B) Means for solving the problem In the present invention, a cadmium cathode plate filled with an active material is heated in an inert atmosphere, then charged in an alkaline solution, and then washed with water and dried. .
…)作用
活物質充填後の焼結式カドミウム陰極板を不活性雰囲気
Iこ於いて250〜600℃で1熱処理すると活物質で
ある水酸化カドミウムは酸化カドミウムに変化し、同時
に活物質中に微量残存している硝酸塩が反応して硝酸根
が遊離する。このとき遊離する硝酸根は加熱処理によっ
て窒素酸化物ガスとして揮発することはほとんどな(N
0s−の形で極板内に留まっていると考えられる。...) Function When the sintered cadmium cathode plate filled with the active material is heat-treated at 250 to 600°C in an inert atmosphere, the active material cadmium hydroxide changes to cadmium oxide, and at the same time, a trace amount of the active material changes into cadmium oxide. The remaining nitrates react to liberate nitrate radicals. The nitrate radicals liberated at this time are hardly volatilized as nitrogen oxide gas by heat treatment (N
It is thought that it remains in the electrode plate in the form of 0s-.
この極板中の遊離した硝酸根はごく短時間充電すること
によって容易に極板から除去することが可能であり、加
熱処理後水洗を行なうことによっても容易に除去するこ
とが可能である。The liberated nitrate radicals in the electrode plate can be easily removed from the electrode plate by charging for a very short time, and can also be easily removed by washing with water after heat treatment.
また、活物質保持体であるニッケル焼結基板は230℃
以上で熱処理すると酸化ニッケルが生成すると言われて
いるが、不活性雰囲気中で熱処理することでこの酸化ニ
ッケルの生成を抑制することができる。In addition, the nickel sintered substrate that is the active material holder was heated to 230°C.
It is said that nickel oxide is generated when the above heat treatment is performed, but the generation of this nickel oxide can be suppressed by performing the heat treatment in an inert atmosphere.
(へ)実施例
多孔度的80%のニッケル焼結基板を硝酸カドミウム水
溶液に浸漬し基板の孔中に硝酸カドミウムを含浸した後
、乾燥、アルカリ処理、水洗、乾燥を行なう一連の活物
質充填操作を数回繰り返して基板中に所望量の活物質を
充填した。こうして作製された極板の容量は約1250
mAHである。(F) Example A series of active material filling operations in which a sintered nickel substrate with a porosity of 80% is immersed in an aqueous cadmium nitrate solution to impregnate the pores of the substrate with cadmium nitrate, followed by drying, alkali treatment, washing with water, and drying. The steps were repeated several times to fill the substrate with the desired amount of active material. The capacity of the electrode plate made in this way is approximately 1250
mAH.
この極板を窒素雰囲気中で各種温度で夫々20分間焼成
し、焼成後アルカリ水溶液で極板容量の30%を充電し
、水洗、乾燥を行なった。次いでこれら極板より基板の
芯材を取り除き、乳鉢で十分粉砕した後活物質を酢酸で
溶解し不溶分である焼結ニッケルを濾過により除去して
濾液中の硝酸根を横河電機製イオンクロマトアナライザ
ーtc−100型で測定した。This electrode plate was fired for 20 minutes at various temperatures in a nitrogen atmosphere, and after firing, it was charged to 30% of the plate capacity with an alkaline aqueous solution, washed with water, and dried. Next, the core material of the substrate was removed from these electrode plates, thoroughly crushed in a mortar, the active material was dissolved in acetic acid, the insoluble sintered nickel was removed by filtration, and the nitrate radicals in the filtrate were purified using Yokogawa Electric's ion chromatography. Measurement was performed using Analyzer TC-100 model.
また、他に前記焼成後の極板を直ちにイオン交換水で水
洗し70℃で完全乾燥した極板及び比較として前記活物
質充填後に加熱処理を行なってい全化成極板、前記活物
質充填後450℃で焼成のみ行なった極板を作製し、前
述と同一処理により硝酸根を測定した。この結果を表1
に示す。表中N0s−は粉砕試料2P中に含有される硝
酸根社である。In addition, we also prepared an electrode plate that was immediately washed with ion-exchanged water and completely dried at 70°C after firing, and for comparison, a fully chemically formed electrode plate that was heat-treated after being filled with the active material, and a fully chemically formed electrode plate that was heated at 450°C after being filled with the active material. An electrode plate that was only fired at ℃ was prepared, and nitrate radicals were measured using the same treatment as described above. The results are shown in Table 1.
Shown below. In the table, NOs- is the nitrate contained in the crushed sample 2P.
表 1
表1より250℃〜700℃で焼成した後充電または水
洗を行なった極板は完全化成した極板と略同様まで硝酸
根量が著しく減少していることがわかる。但し極板容量
を測定してみると700℃で焼成したものは約10%の
容量劣化がみられ活物質の不活性化が起こっていた。し
たがって焼成温度は600℃を上限とするのが適当であ
り、下限温度としては250℃が適当である。Table 1 From Table 1, it can be seen that the amount of nitrate radicals in the electrode plates fired at 250 DEG C. to 700 DEG C. and then charged or washed with water was significantly reduced to almost the same level as the fully chemically formed electrode plates. However, when the capacitance of the electrode plate was measured, it was found that the capacity of the electrode plate fired at 700° C. deteriorated by about 10%, and the active material was inactivated. Therefore, it is appropriate that the upper limit of the firing temperature is 600°C, and the appropriate lower limit temperature is 250°C.
また、250℃〜700℃で焼成後充電または水洗を行
なった極板の硝酸根量が著しく減少した理由を考えると
、450℃で焼成のみ行なった極板の残存硝酸根量は未
逃理極板に比し若干減少したものの250℃〜700℃
で焼成後充電または水洗を行なった極板と比較すると遥
かに多いことから、加熱により硝酸根のうち僅かが窒素
酸化物として取り除かれ、大部分の硝酸根は依然として
掻板中番ζ残存していると考えられ、この加熱によって
通常の水洗では除去され難い極板中の硝酸根も活物質の
水酸化カドミウムが酸化カドミウムに変化する際に同時
に除去され易い状態となり、その後に行なう充電または
水洗により容易に除去されたと推測される。In addition, considering the reason why the amount of nitrate radicals in the electrode plate that was charged or washed with water after firing at 250°C to 700°C was significantly reduced, the amount of residual nitrate radicals in the electrode plate that was only fired at 450°C was 250°C to 700°C, although slightly decreased compared to the plate.
The number of nitrate radicals is much higher than that of a plate that has been charged or washed with water after firing, so a small amount of the nitrate radicals are removed as nitrogen oxides by heating, and most of the nitrate radicals still remain in the plate. Due to this heating, the nitrate radicals in the electrode plate, which are difficult to remove with normal water washing, are also easily removed when the active material cadmium hydroxide changes to cadmium oxide, and the subsequent charging or water washing makes it easier to remove them. It is assumed that it was easily removed.
次いで焼成時の雰囲気を変化させて比較実験を行なった
。表2は前記焼成を450℃で20分間窒素中及び空気
中で夫々行なったときの極板2P中の酸化ニッケル1を
示したものであり、比較として活物質充填後の極板中の
酸化ニッケル量も同時に示す。測定方法は焼成後の極板
2Fを濃硝酸と水とを1:2で混合した溶液に溶解させ
(3Hr s )濾過した後の残渣の重量を測定したも
のである。Next, a comparative experiment was conducted by changing the firing atmosphere. Table 2 shows the amount of nickel oxide 1 in the electrode plate 2P when the firing was performed at 450°C for 20 minutes in nitrogen and in air, and for comparison, the nickel oxide 1 in the electrode plate after being filled with active material The amount is also indicated at the same time. The measurement method was to dissolve the fired electrode plate 2F in a 1:2 mixture of concentrated nitric acid and water (for 3 hours), filter it, and then measure the weight of the residue.
残渣はX線分析(より酸化ニッケルのみと同定している
。The residue was identified as nickel oxide only by X-ray analysis.
表 2
表2から空気中で焼成した極板には導電性の悪い酸化ニ
ッケルが多く生成し不良導体層を形成するのに対し、窒
素中で焼成した極板では酸化二叩ケルの生成が抑制され
ていることがわかる。この結果窒素中で焼成した極板は
空気中で焼成した極板に比し酸化ニッケルの影響が少な
く充放電特性も良好となる。Table 2 From Table 2, a large amount of nickel oxide, which has poor conductivity, is generated in the electrode plate fired in air, forming a poor conductor layer, whereas the generation of nickel oxide is suppressed in the electrode plate fired in nitrogen. I can see that it is being done. As a result, the electrode plate fired in nitrogen has less influence of nickel oxide than the electrode plate fired in air, and has better charge-discharge characteristics.
また、電池の試作試験の結果を以下に示す。前述同様水
酸化カドミウムを充填した焼結基板を窒素雰囲気中で5
00℃で20分間焼成した後水洗り
してなる陰極を%C電流で18分間充電し水洗、乾燥す
る。こうして得られた陰極を完全化成済の、4/1
焼結式ニッケル陽極と組み合わせ4タイプの電池IA)
を得た。尚比較として陰極に加熱処理を施さず番こ完全
化成を行なったものを用いた電池@)及び500℃で2
0分間焼成した後水洗、乾燥のみ行なうたものを用いた
電池ICIを作製した。これらの電池のサイクル特性図
を図面に示す。サイクル条件は20℃に於いてa、i−
s電流で16時間充電した後20℃で10電流で放電す
るものであり、容量はこのときの放電時間であられして
いる。焼成後充電を行なわなかった陰極を用いた電池1
cIは劣化が大きく陰極規制になっていたが、電池四及
び(B)はサイクル劣化は少なく良好である。また焼成
後充電を行なった陰漫の柔軟性は完全化成を行なった陰
極以上に優れていた。In addition, the results of the battery prototype test are shown below. Similar to the above, a sintered substrate filled with cadmium hydroxide was heated for 5 minutes in a nitrogen atmosphere.
The cathode obtained by firing at 00° C. for 20 minutes and washing with water is charged with a %C current for 18 minutes, washed with water, and dried. The cathode thus obtained was combined with a fully chemicalized 4/1 sintered nickel anode to produce four types of batteries (IA).
I got it. For comparison, we used a battery in which the cathode was completely chemically formed without heat treatment, and
A battery ICI was produced using a battery that was baked for 0 minutes, washed with water, and then dried. The cycle characteristics diagram of these batteries is shown in the drawing. The cycle conditions are a, i- at 20°C.
The battery is charged at s current for 16 hours and then discharged at 20° C. with 10 current, and the capacity is determined by the discharge time. Battery 1 using a cathode that was not charged after firing
cI showed significant deterioration and was subject to cathode regulation, but batteries 4 and (B) showed little cycle deterioration and were in good condition. Furthermore, the flexibility of the cathode that was charged after firing was superior to that of the cathode that was completely chemically formed.
(ト1 発明の効果
本発明のカドミウム陰極板の製造方法は水酸化力°ドミ
ウムを充填した多孔性ニッケル焼結基板を不活性雰囲気
中にて250〜600℃の温度で加熱処理を行なった後
アルカリ溶液中で充電を行ないその後水洗及び乾燥を行
なうものであるので、完全化成とほぼ同様に硝酸根を除
去でき極板に柔軟性を付与することができると共に完全
化成に伴う大幅な工数の増加及び処理時間の増大を抑制
でき、また、加熱処理で生じる基板の酸化による充放電
特性の低下を抑制することができる。(1) Effects of the Invention The method for producing a cadmium cathode plate of the present invention is to heat-treat a porous sintered nickel substrate filled with hydroxide at a temperature of 250 to 600°C in an inert atmosphere. Since charging is carried out in an alkaline solution, followed by washing and drying, nitrate radicals can be removed in much the same way as complete chemical formation, and flexibility can be imparted to the electrode plate, as well as a significant increase in the number of man-hours associated with complete chemical formation. In addition, it is possible to suppress an increase in processing time, and it is also possible to suppress a decrease in charge/discharge characteristics due to oxidation of the substrate caused by heat treatment.
図面は本発明による陰極板を用いた電池と比較電池のサ
イクル特性図である。The drawing is a cycle characteristic diagram of a battery using the cathode plate according to the present invention and a comparative battery.
Claims (1)
し、次いでアルカリ処理を行なうことで前記硝酸カドミ
ウムを水酸化カドミウムに変化させる操作によって前記
基板中に所望量の活物質を充填した後、該基板を不活性
雰囲気中にて250〜600℃の範囲内の温度で加熱処
理を行ない、該加熱処理後の基板をアルカリ溶液中で充
電を行ない、その後水洗及び乾燥を行なうことを特徴と
するカドミウム陰極板の製造方法。(1) After filling a desired amount of active material into the substrate by impregnating a porous nickel sintered substrate with cadmium nitrate and then performing an alkali treatment to change the cadmium nitrate into cadmium hydroxide, Cadmium, characterized in that the substrate is heat treated in an inert atmosphere at a temperature within the range of 250 to 600°C, the substrate after the heat treatment is charged in an alkaline solution, and then washed with water and dried. A method of manufacturing a cathode plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59205765A JPS6185772A (en) | 1984-10-01 | 1984-10-01 | Manufacture of cadmium anode plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59205765A JPS6185772A (en) | 1984-10-01 | 1984-10-01 | Manufacture of cadmium anode plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6185772A true JPS6185772A (en) | 1986-05-01 |
Family
ID=16512295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59205765A Pending JPS6185772A (en) | 1984-10-01 | 1984-10-01 | Manufacture of cadmium anode plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6185772A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6797432B2 (en) | 2001-03-22 | 2004-09-28 | Sanyo Electric Co., Ltd. | Method for producing sintered cadmium negative electrode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54148235A (en) * | 1978-04-07 | 1979-11-20 | Gen Electric | Method of making cathode plate |
-
1984
- 1984-10-01 JP JP59205765A patent/JPS6185772A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54148235A (en) * | 1978-04-07 | 1979-11-20 | Gen Electric | Method of making cathode plate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6797432B2 (en) | 2001-03-22 | 2004-09-28 | Sanyo Electric Co., Ltd. | Method for producing sintered cadmium negative electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6185772A (en) | Manufacture of cadmium anode plate | |
US4139423A (en) | Sintered negative plate | |
JP5659484B2 (en) | Battery case formation method for lead acid battery | |
US3053924A (en) | Battery electrode and method of making the same | |
JP4039862B2 (en) | Method for producing electrode material | |
US3663296A (en) | Method for removal of residual nitrate from negative battery plates | |
US2952726A (en) | Storage batteries | |
US3533842A (en) | Process for impregnating sintered nickel plaques | |
JPH0475257A (en) | Manufacture of nickel hydroxide electrode for alkaline storage battery | |
JPS6147065A (en) | Manufacturing method of cadmium negative plate | |
JPH1064530A (en) | Manufacture of electrode plate for lead-acid battery | |
JP2639916B2 (en) | Method for producing sintered nickel electrode for alkaline storage battery | |
JP3448886B2 (en) | Method for producing cadmium negative electrode plate for alkaline storage battery | |
JPS6171548A (en) | Manufacture of sintered type electrode plate | |
JPS59186254A (en) | Method for manufacture of lead storage battery | |
JPS58117641A (en) | Manufacture of negative electrode plate for sealed nickel-cadmium storage battery | |
JPS63160161A (en) | Manufacture of cathode plate for aikaline storage battery | |
US4166010A (en) | Sintered negative plate | |
JPH0719597B2 (en) | Manufacturing method of negative electrode plate for alkaline storage battery | |
JPS60119077A (en) | Manufacture of cathode plate of alkaline storage battery | |
JPH0433109B2 (en) | ||
JPH0837009A (en) | Sintered base board for alkaline storage battery and manufacture of the base board | |
JP2002279955A (en) | Separator for alkaline storage battery, manufacturing method therefor and alkaline storage battery | |
JPS6171551A (en) | Manufacture of sintered negative electrode plate | |
JPH031783B2 (en) |