JPS6183833A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS6183833A
JPS6183833A JP59205170A JP20517084A JPS6183833A JP S6183833 A JPS6183833 A JP S6183833A JP 59205170 A JP59205170 A JP 59205170A JP 20517084 A JP20517084 A JP 20517084A JP S6183833 A JPS6183833 A JP S6183833A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
indoor
units
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59205170A
Other languages
Japanese (ja)
Other versions
JPH0429945B2 (en
Inventor
Seijiro Kondo
近藤 誠二郎
Kazuo Yonemoto
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP59205170A priority Critical patent/JPS6183833A/en
Publication of JPS6183833A publication Critical patent/JPS6183833A/en
Publication of JPH0429945B2 publication Critical patent/JPH0429945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Abstract

PURPOSE:To recover surely lubricating oils standing in a refrigerating cycle into a compressor by a method wherein by use of throttle valves of the respective room units, passage areas of refrigerant paths in the respective room units are successively adjusted for smooth distribution of the refrigerants. CONSTITUTION:In the air conditioner units operating system, which constitutes one outdoor unit A with built-in types of compressor 1, heat-exchanger of outdoor use 3, and also a plurality of room units B, C, D, they are arranged in parallel connection, with the respective built-in types of heat-exchanger of indoor use 7 and throttle valve 8 to reduce an opening area of the refrigerant passage, a detecting measure for finding oil shortage time 20 to detect shortage of lubricating oil in the compressor 1 of outdoor unit A, and a control measure 21, which comprise a controlling function of taking-in outputted signals from the said detecting measure 20 so as to operate the air compressor 1 in a high power rate and another controlling function for opening and adjusting of opening rate of the refrigerant throttle valve 8 belonging to a certain minor unit among indoor units of B, C, D, and on the contrary, let the remaining throttle valves 8 to close in order that controlled operation are successively and repeatedly made within a given cycle time, are provided. Therefore, lubricating oils standing in the respective units are successively and completely recovered into air compressor together with refrigerant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍サイクルにより室内を冷房よたは暖房J
る空気調和装置の改良に関し、特に圧縮機の潤滑油の一
部が冷媒と共に吐出されて冷凍サイクル中に溜り込むこ
とに起因りる圧縮)戊のf71 ifi油不足の解消対
策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is a method for cooling or heating a room using a refrigeration cycle.
The present invention relates to improvements in air conditioners, and particularly to measures to resolve the problem of oil shortage caused by compressor lubricating oil being discharged together with refrigerant and accumulating in the refrigeration cycle.

(従来の技術) 一般に、冷凍サイクルにより室内を空調する空気調和装
置においては、圧縮機を低能力で運転づると、冷媒のへ
低圧力差が小さくなつC1:θ凍すイクルにおけるン1
)媒循l還吊が減少し、このIこめ。
(Prior Art) Generally, in an air conditioner that air-conditions a room using a refrigeration cycle, when the compressor is operated at low capacity, the low pressure difference of the refrigerant becomes small.
) The medium circulation is reduced, and this I-completion is reduced.

冷凍サイクル中の冷媒の中に吐出された圧縮間の潤滑油
を圧縮機へ返戻する能力が低下し、この状態で長時間運
転を継続づると、圧縮(幾の潤滑油の溜り込み季が増大
して、圧縮はの潤滑油不足を末たし、その結果、圧縮間
1と動部の安常高渦や焼付さ・等をM+ <ことがある
The ability to return the lubricating oil discharged into the refrigerant during the refrigeration cycle to the compressor decreases, and if operation continues for a long time in this state, the accumulation of lubricating oil during compression increases. As a result, the compression may run out of lubricating oil, and as a result, high vortices, seizure, etc. may occur between the compression and the moving parts.

そのため、従来、例えば実公昭57−41416号公報
に開示されるもので(よ、圧縮機の低能力(の運転11
1間/!:5j測4るタイ7を設置ノ、この低能力1重
“l11.i;時間が所定時間に達づるmに圧11if
機を強ルリ的に設定0.1間のあいだ高能力で運転する
ことにより、冷凍サイクル中に停溜づるl1ff gc
!β1滑油を圧縮機に回収して上記潤滑油不足に起因す
る圧縮機の潤滑油不足を解消するようにしtこものが知
られてい信 (発明が解決しようとづる問題点) ところで、圧縮4Iおよび室外熱交換器を内蔵する1台
の学外ユニットに対して、それぞれ室内熱交換器および
絞り機構を内蔵づる複数台の室内ユニットを並列に接続
してなるいわゆるマルチ方式の空気調和装置があるが、
これに対して、上記油溜りに起因する圧縮機の潤滑油不
足を解間寸べく、上記従来の技術を適用する場合、複数
台の室内ユニットをTiづることからこれを直ちに採用
すること(はできない。すなわら、マルチ方式の6ので
は、至外ユニット側ひの冷媒通路面積(配管径)に比べ
て室内ユニット側での合計冷媒通路面積く合計配管径)
が大きい関係上(例えば1.4倍程度)、圧縮機を高能
力に運転してもljj 9!、の高低L「力量に、溜っ
た冷媒を回収できる47度の差圧が生じないことがあり
、このため、冷媒循環■が少なく冷媒流速が小さくて、
冷凍サイクル中に溜った潤滑1111を能率良く回収で
きず、圧縮(幾の潤滑油不足を確実に解、消することが
cきない。一方、8室内ユニット1.−付属ツル較す(
浪憫が<1(+:+ E対!、シ、シ(6D ILL 
6171 ?:’。
Therefore, conventionally, for example, the method disclosed in Japanese Utility Model Publication No. 57-41416 (1988) has been used to solve the problem.
1 hour/! : 5j Measurement 4 Tie 7 is installed, this low capacity single layer "l11.i; When the time reaches the predetermined time, the pressure 11if
By operating the machine at high capacity for a period of 0.1, l1ff gc will accumulate in the refrigeration cycle.
! By the way, it is known that β1 lubricating oil is collected in the compressor to eliminate the lubricating oil shortage in the compressor caused by the lubricating oil shortage described above (the problem that the invention seeks to solve). There are also so-called multi-system air conditioners in which multiple indoor units, each with a built-in indoor heat exchanger and throttling mechanism, are connected in parallel to one off-campus unit with a built-in outdoor heat exchanger. ,
On the other hand, when applying the above-mentioned conventional technology to solve the problem of lubricating oil shortage in the compressor caused by the oil pool, it is necessary to immediately adopt this technology since multiple indoor units are mounted on Ti. In other words, in multi-system 6, the total refrigerant passage area (total piping diameter) on the indoor unit side is smaller than the refrigerant passage area (piping diameter) on the outer unit side.
Since ljj is large (for example, about 1.4 times), even if the compressor is operated at high capacity, ljj 9! , the height of L and the pressure difference of 47 degrees that can recover the accumulated refrigerant may not occur, and for this reason, the refrigerant circulation is small and the refrigerant flow rate is low.
It is not possible to efficiently recover the lubricant 1111 accumulated during the refrigeration cycle, and it is not possible to reliably solve and eliminate the lack of lubricating oil.On the other hand, 8 indoor units 1.
Nami is <1 (+:+ E pair!, Shi, Shi (6D ILL
6171? :'.

可能なTi動式膨張弁等の可変絞り機構で構成されてい
る場合には、逆に油溜り時において絞り開度が小さな負
荷に対応して過渡に小さくなっていることがあるため、
この絞り機構での冷媒流通抵抗が大き過ぎて冷媒が流れ
にくく、溜った潤滑油の回収がより困難になる。
If the throttle mechanism is configured with a variable throttle mechanism such as a Ti dynamic expansion valve, the throttle opening may become transiently small in response to a small load when oil accumulates.
The refrigerant flow resistance in this throttling mechanism is too large, making it difficult for the refrigerant to flow, making it more difficult to recover the accumulated lubricating oil.

本発明は斯かる点に鑑みr:なされたらのCあり、その
目的は、上記の如きンルヂ方式の空気調杆1菰置にJ3
いて、油溜りに起因する圧縮機の潤滑iIb不足時には
圧mt*を高能力で運転するとともに、各室内ユニット
における冷媒通路面積をそれぞれ順次適切に調整するこ
とにより、冷媒の高低圧力間に大きな差圧を発生させる
とともに、絞り閣僚が空調負荷に応じC変化する絞り機
構を有する場合にも)11究の流通をスムーズに11わ
けて冷凍ケイクル中に溜つt、:潤滑油を確実に圧縮機
に回収し、よって油溜りに起因する圧縮量の潤滑油不足
を確実に解11’Jすることにある。
The present invention has been made in view of the above points, and its purpose is to install J3 in one air conditioning rod of the above-mentioned Nuruji method.
When the compressor lubrication iIb is insufficient due to oil accumulation, the pressure mt* is operated at high capacity, and the refrigerant passage area in each indoor unit is adjusted appropriately in order, thereby reducing the large difference between high and low refrigerant pressures. In addition to generating pressure, even if the throttling mechanism has a throttling mechanism that changes according to the air conditioning load, the lubricating oil is reliably collected in the refrigerated cylinder by dividing the flow smoothly into the compressor. The objective is to reliably solve the problem of insufficient compressed lubricating oil caused by oil stagnation.

(問題点を解決づるための手段ン 上記目的を達成するため、本発明の解決手段番よ、第1
図に示づよ)に、マルチ方式の空気調和装置、つまり圧
縮機(1)および室外熱交換器(3)を内蔵する1台の
室外ユニット(A)に対して、そ?Lぞ゛、1室内熱交
換器(7)および冷媒通路面積の絞り(2)を調整する
絞り度調整弁(8)を内R′rjる設故台の室内ユニッ
ト(B)、(C)、(D>を!1rftllに接続した
空気調和装置において、上記学外]、ニツ1−〈△)の
圧縮機(1)の潤滑油不足を検出する油不足時検出手段
(20)と、該油不足時検出1段(20)の出力を受け
、上記圧縮機(1)を高能力で運III/Aづるととb
に、運転中の室内ユニッ)−(1’3)−・(1〕)の
うら一部の室内ユニットの佼り度調整弁(8)を開IJ
向に、且つ他の室内ユニッ[−の絞り度調整か(8)を
閉方向に回ゆσ丈イ)ことを順次所定時間毎に繰返す制
陣−f段(21)とを備える構成としたちのCある。
(Means for solving the problem) In order to achieve the above object, the solution number of the present invention is as follows.
(as shown in the figure), is a multi-type air conditioner, that is, one outdoor unit (A) containing a compressor (1) and an outdoor heat exchanger (3)? Indoor units (B) and (C) of the damaged base, which include L, 1 indoor heat exchanger (7) and a restriction adjustment valve (8) that adjusts the refrigerant passage area restriction (2). , (D> connected to !1rftll, an oil shortage detection means (20) for detecting a lubricant oil shortage in the compressor (1) of the above-mentioned off-campus), In response to the output of the shortage detection stage 1 (20), the compressor (1) is operated at high capacity.
, open the turbulence adjustment valve (8) of the indoor unit (1'3)-(1)) that is in operation.
In addition, the other indoor units are configured to have a f-stage (21) that sequentially repeats the adjustment of the aperture degree (8) in the closing direction at predetermined intervals. There is a C.

く作用) 以、Vにより、本発明では、油溜りに起因1する1縮1
幾の潤滑油f定時には、圧縮機からの冷媒の叶出旬が増
大するとともに、この冷媒が流通りる室内コーニット側
の合51冷媒通路面偵が人き?l−ざる場合には該面積
が縮少することによって、冷媒の高低圧力間に大きな差
圧が発生し、絞り開度が圧縮機のfJ的に応じて変化す
る可変絞り(幾(苗を備えた場合であってH+;A絞つ
機構の開度が過渡に小さい場合には、冷媒の流通系路に
ある可変絞り1大構の絞り開度が増大することによって
、冷媒の流通量、流通量1女が増加して、各室内−1,
ニットに溜った全ての潤む油が圧縮機に冷媒とともに順
次回収さtし、よって、油溜りに起因する’;、E’ 
iii刷の2司泪油不定が確実に解消されるらのである
Hereinafter, by V, in the present invention, 1 contraction 1 caused by oil pooling
When the number of lubricating oils is fixed, the flow of refrigerant from the compressor increases, and the refrigerant passage on the indoor cornice side through which this refrigerant flows is empty. In the case of a variable orifice, the area is reduced and a large pressure difference is generated between the high and low pressures of the refrigerant. In this case, if the opening degree of the H+;A throttling mechanism is transiently small, the opening degree of the large variable restrictor in the refrigerant flow path increases, thereby reducing the flow rate and flow of the refrigerant. Quantity 1 woman increases, each room -1,
All the wet oil accumulated in the knit is sequentially collected together with the refrigerant by the compressor, and therefore, the oil caused by the oil accumulation is
This will definitely eliminate the uncertainty of the 2nd edition of the 3rd edition.

(実施例) 以下、本発明の実施例を第2図以下の図面にIfづいて
説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. 2 and the following drawings.

第2図において、(A)は室外−1ニツiへ、(13)
、(C)、(D)iよ相異なる室内に配設された複数台
く3台)の室内ユニットであって、該室外:lニット<
A)は内部に、潤滑油により潤滑される圧縮n(1)と
、四路切換弁(2)と、jΣ外送川用ァン(図示せず)
を有する室外熱交換器(3)と、レシーバ(4)と、ア
キュムレータ(5)とを内蔵し【いて、該各機器(1)
−・(5)はそれぞれ冷媒配管(6)・・・により冷媒
の流通可能に接続されている。また、各室内ユニット(
8)〜(D)は同一構成であって、それぞれ、内部に室
内送風71ン(図示ぜず)を有する室内熱交換器(7)
と、間麿調整可能な電動式膨張弁(8)とを内蔵し、該
両機器(7)、(8)は冷媒配管(り)・・・により冷
媒流通可能に接続されていて、」記電動式膨張弁(8)
により、冷媒通路面積の校り麿を調整するようにしだ咬
り度調整弁を構成している。そして、上記各室内ユニッ
ト(B)〜(r))は冷媒配管(10) ・・により室
外ユニット(A)に対して豆いに・1ρ列に接続さit
ていて、;1)房運転時に(,1四路切換弁(2)をノ
ー線の如く切換えて冷媒を実線矢印の如く循環8ぜるこ
とにより。
In Figure 2, (A) goes to outdoor-1 i, (13)
, (C), (D) i, a plurality of indoor units installed in different rooms (3 units), the outdoor unit: 1 unit <
A) has a compressor n (1) lubricated with lubricating oil, a four-way switching valve (2), and a jΣ external feeder fan (not shown) inside.
Each device (1) has a built-in outdoor heat exchanger (3), a receiver (4), and an accumulator (5).
- (5) are connected to each other by refrigerant piping (6) so that refrigerant can flow therethrough. In addition, each indoor unit (
8) to (D) have the same configuration, and each indoor heat exchanger (7) has 71 indoor air blowers (not shown) inside.
and an electric expansion valve (8) that can be adjusted in time, and the two devices (7) and (8) are connected to allow refrigerant flow through refrigerant piping. Electric expansion valve (8)
Accordingly, the sagging degree adjusting valve is configured to adjust the correction margin of the refrigerant passage area. Each of the above indoor units (B) to (r)) is connected to the outdoor unit (A) in a row of 1 p by refrigerant piping (10).
1) During operation, the refrigerant is circulated as shown by the solid arrow by switching the four-way selector valve (2) as shown by the no line.

各室内熱交換器(7)で室内/)t Iら吸熱しl−熱
♀を室外熱交換器(3)で外気に敢然することを繰返し
て各室内を冷房づ−る一方、暖房運転81にIL四路F
JJ換j?(2>を破線の如く切換えて冷媒を破憧失印
の如く循環させるごとにより、熱間の反量を上記とは逆
にして室内を暖房Jるように<’にされている。
Each indoor heat exchanger (7) absorbs heat from inside the room, and the outdoor heat exchanger (3) cools each room by repeatedly absorbing heat from the inside and releasing it to the outside air, while heating operation 81 to IL Yoro F
JJ exchange j? By switching (2) as shown by the broken line and circulating the refrigerant in a continuous manner, the hot reaction amount is reversed to the above and is made <' to heat the room.

また、上記各室内ユニット(B)・−(1) )にi、
t、対応する室内に配設されT:室温を検出するサーミ
スタ等の室温検知器(15)と、学内温度の目標1mが
設定される可変抵抗器よりなる室温設定器(16)と、
該両機器<15)、(16)h口うのイ言号を受けて室
温と室温設定(Cとの一方をンLh綽する漏差演痺回路
(17)とが備えられCいる7、一方、゛室外ユニット
(△)内には、圧縮機(1)を回転数till 12n
により能力ゐII fitするインバータ(18)と、
上記圏差演停回路〈17)からの曜犀信号を受けて上記
インバータ(18)に該偏差信号に応じた周波数設定信
号を出力するとともに、各室内1ニツh<Bン〜<D>
の電動式膨張弁(8)の間麿を対応する偏差演痺回路(
17)からの偏差13町に応して大小制御する制御回路
(19)とが備えられている。そして、上記制御回路(
19)は、第3図のフローブ17−1−に基づいて圧I
ii機(1)のMn油不足を検出するとともに、この倹
1.1目1.7 Mインバータ〈18ンおよび3霞の電
動式膨張j? (8)を騙差信ぢに応じた迫以外の伯に
作仙制11117Jる機能を併行している。
In addition, for each indoor unit (B)・-(1)),
t, a room temperature detector (15) such as a thermistor that detects the room temperature, and a room temperature setter (16) consisting of a variable resistor to set a target temperature of 1 m inside the school;
Both devices are equipped with a differential numbing circuit (17) that controls one of the room temperature and the room temperature setting (C) in response to the command of (16) On the other hand, the compressor (1) is installed in the outdoor unit (△) at a rotation speed of 12n.
an inverter (18) with a capacity II fit;
In response to the frequency signal from the range difference stop circuit <17), a frequency setting signal corresponding to the deviation signal is outputted to the inverter (18), and at the same time, one unit h<Bn~<D> is output for each room.
The corresponding deviation effect circuit (
A control circuit (19) is provided for controlling the size according to the deviation 13 from the position (17). And the above control circuit (
19) is the pressure I based on the flow 17-1- in FIG.
In addition to detecting the lack of Mn oil in the II machine (1), this 1.1 1.7 M inverter (18 and 3 haze electric expansion j? It also has the function of (8) to send sakusen system 11117J to Haku other than Sako who responded to the deceit message.

TI<K’bへ、第3図のフロートセードにおいて、′
A、ずステップS + ’T’インバータ(18)への
周波数設定信号の箱に塁づき圧縮機(1)の負荷が所定
(I0以“「か百かを判別し、所定値を越えているNo
 17) Ifl <、 +、: i、1. 、 rE
 、I宿1jW (1) I> 、l′I′I滑油不足
の発生II旨Cないと判断しCステップS2でクィマT
を「0」にセ・ントしてLv己スステップS1戻る。一
方、/f縮R< 1 ) ’7)(1荷が所定bi L
;l ’F )Y E S (DI閾67 ニj;L 
スフ スフS 3 T::’ ? マT ニr −l 
J A−1111篩しタノラ、ステップSJ −cりi
’ ン’rか所−L lr+ l:n l−1)以上に
なったか古かを判別し、丁・−丁りのN Oの場合はI
i稲機く′1)の潤滑油不足のデe j、F lh7 
Cないと判断して上記ステップ81に戻る。
To TI<K'b, in the float shade of Fig. 3,'
A, Step S + 'T' Check the frequency setting signal box for the inverter (18) and determine if the load of the compressor (1) exceeds a predetermined value (I0 or more) or 100. No
17) Ifl <, +,: i, 1. , rE
, I hostage 1jW (1) I > , l'I'I It is determined that there is no occurrence of lubricating oil shortage, and in step S2, the
is set to "0" and returns to step S1. On the other hand, /f contraction R< 1) '7) (1 load is given bi L
;l 'F )Y E S (DI threshold 67 Nij;L
Sufu Sufu S 3 T::'? MaT nir -l
J A-1111 Sieve Tanora, Step SJ-ci
'n'r place-L lr+ l:n l-1) Determine whether it is older or older, and if it is NO for -dori, I
Insufficient lubricating oil of rice machine 1) e j, F lh7
It is determined that there is no C, and the process returns to step 81 above.

一方、上記ステップS4でT≧T1)のYESの場合に
は圧ll2i鴻(1)の潤滑油不足の発生時であると判
断してステップS5に進み、該スー戸ツ/S5でインバ
ータ(18)に最高の周波数、設定信号を出力して1稲
1幾(1)を最大(Iヒカて゛)■転イノるととらに、
ステップS6で1つの室内ユニツ1−(B)の゛電動式
膨張弁(8)を令聞にし目−)曲の室内ユニット(C)
、(D)の電動式膨張弁(8)を閉じて、圧縮機(1)
から屯田され!、:冷媒の全Φを3台の室内熱交l!l
!器のうち室内7.ニラ)−(+3 >の岩内熱交換器
(7)のみにl’i!i環させ、これをステップS7で
所定111間だけ続行りる。7しかる後、ステップ8で
今疫は次の室内:1−ツ1−(C)の電動式膨張弁(8
)を令聞にし■」つ曲の室内コニツ1〜(B)、<D>
の°市仙式喝1づI−’3i’(8)を閉じて、圧縮機
(1)からの全冷媒を室内1−ツh(C)の室内熱交1
粂器(7)のみに循■フさせ、これをステップS9で所
定時間だけ続行する。その後、ステップS IQで次の
室内ユニット(I))の電動式8張弁(8)を全開にし
旦つ他の室内l−ニット(B)、(C)の電動式膨張弁
(8)を閉じて圧縮(洩(1)からの全冷媒を室内ユニ
ツ1〜(D)の室内熱交換器(7)のみに循環させ、こ
れをステップS nで所定時間だけ続行して終了し、 
j、ス後は各鍋差演粋回路(17)の偏差信号に応じC
インパーク(18) J5よび3個の電動式膨張t′r
(8)を制御して再びステップS!に戻る。
On the other hand, in the case of YES (T≧T1) in the above step S4, it is determined that a lubricant shortage has occurred in the pressure lubricant (1), and the process proceeds to step S5, where the inverter (18 ) to output the highest frequency and setting signal to maximize (I hikate) 1 rice 1 number (1)
In step S6, turn on the electric expansion valve (8) of one indoor unit 1-(B) and turn it on to the indoor unit (C).
, (D) closes the electric expansion valve (8), and the compressor (1)
Tonden is from! ,: All Φ of refrigerant is heated in three indoor heat exchangers! l
! Inside the container 7. The l'i!i ring is applied only to the Iwanai heat exchanger (7) of (leek) - (+3 >), and this is continued for a predetermined period of 111 in step S7.7 After that, in step 8, the current epidemic is : 1-1-(C) electric expansion valve (8
) as a commandment ■'' indoor song 1~(B), <D>
Close the 1-'3i' (8) and transfer all the refrigerant from the compressor (1) indoors to the indoor heat exchanger 1-2 (C).
Only the oyster (7) is circulated, and this is continued for a predetermined time in step S9. After that, in step SIQ, fully open the electric 8-tension valve (8) of the next indoor unit (I), and then open the electric expansion valves (8) of the other indoor units (B) and (C). Close and compress the refrigerant (all the refrigerant from the leak (1) is circulated only to the indoor heat exchangers (7) of the indoor units 1 to (D), and this continues for a predetermined time in step Sn and ends,
After j and s, C is determined according to the deviation signal of each pot difference extraction circuit (17).
Impark (18) J5 and 3 electric expansion t'r
Control (8) and step S again! Return to

」、って、上記ステップS+ 、Saにおいて圧縮機(
1)の運転状態が所定能力以下でqつTo哨間j″41
世しさしたことを検出づ“ることにより、圧縮機(1)
の潤滑油不足を検出するようにした油不足(侍1力出f
一段(20)を構成している。また、ステ77 S 5
以降の速理動作により、圧縮は(1)を高能勾て運転す
るとともに、運転中の室内1ニツ1−(1’)−・<D
)のうら一部の室内ユニットの電動式膨張弁(8)を全
開に、且つ他の室内ユニットの電動式膨張弁(8)を全
開にa、It陣りることを順次所定時間毎に繰返すよう
にした制泣0手段〈21〉を構成している。
”, in the above steps S+ and Sa, the compressor (
1) If the operating state is below the specified capacity,
Compressor (1)
Oil shortage (Samurai 1 power output f
It constitutes one stage (20). Also, ST 77 S 5
Due to the subsequent speedy operation, compression is performed by high-efficiency gradient operation of (1) and also by
), the electric expansion valves (8) of some indoor units are fully open, and the electric expansion valves (8) of other indoor units are fully open, and this process is repeated at predetermined time intervals. This constitutes a crying control means <21>.

尚、上記第3図の70−チ+7−トにおいては、図示し
ていないが、所定の室内ユニットにス・1づる冷媒の流
通を行う際、この室内ユニットの)■転が室内温度に応
じて停止しCいる場合には、これに対する冷媒の流通を
行わないか、又は対応する電動式膨張フf’(8)を聞
いて室内熱交換器(7)に冷媒を流通させるものの、そ
の室内送出ファン(7a)を停止させてJ5 <かして
、室内の過冷房又(,1過暖房を行わずに快適空調を確
保り゛ることが(1ねれる。また、溜った潤滑油の回収
中は、室外熱交換器(3)の室外送風ファンは風量を減
少するよう回転数制御されて、冷房時には蒸光温麿の低
下によって生じる室内熱交換器(7)での霜(=fきを
防止するとともに、暖房時には凝縮温度の上昇に起因す
る圧縮1歳保護上の運転のty 、ti:を未然に防止
づるようになされている。
Although not shown in chart 70 of FIG. If the refrigerant is not flowing to the indoor heat exchanger (7), either the refrigerant is not distributed to it, or the refrigerant is circulated to the indoor heat exchanger (7) by listening to the corresponding electric expansion valve f' (8), but the indoor heat exchanger (7) is By stopping the delivery fan (7a), it is possible to ensure comfortable air conditioning without overcooling or overheating the room. During recovery, the rotation speed of the outdoor fan of the outdoor heat exchanger (3) is controlled to reduce the air volume, and during cooling, frost (= f In addition, during heating, it is possible to prevent the operation ty, ti: due to the increase in condensing temperature during compression protection.

したがって、ト記実施1列においては、圧縮)幾(1)
の運転が所定能力以下で且つCれがTL〕時間jス上t
tt jecJることにより、圧縮I幾(1)の潤滑i
llのうlう冷媒中に混入し!ζ6のが圧縮機(1)か
ら冷A1とJ(に吐出され、冷媒循環系統の各室内コー
ット<13)〜(D)内に順次溜り込み、その結果、圧
縮は(1)の潤滑油不足が生じたにうな場合(ごあっr
b、圧縮別(1)が最高能力ひ運転されるととしに、当
初室内:Lニット(B)の電動式膨張弁(8)の開度が
圧縮舎大の負荷に応した小開度から全開にイ1す、目つ
11!!の室内コニツ1〜(C)。
Therefore, in the first column of implementation, the compression) is (1)
If the operation is below the specified capacity and the failure is TL for a period of time
By tt jecJ, the lubrication of the compression I (1)
It gets mixed into the refrigerant! ζ6 is discharged from the compressor (1) to cold A1 and J (and accumulates in each indoor court <13) to (D) of the refrigerant circulation system, and as a result, the compression is caused by the lack of lubricating oil in (1). If this occurs (thank you)
b. Assuming that the compression unit (1) is operated at maximum capacity, the opening of the electric expansion valve (8) of the indoor L unit (B) will initially change from a small opening corresponding to the load of the compression building. I'm fully open, my eyes are 11! ! Indoor Konits 1~(C).

(D)の電動式膨張弁(8)が全開どなるので、仝“内
−jニラ1−(B)・〜(D)側の冷媒通路面積がト記
溜った潤滑油を回収力るのに適切な面積にな)て、L記
圧酪(幾(i)の最大能力での運転に基づJ”Y i?
iθ■の?:′FI低几力間に人力量i差11が発生す
ると同11鴇こ冷媒循1M甲、10媒流速が増加し゛(
y内ユニット(13)に潤った潤滑油が確実に回収され
る。
Since the electric expansion valve (8) in (D) is fully opened, the area of the refrigerant passage on the inside (B) and (D) sides is large enough to collect the accumulated lubricating oil. Based on the operation at maximum capacity of the L compressor (number (i)), J"Y i?
iθ■? :'When a difference in the amount of human power i11 occurs between FI low power and refrigerant circulation 1MA and 10F, the flow rate of refrigerant increases.
The lubricating oil moistened in the unit (13) inside y is reliably collected.

イしく゛、[/毀は上記の如き作動が室内ユニット(C
>、(D)についてb同様に行われて、該室内1ニツl
 (C) 、  (r−1)に溜った潤滑油が確実に回
収されることになる。にって、油溜りしこ起因する圧縮
451 (’I )の潤滑油不足を確実に解消す゛るこ
とができる。
It's nice, [/break is, the indoor unit (C
>, (D) is carried out in the same manner as b, and 1 day l in the room
The lubricating oil accumulated in (C) and (r-1) will be reliably recovered. Therefore, the lack of lubricating oil in the compression 451 ('I) caused by the oil stagnation can be reliably resolved.

尚、上記実施例では絞り度:A整jtを電動式膨張弁で
構成した場合について説明したが、その他、第4図(イ
)に示すように各室内ユニットの絞り別格を開度固定の
キVビフリヂJ−ブ< 25 ) −C構成するととも
に該キせビシリチ1−ブく25)への冷媒の流通を開閉
すr (26)で制御するしの、若しくは同図(ロ)に
示t J:うにこれらを二相用いて並列に接続し、絞り
開度を2段階に調整するようにしたもの、又は同図(ハ
)に示すJ、うにこれらに開度固定の膨張弁(27)を
並列に接続したしのでは、開閉弁(26)で絞り電調整
弁をH’+成ずhばよい。
In the above embodiment, the case where the aperture degree: A adjustment jt was constructed with an electric expansion valve was explained, but in addition, as shown in FIG. (26) or t shown in the same figure (b). J: Sea urchin These are connected in parallel using two phases and the throttle opening is adjusted in two stages, or J as shown in the same figure (c), Sea urchin These are expansion valves with fixed opening (27) If these are connected in parallel, it is sufficient to use the on-off valve (26) to set the throttle control valve to H'+.

また、上記実施例では、圧縮(幾(1)の潤滑油不足時
に冷媒の全損を所定の一台の室内ユニットに順次流通さ
せるJ、うにしたが、複数台(一部)の室内ユニットに
順次流通させるようにしてしよく、また全室内−7ニツ
トに対して冷媒を流通さぼながら冷媒分配量を異ならl
:!’C、fiBの室内]ニラ1へ(こス・1(〕℃冷
媒を多く流通さけるようにしてもJ、<、要は複数台の
至内二1ニットのうら、一部のコニツ1−の冷媒通路面
積を増加し、池のユニットの冷媒流通路面積を減少さけ
る制御を、対豪ユニットを順次所定時間10に変更し、
これを繰り返えづようにすればよい。
In addition, in the above embodiment, the total loss of the refrigerant in the event of a lubricant shortage in compression (1) was made to flow sequentially to one predetermined indoor unit. It may be possible to distribute the refrigerant sequentially, or it may be possible to distribute the refrigerant to different amounts while not distributing the refrigerant to all rooms.
:! 'C, fiB indoors] to chive 1 (this 1 (] °C) Even if you try to avoid circulating a lot of refrigerant, J, The control of increasing the refrigerant passage area of the pond unit and decreasing the refrigerant flow passage area of the pond unit is changed to 10 for a predetermined time one after another for the Australian unit,
Just make sure you repeat this.

4さらに、−F記実施例では、油不足検出手段(20ン
を1f縮1幾(1)の低能力の運転状態の1!杭の検出
により構成したが、潤滑油の油面検知などにJ、り構成
してもよいのは勿論のこと、Et縮機の潤滑油不定a、
Yには圧縮機を最高能力に限らず高能力(例λば80−
・90%能力)で運転1ノればよい。
4.Furthermore, in the embodiment described in -F, the oil shortage detection means (20 tons was constructed by detecting a 1! pile in a low capacity operating state of 1 f 1 m), but it is not suitable for detecting the oil level of lubricating oil, etc. Of course, the lubricating oil for the Et compressor is undefined a,
For Y, the compressor is not limited to the highest capacity, but also has a high capacity (e.g. λ, 80-
・You only need to drive 1 knot at 90% capacity).

(発明の効果) 1メ」−説明したように、本発明に係るいわゆるマル1
一方代の空気調和装置によれば、油溜りに起因71ろ月
1ii !幾の潤滑油不定u1には、各゛うり内ユニッ
トの校り度調整弁(二」、り各室内1−ヅt〜における
冷媒通路面積を順次調整して、高能力C運転される圧縮
!大からの冷媒を順次一部の室内ユニットに対して多く
流通させるようにしたのて・、各51′内]ニツトに溜
り込/υだ潤滑油を圧縮機に確実に回収して、油溜りに
起因18B−縮(幾の潤滑油不足を確実に解消すること
ができ、J二って斥軒占(幾のイ占嗟f竹の向上に有効
に寄与り−るbのである。
(Effects of the invention) As explained above, the so-called "Mal 1" according to the present invention
According to the air conditioner on the other hand, it was caused by oil puddles for 71 months! The amount of lubricating oil U1 is undefined, and the calibration degree adjustment valve (2) of each unit in each room is used to sequentially adjust the refrigerant passage area in each room 1-ㅅt~ to perform high-capacity compression operation. By gradually distributing more refrigerant from the large unit to some indoor units, the lubricating oil accumulated in each unit 51' is collected in the compressor, and the oil sump is removed. It is possible to reliably eliminate the lack of lubricating oil caused by 18B-shrinking, and it can effectively contribute to improving the quality of the oil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図ないし
第4図は本発明の実施例を示し、第2図は冷媒配管系統
図、第3図は制御回路の作り」を示すフローチャート図
、第4図(()〜くハ)はそれぞれ絞り度調整弁の変形
例を示す図である。 (Δ)・・・学外ユニット、(B)、(C)、<D)・
・・室内ユニット、(1)・・・圧縮機、(3)・・・
室外熱交換器、(7)・・・室内熱交換器、(8)・・
・電+h式膨張弁(較り度調整弁)、(20)・・・油
不足時検出手段、(21)・・・制御手段。 特r[出願人   ダイ1ン「業株戊会社、:。 代  理  人     弁理 1−  前  in 
    弘  °・J励2.・
Fig. 1 is a block diagram showing the configuration of the present invention, Figs. 2 to 4 show embodiments of the invention, Fig. 2 is a refrigerant piping system diagram, and Fig. 3 is a flow chart showing the construction of the control circuit. 4(a) to 4(a) to 4(c) are diagrams each showing a modification of the aperture adjustment valve. (Δ)...Off-campus unit, (B), (C), <D)
...Indoor unit, (1)...Compressor, (3)...
Outdoor heat exchanger, (7)... Indoor heat exchanger, (8)...
- Electric + H type expansion valve (level adjustment valve), (20)...oil shortage detection means, (21)...control means. Patent R
Hiro °・J 2.・

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機(1)および室外熱交換器(3)を内蔵す
る1台の室外ユニット(A)に対して、それぞれ室内熱
交換器(7)および冷媒通路面積の絞り度を調整する絞
り度調整弁(8)を内蔵する複数台の室内ユニット(B
)、(C)、(D)を並列に接続した空気調和装置にお
いて、上記室外ユニット(A)の圧縮機(1)の潤滑油
不足を検出する油不足時検出手段(20)と、該油不足
時検出手段(20)の出力を受け、上記圧縮機(1)を
高能力で運転するとともに、運転中の室内ユニット(B
)〜(D)のうち一部の室内ユニットの絞り度調整弁(
8)を開方向に、且つ他の室内ユニットの絞り度調整弁
(8)を閉方向に制御することを順次所定時間毎に繰返
す制御手段(21)とを備えたことを特徴とする空気調
和装置。
(1) A throttle that adjusts the degree of restriction of the indoor heat exchanger (7) and refrigerant passage area, respectively, for one outdoor unit (A) containing a built-in compressor (1) and an outdoor heat exchanger (3). Multiple indoor units (B) with built-in temperature adjustment valves (8)
), (C), and (D) connected in parallel, an oil shortage detection means (20) for detecting a lack of lubricating oil in the compressor (1) of the outdoor unit (A); In response to the output of the shortage detection means (20), the compressor (1) is operated at high capacity, and the indoor unit (B) which is in operation is
) to (D), some indoor unit aperture adjustment valves (
8) An air conditioner characterized by comprising a control means (21) that sequentially repeats controlling the throttle control valve (8) of another indoor unit in the opening direction and in the closing direction at predetermined time intervals. Device.
JP59205170A 1984-09-29 1984-09-29 Air conditioner Granted JPS6183833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59205170A JPS6183833A (en) 1984-09-29 1984-09-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205170A JPS6183833A (en) 1984-09-29 1984-09-29 Air conditioner

Publications (2)

Publication Number Publication Date
JPS6183833A true JPS6183833A (en) 1986-04-28
JPH0429945B2 JPH0429945B2 (en) 1992-05-20

Family

ID=16502577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205170A Granted JPS6183833A (en) 1984-09-29 1984-09-29 Air conditioner

Country Status (1)

Country Link
JP (1) JPS6183833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932215A (en) * 1988-06-30 1990-06-12 Kabushiki Kaisha Toshiba Control apparatus for multi-air-conditioner system
WO2010098074A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
JP2021081148A (en) * 2019-11-21 2021-05-27 株式会社富士通ゼネラル Air conditioning device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932215A (en) * 1988-06-30 1990-06-12 Kabushiki Kaisha Toshiba Control apparatus for multi-air-conditioner system
WO2010098074A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
JP2010196952A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
CN102326035A (en) * 2009-02-24 2012-01-18 大金工业株式会社 Heat pump
US8991199B2 (en) 2009-02-24 2015-03-31 Daikin Industries, Ltd. Heat pump system
EP2402683A4 (en) * 2009-02-24 2015-04-08 Daikin Ind Ltd Heat pump system
JP2021081148A (en) * 2019-11-21 2021-05-27 株式会社富士通ゼネラル Air conditioning device

Also Published As

Publication number Publication date
JPH0429945B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
Jang et al. Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency
JP4762797B2 (en) Multi-type air conditioning system
CN101592414B (en) Air conditioner
CN101490483B (en) Ventilating and air conditioning apparatus
CN104024764B (en) Refrigeration apparatus
US20060288716A1 (en) Method for refrigerant pressure control in refrigeration systems
EP0760452A2 (en) High latent refrigerant control circuit for air conditioning system
CN101349456B (en) Air conditioner
US11320185B2 (en) Defrosting control method for multi-split system
CN104949210B (en) The control method of air-conditioning system, air conditioner and air-conditioning system
US20140026608A1 (en) Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
CN101886852A (en) Air-conditioning system using sub-cooler and method for controlling refrigerant flow thereof
JP5164527B2 (en) Air conditioner
JP2016142433A (en) Air conditioner
CN107477682A (en) Air-conditioning system, indoor set and its control method
CN101344335A (en) Refrigeration circulation device
JP3388931B2 (en) Ice storage air conditioning system
JP2557577B2 (en) Air conditioner
JP2009103453A (en) Air conditioning facility
EP0760453A2 (en) Air conditioning system with subcooler coil and series expander devices
JPS6183833A (en) Air conditioner
JPH0544675Y2 (en)
US20060117778A1 (en) Cooling/heating system and method for controlling the same
CN205332357U (en) Machine in two temperature air conditioning
JP2015017722A (en) Heat exchanger and heating and cooling air conditioning system using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term