JPS6183313A - Porous conjugated yarn - Google Patents

Porous conjugated yarn

Info

Publication number
JPS6183313A
JPS6183313A JP20537584A JP20537584A JPS6183313A JP S6183313 A JPS6183313 A JP S6183313A JP 20537584 A JP20537584 A JP 20537584A JP 20537584 A JP20537584 A JP 20537584A JP S6183313 A JPS6183313 A JP S6183313A
Authority
JP
Japan
Prior art keywords
water
cross
swellable polymer
fiber
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20537584A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Unno
光宏 海野
Osami Shinonome
東雲 修身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP20537584A priority Critical patent/JPS6183313A/en
Publication of JPS6183313A publication Critical patent/JPS6183313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:The titled yarn having a crosssectional shape changing reversibly and rapidly when it absorbs moisture or water and it is dried, obtained by bonding a water-swelling polymer part to a dent part at approximately the center of the outside of folded part or bent part of hydrophobic polymer part. CONSTITUTION:The crosssectional shape of the hydrophobic polymer part 1 is a shape obtained by folding or bending a slit flat shape n times (n is >=1) and has n protrusion parts. At least one protrusion pat has a dent at approximately the center of the outside of folded part or bent part, the water-swelling polymer part 2 is bonded to the dent part, the hydrophobic polymer part has the fine pore 3, and at least part of the fine pore is communicated with the water-swelling polymer part.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、吸湿、吸水時と乾燥時の状態において、繊維
の横断面形状が可逆的に、かつ速やかに変化する多孔質
複合繊維に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a porous conjugate fiber whose cross-sectional shape reversibly and rapidly changes during moisture absorption and during water absorption and drying conditions. It is.

〈従来の技術〉 近年、衣料用素材、特にスポーツ分野における衣料用素
材にあっては、快適性を有する素材が強く要望されてお
り、各繊維メーカーより透湿、防水性、保温性、吸汗1
発散性等の機能を有づ−ろ各種機能性素材が市販され、
なお開発が続けられている。しかしながら、これら機能
性素材といわれているものは、そのほとんどが機能性を
有していない布帛に樹脂をコーティングしたり、あるい
はフィルムをラミネーl−するなどして機能性をもたせ
るものであり、したがって工程の複Nl化を伴ったり、
繊維製品の風合いが1員なわれる等の問題がある。
<Conventional technology> In recent years, there has been a strong demand for comfortable materials for clothing materials, especially for clothing materials in the sports field, and various textile manufacturers have developed materials with moisture permeability, waterproofness, heat retention, and sweat absorption.
Various functional materials with functions such as wicking properties are commercially available.
Development is continuing. However, most of these so-called functional materials are fabrics that do not have functionality and are made functional by coating them with resin or laminating them with films. It involves multiple Nl processes,
There are problems such as the texture of textile products becoming dull.

また、一方原糸段階でポリマーを改良したり。On the other hand, we also improve the polymer at the yarn stage.

繊維を異形断面や中空多孔質等とすることにより吸質、
吸水性等の機能を((与したものもあるが。
By making the fibers have irregular cross-sections or hollow porous properties, they can absorb
There are some products that have functions such as water absorption.

これらは織編物にした場合に、織編物の物性と性能(乾
燥速度、保温性等)のバランスが劣るという欠点がある
When these are made into woven or knitted fabrics, they have the disadvantage that the balance between physical properties and performance (drying speed, heat retention, etc.) of the woven or knitted fabrics is poor.

〈発明が解決しようとする問題点〉 本発明者等は、かかる現状に鑑み、織場物の拘束された
状態においても原糸の機能性を反映し得る原糸を開発す
るため鋭意検討した結果5本発明に到達したものである
<Problems to be Solved by the Invention> In view of the current situation, the present inventors have conducted intensive studies to develop a yarn that can reflect the functionality of the yarn even in the constrained state of the fabric. 5 The present invention has been achieved.

すなわち2本発明においては、原糸段トドvで潜在的多
機能性を付与することにより、これを織編物にした場合
、また高次加工により他繊維との併用により多層構造と
した場合においても、多機能性を発揮でき、また従来の
後加工による累月の機能性をさらに向」−させるようδ
こすることを技術的課題とするものである。
In other words, in the present invention, by imparting latent multifunctionality to the raw yarn, even when it is made into a woven or knitted fabric, or when it is used in combination with other fibers through high-order processing to form a multilayer structure. , which can demonstrate multifunctionality and further improve the functionality of conventional post-processing.
This is a technical problem that involves rubbing.

〈問題点を解決するための手段〉 本発明は」二記目的を達成するもので、疎水性重合体と
水膨潤性重合体とからなる複合繊維であって、複合繊維
の横断面は疎水性重合体部分の断面形状がスリット状扁
平形を0回(nは1以上の整数)折り曲げた形状もしく
は屈曲させた形状で。
<Means for Solving the Problems> The present invention achieves the second object, and is a composite fiber made of a hydrophobic polymer and a water-swellable polymer, the cross section of the composite fiber being hydrophobic. The cross-sectional shape of the polymer portion is a slit-like flat shape bent 0 times (n is an integer of 1 or more) or a bent shape.

n個の凸部を有し、かつ少なくとも1個の凸部が折り曲
げ部もしくは屈曲部の外側のほぼ中央部にくほめ部を有
し、くほみ部に水膨潤性重合体部分が接合されてなり、
かつ疎水性重合体部分が微細孔を有し、微細孔の少なく
と4)一部が水膨潤性重合体部分と連通しいることを特
徴とする多孔質複合繊維を要旨とするものである。
n convex portions, and at least one convex portion has a bent portion or a concave portion at approximately the center of the outside of the bent portion, and a water-swellable polymer portion is bonded to the concave portion. Then,
The porous composite fiber is characterized in that the hydrophobic polymer portion has micropores, and at least 4) a portion of the micropores communicate with the water-swellable polymer portion.

以下1 さらに本発明の詳細な説明する。1. The present invention will be further explained in detail below.

本発明の多孔質複合繊維ば、まず疎水性重合体と水膨潤
性重合体とからなる複合繊糸11である。
The porous composite fiber of the present invention is first a composite yarn 11 made of a hydrophobic polymer and a water-swellable polymer.

本発明における疎水性重合体とは)11常よく知られて
いるポリエチレンテレフタレート、ポリブチレンテレフ
タレート等のポリアルキレンチレフクレート及びこれら
を主成分とするポリエステル。
The hydrophobic polymer in the present invention is) 11. Well-known polyalkylene terephthalates such as polyethylene terephthalate and polybutylene terephthalate, and polyesters containing these as main components.

ナイロン6、ナイロン12.ナイロン66、ナイロン6
10等及びこれらを主成分とするポリアミ1′、ポリエ
チレン、ポリプロピレン等及びこれらを主成分とするポ
リオレフィン等の比較的吸水性の低い重合体であり、こ
れら疎水性重合体は1種又は2種以上混合して用いるこ
とができる。また、これら疎水性重合体に艶消剤、耐熱
剤、耐候剤、顔料等の添加剤を適宜混入することも可能
である。
Nylon 6, nylon 12. nylon 66, nylon 6
10, polyamide 1', polyethylene, polypropylene, etc., and polyolefins containing these as main components, which have relatively low water absorption, and one or more of these hydrophobic polymers. They can be used in combination. It is also possible to appropriately mix additives such as matting agents, heat-resistant agents, weather-resistant agents, and pigments into these hydrophobic polymers.

前記疎水性重合体と接合して用いられろ水膨潤性重合体
は、水に対して実質的に溶解しないものがよく1例えば
ポリエチレンオキザイドとポリエチレンテレフタレート
との共重合体、オレフィン変性ポリビニルアルコール、
特殊処理されたポリビニルアルコール等、又はポリビニ
ルピロリドン等のポリビニルラクタム類やポリビニルピ
ロリドンの架橋構造体及びこれら重合体とポリエステル
類あるいはポリアミド類との混合物等が好適に用いられ
る。
The water-swelling polymer used in conjunction with the hydrophobic polymer is preferably one that is substantially insoluble in water. For example, a copolymer of polyethylene oxide and polyethylene terephthalate, an olefin-modified polyvinyl alcohol,
Specially treated polyvinyl alcohol, crosslinked structures of polyvinyl lactams and polyvinyl pyrrolidone such as polyvinyl pyrrolidone, and mixtures of these polymers with polyesters or polyamides are preferably used.

そして2本発明の多孔質複合繊維は前記疎水性重合体部
分の断面形状がスリット状扁平形を0回(nは1以上の
整数)折り曲げた形状もしくは屈曲させた形状で、n個
の凸部を有し、かつ少なくとも1個の凸部が折り曲げ部
もしくは屈曲部の外側のほぼ中央部にくぼみ部を有し、
くぼみ部に水膨潤性重合体部分が接合されているもので
ある。
2. In the porous composite fiber of the present invention, the cross-sectional shape of the hydrophobic polymer portion is a shape in which a slit-like flat shape is bent or bent 0 times (n is an integer of 1 or more), and has n convex portions. , and at least one convex portion has a recessed portion approximately at the center of the outside of the bent portion or the bent portion,
A water-swellable polymer portion is bonded to the recessed portion.

本発明の多孔質複合繊維は、かかる]1も成からなるも
のであるから、水膨潤性重合体の吸湿、吸水による体積
変化、つまり繊維横断面におけろ水膨潤性重合体部分の
面積変化を利用することにより。
Since the porous composite fiber of the present invention also consists of [1], the water-swellable polymer absorbs moisture and its volume changes due to water absorption, that is, the area change of the water-swellable polymer portion in the cross section of the fiber. By using.

繊維横断面の形状が吸湿、吸水時と乾燥時とで可逆的に
変化し、潜在的多機能性を有するものである。
The fiber cross-sectional shape changes reversibly between moisture absorption and water absorption and drying, and has potential multifunctionality.

第1図は、かかる本発明の多孔質複合繊維の横断面の具
体例を示し、第1図(a、)は疎水性重合体部分(1)
の断面形状がV字型で、その凸部のくぼみ部に水膨潤性
重合体部分(2)が接合された場合、同(b+)は疎水
性重合体部分(1)の断面形状がU字形で。
FIG. 1 shows a specific example of the cross section of the porous composite fiber of the present invention, and FIG. 1(a) shows the hydrophobic polymer portion (1).
When the cross-sectional shape of (b+) is V-shaped and the water-swellable polymer portion (2) is joined to the concave part of the convex portion, the cross-sectional shape of the hydrophobic polymer portion (1) of the same (b+) is U-shaped. in.

その凸部のくぼみ部に水膨潤性重合体部分(2)が接合
された場合、同(C4)は疎水性重合体部分(1)がW
字型で、2個の凸部を有し、各凸部の(ぼみ部に水膨潤
性重合体部分(2)が接合さた場合、同(d、)は疎水
性重合体部分(1)がW字型で、2個の凸部のうちの一
方の凸部のくぼみ部に水膨潤性重合体部分(2)が接合
された場合をそれぞれ示している。そしてこれら第1図
(a+)、 (b+)、 (c、)及び(dl)は水膨
潤性重合体部分(2)が乾燥状態で膨潤していない場合
の横断面であり、同(ax)、 (、bz)、 (C2
)及び(d2)はそれらの水膨潤性重合体部分(2)が
吸湿、吸水して膨潤した場合をそれぞれ示している。(
第1図において、 (a、)以外は微細孔を省略した。
When the water-swellable polymer portion (2) is joined to the concave portion of the convex portion, the hydrophobic polymer portion (1) (C4) is
When the water-swellable polymer portion (2) is bonded to the concave portion of each convex portion, the hydrophobic polymer portion (1) is ) is W-shaped, and the water-swellable polymer portion (2) is bonded to the concave portion of one of the two convex portions. ), (b+), (c, ) and (dl) are cross sections when the water-swellable polymer portion (2) is dry and unswollen; C2
) and (d2) respectively show cases where the water-swellable polymer portion (2) absorbs moisture and swells by absorbing water. (
In FIG. 1, micropores are omitted except for (a,).

)本発明の多孔質複合繊維は、第1図から明らかなごと
く、水膨潤性重合体部分(2)を始点として。
) As is clear from FIG. 1, the porous composite fiber of the present invention starts from the water-swellable polymer portion (2).

疎水性重合体部分(1,1が2方向にある角度をなして
接合された部分が♀1&維横1ui面中に少なくとも1
(置所存在することが重要であり、第1図に図示したV
字型、U字型、W字型の他、S字型、7字型のような横
断面形状が好ましい。しかし、第2図のごとく水膨潤性
重合体部分(2)を始点として疎水性重合体部分(1)
が2方向にある角度をなして接合さた部分を有していて
も、2つの疎水性重合体部分(11が180°未溝の角
度をなしている側で、かつ水膨潤性重合体部分(2)の
周囲上で連結されていない場合は、水膨潤性重合体部分
(2)が膨潤しても繊維構ITh面全体としては拡がる
方向に変化し2本発明の目的とする閉じる方向に変化す
る繊維とはならない。
The hydrophobic polymer part (the part where 1 and 1 are joined at a certain angle in two directions is at least 1 in the ♀1 & fiber 1ui plane)
(It is important that the V
In addition to a U-shape, a W-shape, a cross-sectional shape such as an S-shape or a 7-shape is preferable. However, as shown in Figure 2, starting from the water-swellable polymer part (2), the hydrophobic polymer part (1)
11 has a part joined at an angle in two directions, the two hydrophobic polymer parts (11 are on the side forming a 180° non-grooved angle, and the water-swellable polymer part (2), even if the water-swellable polymer portion (2) swells, the fiber structure ITh surface as a whole changes in the direction of expansion, and 2. It does not become a changing fiber.

また、第3図のごとく凸部外側にくぼみ部を設けずに水
膨潤性重合体部分(2)が接合された場合は該重合体部
分(2)が膨潤するときの膨潤力が繊維)lへ断面の閉
じる方向に有効に作用せず、他方向に膨潤力が分散され
るので、好ましくない。
In addition, when the water-swellable polymer portion (2) is joined without providing a recess on the outside of the convex portion as shown in Fig. 3, the swelling force when the polymer portion (2) swells is the fiber). This is not preferable because it does not act effectively in the direction in which the cross section closes and the swelling force is dispersed in other directions.

かくして1本発明においては第1図のごとく水膨潤性重
合体部分(2)は繊維1Ifi断面の凸部外側のくぼみ
部に接合され、かつ凸部内側にまで突き出ていないこと
が必要である。これは、第4図に示したように、凸部内
側の中央部へから水膨潤性重合体部分(2)の八に最も
近い点Bまでの部分が、てこの原理における支点の役割
を果たすからである。
Thus, in the present invention, as shown in FIG. 1, it is necessary that the water-swellable polymer portion (2) is joined to the recessed portion on the outside of the convex portion of the cross section of the fiber 1Ifi, and that it does not protrude to the inside of the convex portion. As shown in Figure 4, the part from the center of the inside of the convex part to the point B closest to 8 of the water-swellable polymer part (2) serves as a fulcrum in the lever principle. It is from.

したがって、第2図に示した横断面形状を有するものは
、支点にあたる部分が存在しないため拡がる方向に変化
することになり、好ましくないのである。
Therefore, the one having the cross-sectional shape shown in FIG. 2 is not preferable because it does not have a portion that corresponds to a fulcrum, so it changes in the direction of expansion.

ここで、繊維横断面の凸部外側の中央部をCとし、前記
の八からBまでの距離をtI+  BからCまでの距離
をC2とすると。
Here, let C be the central part of the fiber cross section outside the convex part, the distance from 8 to B be tI+, and the distance from B to C be C2.

0.05≦t+/ (t+ + tz) ≦0.65の
関係式が成り立つことが好ましく、さらに好ましくはこ
の式の値が0.10から0.35までの範囲である。こ
の式の値が0.05未満の場合には、繊維横断面の変化
は容易に起こり得るが、 1+の値が小さい ゛ため、
この変化時におけるA、  8間の支点付近の変形度合
が大きく、A、8間の耐久性に欠は好ましくない。また
、この式の値が0.65を超えた場合は、A、8間の距
離1.の値が大きくなり、支点部が柔軟性に欠け、繊維
横断面の変化が起こり難くなるので好ましくない。
It is preferable that the relational expression 0.05≦t+/(t++tz)≦0.65 holds true, and more preferably, the value of this expression is in the range of 0.10 to 0.35. If the value of this formula is less than 0.05, the fiber cross section may easily change, but the value of 1+ is small, so
During this change, the degree of deformation near the fulcrum between A and 8 is large, and the durability between A and 8 is undesirable. Also, if the value of this formula exceeds 0.65, the distance between A and 8 is 1. This is not preferable because the value of is large, the fulcrum part lacks flexibility, and the fiber cross section becomes difficult to change.

本発明の多孔質複合繊維の横断面におけろ水膨潤性重合
体部分(2)の断面形状は、特に限定されないが、第5
図felのごとく円形状に近いもの、(f)のごとく三
角形状に近いものが好ましい。また、水膨潤性重合体部
分(2)がくぼみ部に接合されていれば、該重合体部分
(2)の一部が繊維横断面の凸部外側に隆起状に存在し
ても差支えない(第3図においては凸部外側にくぼみ部
を有していないため木発明品とはなり得ないが、くぼみ
部を有していれば本発明に包含される。)。
Although the cross-sectional shape of the water-swellable polymer portion (2) in the cross section of the porous composite fiber of the present invention is not particularly limited,
It is preferable to have a shape close to a circle as shown in FIG. 1, or a shape close to a triangle as shown in FIG. Further, as long as the water-swellable polymer portion (2) is bonded to the recessed portion, there is no problem even if a portion of the polymer portion (2) exists in a raised shape outside the convex portion of the cross section of the fiber ( In Fig. 3, there is no recess on the outside of the convex portion, so it cannot be considered a wooden invention, but if it has a recess, it is included in the present invention.)

また5本発明の多孔質複合繊維においては、第5図(G
l、 (f)に示したように、疎水性重合体部分(1)
の両末端部をD及びEとし、繊維横断面の外周において
疎水性重合体部分(J)と水膨潤性重合体部分(2)と
の接合部をF及びGとした場合、水M・υ潤性重合体部
分(2)の僅かな膨潤度で繊維横断面形状が大きく変化
するように設計することも重要な点の一つである。
In addition, in the porous composite fiber of the present invention, Fig. 5 (G
l, as shown in (f), the hydrophobic polymer portion (1)
When both ends of the fiber cross section are D and E, and the joints between the hydrophobic polymer part (J) and the water-swellable polymer part (2) are F and G on the outer periphery of the fiber cross section, water M・υ Another important point is to design the cross-sectional shape of the fibers so that a small degree of swelling of the wettable polymer portion (2) can greatly change the cross-sectional shape of the fibers.

なお、水膨潤度とは5次の式で表されるものである。Note that the degree of water swelling is expressed by the following formula.

水膨潤度−(S’ −5)/Sx 100 (%)ただ
し、S:膨潤していない状態での繊維横断面の水膨潤性
重合体部分が占める面積 S”:膨潤した状態での繊維横断面の水膨潤性重合体部
分が占める面積 本発明者等は、前記の水膨潤性重合体部分(2)の僅か
な膨潤度を有効に利用するため種々検討を行い、第5図
においてADとAEのなす角度(ZIIAIE)及−1
〇− びBFとBGのなず角度(lFBG)が重要な因子であ
ることを知見した。ずなわち、1DAEは15°〜15
0゜が好ましく、特ムこ20’ 〜120°が好ましい
。また。
Degree of water swelling - (S' -5)/Sx 100 (%) However, S: Area occupied by the water-swellable polymer portion of the cross section of the fiber in the unswollen state S'': Cross section of the fiber in the swollen state The area occupied by the water-swellable polymer portion of the surface The present inventors conducted various studies in order to effectively utilize the slight degree of swelling of the water-swellable polymer portion (2), and in FIG. Angle made by AE (ZIIAIE) and -1
It was found that the angle between BF and BG (lFBG) is an important factor. That is, 1 DAE is 15° to 15
The angle is preferably 0°, and particularly preferably 20' to 120°. Also.

一方1FBGは15°〜140°が好ましく、特に20
゜〜120°が好ましい。
On the other hand, 1FBG is preferably 15° to 140°, especially 20°
Preferably, the angle is between 120° and 120°.

z DAE及び、: I’llGの範囲のいずれか一方
又は両方が]5°未溝の場合には、水膨潤性重合体部分
(2)の膨潤前と膨潤後におけるDからEまでの距離の
変化が小さく (変化率がたとえ大きな値であっても変
化自体は小さい)、不十分であるか又は非常に大きな膨
潤度を有する水膨潤性重合体が必要となり、実用的な面
から好ましくない。また、/rlAE及びlFBGがそ
れぞれ」二限を超えた場合にも非常に大きな膨潤度を有
する水膨潤性重合体が必要となり好ましくない。
If one or both of the ranges of z DAE and: The change is small (even if the rate of change is a large value, the change itself is small), and a water-swellable polymer having an insufficient or extremely high degree of swelling is required, which is undesirable from a practical standpoint. Furthermore, if /rlAE and lFBG each exceed the 2 limit, a water-swellable polymer having a very large degree of swelling is required, which is not preferable.

さらに1本発明の多孔質複合繊維は、疎水性重合体部分
が微細孔を有し、微細孔の少なくとも一部が水膨潤性重
合体部分と連通しているものである。
Furthermore, in the porous composite fiber of the present invention, the hydrophobic polymer portion has micropores, and at least a portion of the micropores communicate with the water-swellable polymer portion.

このように5本発明の多孔質複合繊維は、第1図(al
)に示すごとくその疎水性重合体部分(1)に?ri!
!細孔(3)を形成せしめることによって水膨潤性重合
体の吸水速度を速め1繊維全体の吸水速度及び吸水量を
増加させるとともに、水膨潤1−1重合体部分(2)に
連jmシた微15円孔(3)が水膨潤性重合体の過剰の
水分を繊維外部へ放出するためのmim孔としての役割
を果たし、水膨潤性重合体の乾燥速度、し7たがって繊
維全体の乾燥速度を速めるものである。
In this way, the porous composite fiber of the present invention is shown in Figure 1 (al.
) As shown in the hydrophobic polymer portion (1)? ri!
! By forming pores (3), the water absorption rate of the water-swellable polymer is increased, increasing the water absorption rate and water absorption amount of the entire fiber, and the water-swellable polymer portion (2) is connected to the water-swellable 1-1 polymer portion (2). The micro 15 circular holes (3) serve as mim holes to release excess moisture in the water-swellable polymer to the outside of the fiber, thereby increasing the drying rate of the water-swellable polymer and, therefore, the drying of the entire fiber. It increases the speed.

本発明の多孔質複合繊維を製造ずろには、溶媒に可溶な
物質を含む疎水性重合体と水膨潤性重合体とを後述する
紡糸孔を有する紡糸[]金を用いて複合紡糸し、得られ
た未延伸糸を常法により延伸して、延伸糸とする。次い
で、この延伸糸(又し1その布帛)を溶媒抽出処理して
疎水f!1:重合律重合金まれる少なくとも一部の可溶
性物質を溶出して微細孔を形成せしめろことによって3
本発明の多孔質複合繊維を得ることができる。この場合
、溶媒に可溶な物質上しては、塩化リチウノ、2塩化カ
ルシウム等のハロゲン化アルカリ金属塩、ハロゲン化ア
ルカリ土類金属塩、アルカリ金属又ε4アルカリ土類金
属のアルキル硫酸塩及びポリエチレングリコール、ポリ
エチレングリコールモノメチルエーテル、ポリエチレン
グリコールジメチルエーテル等の有機高分子化合物等、
いかなるものでも使用できるが、疎水性重合体と均一に
混合し易く。
To produce the porous composite fiber of the present invention, a hydrophobic polymer containing a substance soluble in a solvent and a water-swellable polymer are composite-spun using a spinning material having spinning holes described below. The obtained undrawn yarn is stretched by a conventional method to obtain a drawn yarn. Next, this drawn yarn (or the fabric) is subjected to a solvent extraction treatment to obtain a hydrophobic f! 1: By eluting at least part of the soluble substances contained in the polymerization-controlled polymer alloy and forming micropores, 3
The porous composite fiber of the present invention can be obtained. In this case, the substances soluble in the solvent include halogenated alkali metal salts such as lithium chloride and calcium dichloride, halogenated alkaline earth metal salts, alkyl sulfates of alkali metals or ε4 alkaline earth metals, and polyethylene Organic polymer compounds such as glycol, polyethylene glycol monomethyl ether, polyethylene glycol dimethyl ether, etc.
Any material can be used, but it is easy to mix uniformly with hydrophobic polymers.

疎水性重合体及び水膨潤性重合体と化学的結合性をもた
ないものが好ましい。
Preferably, the material does not have chemical bonding properties with hydrophobic polymers and water-swellable polymers.

また、前記物質の溶媒としては、疎水性重合体及び水膨
潤性重合体が不溶であればいかなるものでもよいが、疎
水性重合体がポリエステルで、溶媒に可溶な物質として
水溶性のものを選択すれば溶媒として水を使用でき、後
加工のアルカリ減量工程において同時に微細孔を形成せ
しめることができるので、微細孔形成のため特別な工程
が不要で、ニス1〜的にも安価であり、好ましい。
Further, as a solvent for the substance, any solvent may be used as long as the hydrophobic polymer and the water-swellable polymer are insoluble. However, if the hydrophobic polymer is polyester and the substance soluble in the solvent is a water-soluble If selected, water can be used as a solvent, and micropores can be formed at the same time in the post-processing alkali reduction process, so no special process is required for forming micropores, and the varnish is inexpensive. preferable.

第6図は、前記本発明の複合繊維を紡糸する際に使用す
る紡糸口金の紡糸孔の形状の具体例であり、第6図Fg
lはV字型、同fh)はW字型、同(i)はU字型断面
形状の複合繊維を紡糸する際に使用するものである。こ
れら紡糸口金の紡糸孔は、その円形孔の孔径、スリット
の間1+i乱スリット角部の角度及び相隣れるスリット
のなず角度等を適宜選択することによって本発明に好適
な複合繊維を得ることができる。例えば、第6図(gl
の紡糸孔を用いて紡糸するには、2木のスリットの間陥
(t3) 、円形孔の孔径(t4) 、スリットの角部
の角度(C2)及び疎水性重合体の粘度等により前記第
4図に示ずLI+t2及び第5図に示す1FBGを、ま
た2木のスリットのなす角度(eI)又は紘糸温度によ
り第5図に示ずZDAEを調節することが可能である。
FIG. 6 is a specific example of the shape of the spinning hole of the spinneret used when spinning the composite fiber of the present invention, and FIG.
l is V-shaped, fh) is W-shaped, and (i) is used when spinning a conjugate fiber having a U-shaped cross section. Composite fibers suitable for the present invention can be obtained by appropriately selecting the spinning holes of these spinnerets, such as the diameter of the circular holes, the angle of the 1+i random slit corner between the slits, and the angle of the corner of the adjacent slits. I can do it. For example, in Figure 6 (gl
In order to perform spinning using a spinning hole of It is possible to adjust LI+t2 (not shown in FIG. 4) and 1FBG (not shown in FIG. 5), and ZDAE (not shown in FIG. 5) by the angle (eI) formed by the two slits or the lozenge temperature.

(作 用) 以上のごとき構成からなる本発明の多孔質複合繊維は水
膨潤性重合体が膨潤していないときは。
(Function) When the water-swellable polymer is not swollen, the porous conjugate fiber of the present invention having the above-mentioned structure can be used.

第1図(a+)、 (b、)、 (c+)及び(d、)
に示したごとく繊維横断面が開いた状態にあり、これし
才識編物にされた場合には繊維間空隙が閉じた状態とな
り。
Figure 1 (a+), (b,), (c+) and (d,)
As shown in Figure 2, the cross section of the fibers is open, and when knitted into a knitted fabric, the inter-fiber voids are closed.

保温効果を高める。また、水膨潤性重合体が膨潤したと
きは、第1図(az)、 (bz)、 (C2)及び(
d2)に示したごとく繊維横断面が閉じた状態となり、
織編物にされた場合には繊維間空隙が開き1通気性。
Increases heat retention effect. In addition, when the water-swellable polymer swells, Fig. 1 (az), (bz), (C2) and (
As shown in d2), the fiber cross section becomes closed,
When made into a woven or knitted fabric, the voids between the fibers open, making it breathable.

透湿性を発揮することになる。さらに1本発明の多孔質
複合繊維、にお+Jる微11tl孔は吸水量及び吸水速
度を増加させるとともに、水膨潤性重合体部分に連通ず
る微細孔は水膨潤性重合体が吸水により■・r潤した場
合、過剰の水分を繊維外部に放出するためのm通孔とし
ての役割を果たし、水膨潤性重合体の乾燥速度を速める
ことになる。この原理は正倉院の校倉造りが雨季のよう
に湿度が高いときには、隙間を閉じて外部の湿気をシャ
ツI・アウトし、冬季のように湿度が低いときには隙間
を開いて外気と通気するという原理と木質的に同様のも
のであり1本発明の多孔質複合繊維は校倉風)111と
でもいうべきものである。
It will exhibit moisture permeability. Furthermore, the micro 11 tl pores in the porous composite fiber of the present invention increase water absorption amount and water absorption rate, and the micro pores communicating with the water-swellable polymer portion allow the water-swellable polymer to absorb water. When wetted, it acts as a through hole for releasing excess water to the outside of the fiber, thus speeding up the drying rate of the water-swellable polymer. The principle behind this principle is that when the humidity is high, such as during the rainy season, the Shosoin building's warehouse structure closes the gaps to allow outside moisture to flow out, and when the humidity is low, such as during the winter, the gaps are opened to ventilate the outside air. The porous composite fiber of the present invention is similar in principle and wood quality, and can be called a porous composite fiber of the present invention.

〈実施例〉 以下、本発明を実施例に基づいて具体的に説明するが、
実施例中、変化率及び回復率は次式で表されるものであ
る。
<Examples> Hereinafter, the present invention will be specifically explained based on Examples.
In the examples, the rate of change and the rate of recovery are expressed by the following equations.

ただし、d:水膨潤Ni1重合体が膨潤していない状態
でのり、  E間の距離 d”:水ル“ぎ潤性重合体が膨潤した状態でのり、E間
のW巨β」11 d″;水膨潤性重合体が膨潤した状態から再び乾燥した
状態に戻ったときのり。
However, d: the distance between E when the water-swellable Ni1 polymer is applied in an unswollen state, d": the distance between E when the water-swellable Ni1 polymer is swollen, and the distance between E"11 d"; Glue when the water-swellable polymer returns from a swollen state to a dry state.

E間の距m1[ 実施例 平均分子fi4,000のポリエチレングリコールジメ
チルエーテルを10重里%含有する固有粘度0.68(
0=クロロフエノール中で測定)のポリエヂレンテレフ
タレ−1・とポリエチレンオキサイドを33重量%共重
合したエチレンテレツクレート光共重合ポリエステルと
を、吐出量7:1の割合で第6図(g+に示す紡糸孔形
状で、そのディメンジョンを種々変えた孔数12の紡糸
口金を用いて複合紡糸し1400 m/minの速度で
捲取り、得られた未延伸糸を常法により延伸倍率2.8
.延伸速度715 m/minで延伸して、第4図及び
第5図に示すV字型断面形状で種々の+5.t2+ 1
rlAIi及び、4FBGを有する50d/12rの延
伸糸とした。これらの延伸糸を漬水中に60分間浸漬し
、ポリエチレングリコールジメチルエーテルを溶出し、
微細孔を形成せしめ、多孔質複合繊維を得た。
Distance between E m1
Figure 6 (g+ Composite spinning was performed using a 12-hole spinneret with the spinning hole shape shown in the figure and various dimensions, and winding was performed at a speed of 1400 m/min, and the resulting undrawn yarn was drawn at a drawing ratio of 2.8 by a conventional method
.. It was stretched at a stretching speed of 715 m/min, and various +5. t2+ 1
It was made into a drawn yarn of 50d/12r having rlAIi and 4FBG. These drawn yarns were immersed in water for 60 minutes to elute polyethylene glycol dimethyl ether,
Micropores were formed to obtain porous composite fibers.

これらの多孔質複合繊維の横断面を走査型電子顕微鏡写
真で観察したところ、微細孔の一部は水膨潤性重合体部
分に連通していた。
When a cross section of these porous composite fibers was observed using a scanning electron microscope, it was found that some of the micropores communicated with the water-swellable polymer portion.

次に、これらの多孔質複合繊維を10分間水中に浸漬し
、共重合ポリエステル(水膨潤性重合体)の膨潤してい
ない状態から膨潤した状態に至るまでの変化率及び膨潤
した状態から乾燥により膨潤していない状態に至るまで
の回復率を調べ、その結果を第1表に示す。
Next, these porous composite fibers were immersed in water for 10 minutes, and the rate of change of the copolymerized polyester (water-swellable polymer) from the unswollen state to the swollen state and the rate of change from the swollen state to the drying state were measured. The recovery rate up to the non-swollen state was investigated and the results are shown in Table 1.

第1表 また1本発明の多孔質複合繊維の延伸糸を用いて織物と
し、一方比較のために1敢細孔を形成せしめるための溶
媒に可溶な物質(ポリエチレングリコールジメチルエー
テル)を混入しないこと以外は、前記と同様にして得た
延伸糸を用いて織物を作った。これらの織物及び綿織物
を10分間水に浸漬した後、遠心脱水し、乾燥速度を調
べたところ比リフの複合繊維から得た織物の乾燥時間は
、綿織物の約60%であったのに対し1本発明の多孔質
複合繊維から得た織物の乾燥時間は、綿織物の約40%
と、乾燥速度は最も速いものであった。
Table 1 Also, 1 A woven fabric is made using the drawn yarn of the porous composite fiber of the present invention, and for comparison, a substance soluble in a solvent (polyethylene glycol dimethyl ether) to form pores is not mixed. A woven fabric was made using the drawn yarn obtained in the same manner as above except for the above. These fabrics and cotton fabrics were immersed in water for 10 minutes, then centrifugally dehydrated, and the drying speed was examined. The drying time of fabrics made from composite fibers with a specific ratio was approximately 60% of that of cotton fabrics, whereas the drying time was 1%. The drying time of the fabric obtained from the porous composite fiber of the present invention is approximately 40% that of the cotton fabric.
The drying speed was the fastest.

〈発明の効果〉 以上述べたごとく1本発明の多孔質複合繊維は。<Effect of the invention> As described above, the porous composite fiber of the present invention is as follows.

上記構成からなるものであるから、これを織1扁物とし
た場合、その水膨潤性重合体が膨潤していないときは、
繊維横断面が開いた状態にあり、したがって織編物の繊
維間空隙が閉した状態となり。
Since it has the above structure, when it is made into a woven flat material, if the water-swellable polymer is not swollen,
The cross section of the fibers is in an open state, and therefore the interfiber voids of the woven or knitted material are in a closed state.

保温効果を高めるとともに水膨潤性重合体が膨潤したと
きは、繊維横断面が閉した状態となり、したがって織編
物の繊維間空隙が開き、水膨潤性重合体の吸汗性と相俟
って2通気性、透湿性を発揮する。
In addition to increasing the heat retention effect, when the water-swellable polymer swells, the cross section of the fibers becomes closed, which opens the inter-fiber voids of the woven or knitted material, which, together with the sweat-absorbing properties of the water-swellable polymer, increases ventilation. Demonstrates durability and moisture permeability.

しかも1本発明の多孔質複合繊維は疎水性重合体部分に
微細孔を有していることから水膨潤性重合体の吸水速度
を速め、繊維全体の吸水速度及び吸水量を増加させると
ともに水膨潤性重合体部分に連通した微細孔が水膨潤性
重合体の過剰の水分を繊維外部へ放出するためのう9通
孔としての役割を果たし、水膨潤性重合体の乾燥速度を
速め、したがって、繊維の前記機能を速やかに発揮させ
ることができる。
Moreover, since the porous composite fiber of the present invention has micropores in the hydrophobic polymer portion, it increases the water absorption rate of the water-swellable polymer, increases the water absorption rate and amount of water absorption of the entire fiber, and increases water swelling. The micropores communicating with the water-swellable polymer portion serve as pores for releasing excess water in the water-swellable polymer to the outside of the fiber, increasing the drying rate of the water-swellable polymer, and thus The above-mentioned functions of the fiber can be quickly exerted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2本発明の多孔質複合繊維の具体例を模式的に
示す横断面図で、同図(a+)、(b、L (c+)及
び(d、)は膨潤していない状態での繊維横断面図。 同図(az)、 (bzL (C2)及び(d2)は膨
潤した状態での繊維横断面図、第2図及び第3図は比較
例の繊維横断面図、第4図及び第5図は本発明の複合繊
維のディメンジョンを説明するための繊維横断面図、第
6図は本発明の複合繊維を紡糸するための紡糸口金の紡
糸孔形状の具体例を示す図である。 (なお、第1図において(a8)以外は微細孔を省略し
た。) (1)−疎水性重合体部分 (21−−−水膨潤性重合体部分 (3)−微細孔
FIG. 1 is a cross-sectional view schematically showing two specific examples of the porous composite fiber of the present invention, in which (a+), (b, L (c+) and (d,) are in an unswollen state. The same figure (az), (bzL) (C2) and (d2) are cross-sectional views of the fiber in the swollen state, Figures 2 and 3 are cross-sectional views of the fiber of the comparative example, and Figure 4 is the cross-sectional view of the fiber in the swollen state. 5 and 5 are fiber cross-sectional views for explaining the dimensions of the composite fiber of the present invention, and FIG. 6 is a diagram showing a specific example of the spinning hole shape of the spinneret for spinning the composite fiber of the present invention. (In Figure 1, micropores are omitted except for (a8).) (1) - Hydrophobic polymer part (21 - Water-swellable polymer part (3) - Micropores)

Claims (1)

【特許請求の範囲】 1 疎水性重合体と水膨潤性重合体とからなる複合繊維
であって、複合繊維の横断面は疎水性重合体部分の断面
形状がスリット状扁平形をn回(nは1以上の整数)折
り曲げた形状もしくは屈曲させた形状で、n個の凸部を
有し、かつ少なくとも1個の凸部が折り曲げ部もしくは
屈曲部の外側のほぼ中央部にくぼみ部を有し、くぼみ部
に水膨潤性重合体部分が接合されてなり、かつ疎水性重
合体部分が微細孔を有し、微細孔の少なくとも一部が水
膨潤性重合体部分と連通していることを特徴とする多孔
質複合繊維。 2 疎水性重合体部分の断面形状が凸部を1個有するV
字型又はU字型形状である特許請求の範囲第1項記載の
多孔質複合繊維。
[Scope of Claims] 1 A composite fiber made of a hydrophobic polymer and a water-swellable polymer, wherein the cross section of the composite fiber is such that the cross-sectional shape of the hydrophobic polymer portion is a slit-like flat shape n times (n times). is an integer greater than or equal to 1) It has a bent or bent shape and has n convex portions, and at least one convex portion has a concave portion at the bent portion or approximately the center of the outside of the bent portion. , a water-swellable polymer portion is bonded to the recessed portion, the hydrophobic polymer portion has micropores, and at least a portion of the micropores communicates with the water-swellable polymer portion. porous composite fiber. 2 V in which the cross-sectional shape of the hydrophobic polymer portion has one convex portion
The porous composite fiber according to claim 1, which has a shape of a letter or a letter U.
JP20537584A 1984-09-28 1984-09-28 Porous conjugated yarn Pending JPS6183313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20537584A JPS6183313A (en) 1984-09-28 1984-09-28 Porous conjugated yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20537584A JPS6183313A (en) 1984-09-28 1984-09-28 Porous conjugated yarn

Publications (1)

Publication Number Publication Date
JPS6183313A true JPS6183313A (en) 1986-04-26

Family

ID=16505787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20537584A Pending JPS6183313A (en) 1984-09-28 1984-09-28 Porous conjugated yarn

Country Status (1)

Country Link
JP (1) JPS6183313A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200248A (en) * 1990-02-20 1993-04-06 The Procter & Gamble Company Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein
US5368926A (en) * 1992-09-10 1994-11-29 The Procter & Gamble Company Fluid accepting, transporting, and retaining structure
US5628736A (en) * 1994-04-29 1997-05-13 The Procter & Gamble Company Resilient fluid transporting network for use in absorbent articles
US20150245674A1 (en) * 2012-06-22 2015-09-03 Nike, Inc. Environmentally responsive fibers and garments
CN109097847A (en) * 2018-10-31 2018-12-28 盐城优和博新材料有限公司 A kind of production method of moisture absorbing and sweat releasing high-strength high-modulus polyethylene
KR20190066672A (en) * 2017-12-06 2019-06-14 한국섬유개발연구원 fibrous structure made of porous fibers for manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200248A (en) * 1990-02-20 1993-04-06 The Procter & Gamble Company Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein
US5368926A (en) * 1992-09-10 1994-11-29 The Procter & Gamble Company Fluid accepting, transporting, and retaining structure
US5628736A (en) * 1994-04-29 1997-05-13 The Procter & Gamble Company Resilient fluid transporting network for use in absorbent articles
US20150245674A1 (en) * 2012-06-22 2015-09-03 Nike, Inc. Environmentally responsive fibers and garments
EP3342904A3 (en) * 2012-06-22 2018-09-26 NIKE Innovate C.V. Environmentally responsive fibers
US10383375B2 (en) 2012-06-22 2019-08-20 Nike, Inc. Environmentally responsive fibers and garments
KR20190066672A (en) * 2017-12-06 2019-06-14 한국섬유개발연구원 fibrous structure made of porous fibers for manufacturing method
CN109097847A (en) * 2018-10-31 2018-12-28 盐城优和博新材料有限公司 A kind of production method of moisture absorbing and sweat releasing high-strength high-modulus polyethylene

Similar Documents

Publication Publication Date Title
JPH0356894B2 (en)
JPS6183313A (en) Porous conjugated yarn
JPS6215655B2 (en)
KR20010032960A (en) Nonwoven fabric and artificial leather using the same
KR101773900B1 (en) Camp out fabric and manufacture method therefor
JP2012007273A (en) Coated stretch knitted fabric
US5260131A (en) Water-repellent hygroscopic fiber
JPS6123295B2 (en)
JPS6175813A (en) Composite fiber
JPS5898426A (en) Sheath-core type composite fiber
JP3142099B2 (en) Method for producing smooth leather-like sheet
KR100335576B1 (en) Manufacturing method of coated fabric
JPS6017871B2 (en) Method for producing leather-like sheet material
JPS6183316A (en) Composite polyester fiber
JP2003342831A (en) Water-absorbing acrylic fiber and method for producing the same and fiber structure containing the fiber
JP3476577B2 (en) Composite fiber with moisture absorption / release properties
CN114351325B (en) Unidirectional moisture-conducting three-way orthogonal woven fabric with high mechanical property and preparation method thereof
JPH03213535A (en) Woven or knitted fabric
JPH0268366A (en) Coated cloth of dry touch
KR960010919A (en) Manufacturing method of porous hollow yarn
JPH06240516A (en) Water absorbing composite fiber
JP2001276630A (en) Ion exchangeable nonwoven fabric
JPH1149875A (en) Production of moisture-permeable film excellent in film strength
JPS59228081A (en) Water repellent cloth excellent in air permeability
JPS59228070A (en) Hydrophilic cloth containing flat fiber