JPS618200A - Methane fermentation method - Google Patents

Methane fermentation method

Info

Publication number
JPS618200A
JPS618200A JP59128666A JP12866684A JPS618200A JP S618200 A JPS618200 A JP S618200A JP 59128666 A JP59128666 A JP 59128666A JP 12866684 A JP12866684 A JP 12866684A JP S618200 A JPS618200 A JP S618200A
Authority
JP
Japan
Prior art keywords
acid
tank
methane
gas
methane fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59128666A
Other languages
Japanese (ja)
Inventor
Makio Kishimoto
岸本 眞希男
Kenji Kida
建次 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59128666A priority Critical patent/JPS618200A/en
Publication of JPS618200A publication Critical patent/JPS618200A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To enhance the yield of methane in a gas producing process to a large extent, in a two-phase methane fermentation process, by guiding hydrogen generated in an acid producing process to the gas producing process. CONSTITUTION:In a two-phase methane fermentation method wherein includes an acid producing process for obtaining lower fatty acid by decomposing org. substances and decomposes the formed acids, hydrogen-containing gas generated in an acid producing tank 3 is introduced into a gas producing tank 4 from the bottom part thereof. Whereupon, the yield of methane in the gas producing process can be enhanced to a large extent.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、メタン醗酵に関与ザる微生物群のうち酸生
成菌とメタン生成菌とを分離し、これらをそれぞれ至適
条件で培養し、酸生成過程において酸生成菌の働きによ
り有機物を分解して低級脂肪酸を得、メタン生成過程に
おいてメタン生成菌の働きにより酸を分解してメタンと
二酸化炭素を得る方法(以下、二相式メタン醗酵法とい
う)に関するものであり、さらに詳しくは、酸生成過程
における水素の発生を可及的に抑えて、つぎのガス生成
過程におけるメタン収率を向上せしめる方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is aimed at separating acid-producing bacteria and methanogenic bacteria from among the microorganisms involved in methane fermentation, culturing them under optimal conditions, and producing acid-producing bacteria. In the process, organic matter is decomposed by the action of acid-producing bacteria to obtain lower fatty acids, and in the methane production process, the acid is decomposed by the action of methanogen-producing bacteria to obtain methane and carbon dioxide (hereinafter referred to as the two-phase methane fermentation method). ), and more specifically, it relates to a method of suppressing the generation of hydrogen during the acid production process as much as possible to improve the methane yield in the next gas production process.

従来技術 メタン醗酵は廃液処理と同時にメタンを回収することの
できるすぐれたエネルギー生産方法である。従来、メタ
ン醗酵は、上記のような微生物の分離を行なわないで醗
酵を行なう方法(以下、単相式メタン醗酵法という)に
よりなされてきたが、この場合醗酵に長時間を要し、大
容量の醗酵槽を必要とするといった欠点があった。
BACKGROUND OF THE INVENTION Methane fermentation is an excellent energy production method that can recover methane at the same time as wastewater treatment. Conventionally, methane fermentation has been carried out using the method described above in which fermentation is carried out without separating microorganisms (hereinafter referred to as single-phase methane fermentation method), but in this case, fermentation takes a long time and requires a large capacity. The disadvantage was that it required a fermentation tank.

他方、二相式メタンll1a酵法では、酸生成過程にお
いて酸生成菌の働きによって有機物が分解されて、酢酸
、プロピオン酸、酪酸のような有機酸が生成せられると
ともに、さらにプロピオン酸や酪酸などのような比較的
高分子量の有機酸が水素生成菌の働きによって酢酸に分
解され、水素を発生する。しかしこうして発生した水素
は、つぎのガス生成過程におけるメタン収率を低下させ
るため、水素の発生を抑えることが要望せられている。
On the other hand, in the two-phase methane ll1a fermentation method, organic matter is decomposed by the action of acid-producing bacteria during the acid production process, producing organic acids such as acetic acid, propionic acid, and butyric acid, and further producing organic acids such as propionic acid and butyric acid. Relatively high molecular weight organic acids such as are decomposed into acetic acid by the action of hydrogen-producing bacteria, generating hydrogen. However, since the hydrogen generated in this way lowers the methane yield in the next gas generation process, it is desired to suppress the generation of hydrogen.

そして従来からこの要望にこたえるべく種々の水素発生
抑制手段が検討されてきたが、未だ満足な成果を挙げる
に至っていないのが実情である。
In order to meet this demand, various means for suppressing hydrogen generation have been studied, but the reality is that no satisfactory results have been achieved yet.

発明の目的 この発明は、上記のような実情に鑑みてなされたもので
あって、ガス生成過程におけるメタン収率を大幅に向上
せしめることのできる二相式メタン醗酵法を提供するこ
とを目的とする。
Purpose of the Invention The present invention was made in view of the above-mentioned circumstances, and an object thereof is to provide a two-phase methane fermentation method that can significantly improve the methane yield in the gas generation process. do.

発明の構成 この発明は、有機物を分解して低級脂肪酸を得る酸生成
過程と、得られた酸を分解してメタンlと二酸化炭素を
得るガス生成過程とよりなるメタン醗酵において、酸生
成過程で発生した水素をガス生成過程へ導くことを特徴
とするメタン醗酵法である。
Structure of the Invention The present invention is directed to a methane fermentation process consisting of an acid generation process in which organic matter is decomposed to obtain lower fatty acids, and a gas generation process in which the resulting acid is decomposed to obtain methane and carbon dioxide. This is a methane fermentation method characterized by introducing the generated hydrogen into a gas production process.

酸生成過程における酸生成槽は完全混合型の撹拌槽であ
る。同過程に供給される有機物含有原料液としては、ア
ルコール蒸留廃液、下水処理汚泥、農産加工廃棄物、都
市ごみ、海藻等の有機系廃液が用いられる。
The acid generation tank in the acid generation process is a complete mixing type stirring tank. Organic waste liquids such as alcohol distillation waste liquid, sewage treatment sludge, agricultural processing waste, municipal waste, and seaweed are used as the organic substance-containing raw material liquid supplied to the process.

実施例1 はじめに、二相式メタン醗酵装置の構成について説明す
る。原料液槽(1)は冷却水槽(2)内に配置され、冷
却によって廃水その他の原料液の腐敗を防ぐようになっ
ている。原料液槽(1)の後流側に設置された酸生成槽
(3)は実容積11を有し、撹拌器(12)を備え、か
つ醗酵温度およびl)Hの制御表示装置(13)を有し
ている。酸生成槽(3)の後流側に設置されたガス生成
槽(4)は、実容積0.7/を有し、ガラス製流動層を
内装し、やはり槽内温度および1)Hの表示装置(14
)を有している。また同種(4)のジャケットに温水を
通すことにより槽内温度を制御することができ、酸ない
しアルカリの添加により槽内pHを制御することができ
る。酸生成槽(3)とガス生成槽(4)の間に設置され
た沈降槽(5)は、酸生成反応液の受槽であって、その
ジャケットに水を通すことにより冷却できるようになっ
ている。酸生成槽(3)゛の頂部からガス生成槽(4)
の底部に、ポンプ(15)を有するガス導管(16)が
設けられている。
Example 1 First, the configuration of a two-phase methane fermentation apparatus will be explained. The raw material liquid tank (1) is arranged in a cooling water tank (2), and cooling prevents wastewater and other raw material liquids from spoiling. The acid generation tank (3) installed on the downstream side of the raw material liquid tank (1) has an actual volume of 11, is equipped with a stirrer (12), and is equipped with a control display device (13) for fermentation temperature and l)H. have. The gas generation tank (4) installed on the downstream side of the acid generation tank (3) has an actual volume of 0.7/cm, is equipped with a glass fluidized bed, and also displays the temperature inside the tank and 1) H. Equipment (14
)have. Furthermore, the temperature inside the tank can be controlled by passing hot water through the jacket of the same type (4), and the pH inside the tank can be controlled by adding acid or alkali. The sedimentation tank (5) installed between the acid production tank (3) and the gas production tank (4) is a receiving tank for the acid production reaction liquid, and can be cooled by passing water through its jacket. There is. Gas generation tank (4) from the top of acid generation tank (3)
A gas conduit (16) with a pump (15) is provided at the bottom.

有機物含有原料液として廃糖蜜280G/lと!尿素1
.40//よりなる培地でアルコール蒸留廃液を行なっ
た後アルコールを留去して残った蒸留廃液を用いた。
280G/l of blackstrap molasses as raw material liquid containing organic matter! Urea 1
.. After the alcohol distillation waste liquid was prepared using a medium consisting of 40//, the alcohol was distilled off and the remaining distillation waste liquid was used.

上記構成の醗酵装置において、上記蒸留廃液を原料液槽
(1)に貯え、ついでこれをポンプ(6)によって酸生
成槽(3)に供給し、同種(3)の反応液をポンプ(7
)で吸引して沈降槽(5)に送った。また沈降槽(5)
の上澄液をポンプ(8)でガス生成槽(4)の底部に導
き、頂部が出た液をポンプ(9)によって底部から槽内
に循環させた。そして酸生成槽における有機物負荷を1
000//・日に設定し、醗酵温度を37℃に制御し、
メタン醗酵を行ない、酸生成槽(3)およびガス生成槽
(4)で発生するガスの吊を、それぞれ湿式ガスメータ
(10)(11)で測定した。また非測定時にガス導管
(16)のポンプ(15)を作動させ、酸生成槽(3)
で発生した水素含有ガスをガス生成槽(4)に底部から
導入させた。また上記水素含有ガスの導入を行なわない
場合についても上記と同じ操作を行なっ、た。これらの
場合の各ガスの測定値を表1にまとめて示す。
In the fermentation apparatus configured as described above, the distillation waste liquid is stored in the raw material liquid tank (1), and then it is supplied to the acid generation tank (3) by the pump (6), and the reaction liquid of the same type (3) is pumped (7).
) and sent to the sedimentation tank (5). Also settling tank (5)
The supernatant liquid was led to the bottom of the gas generation tank (4) by a pump (8), and the liquid coming out from the top was circulated from the bottom into the tank by a pump (9). Then, the organic matter load in the acid generation tank was reduced to 1
000//day, and the fermentation temperature was controlled at 37°C.
Methane fermentation was carried out, and the amount of gas generated in the acid production tank (3) and gas production tank (4) was measured using wet gas meters (10) and (11), respectively. Also, when not measuring, the pump (15) of the gas pipe (16) is operated, and the acid generation tank (3)
The hydrogen-containing gas generated was introduced into the gas generation tank (4) from the bottom. The same operation as above was also carried out in the case where the hydrogen-containing gas was not introduced. The measured values of each gas in these cases are summarized in Table 1.

(以下余白) 表   1 比較例 酸生成槽(3)と同一タイプの撹拌槽を用いて、醗酵温
度37℃で従来法である単相式メタン醗酵法を実施した
(Margins below) Table 1 Comparative Example A conventional single-phase methane fermentation method was carried out at a fermentation temperature of 37° C. using the same type of stirring tank as the acid production tank (3).

有機物負荷を実施例1の場合の約1/10である2、2
Q/l・日に設定したところ、ガス生成速度は1.21
/l・日であり、生成ガスのメタン含量は60〜65%
であった。したがって有機物1g当りのメタン発生量は
0.33〜0.361であった。
The organic matter load was about 1/10 of that in Example 1.
When set to Q/l/day, the gas generation rate is 1.21
/l day, and the methane content of the produced gas is 60-65%.
Met. Therefore, the amount of methane generated per gram of organic matter was 0.33 to 0.361.

実施例の表1に示す測定結果および比較例の測定結果か
ら明らかなように、酸生成槽で発生した水素含有ガスを
ガス発生槽へ導かない場合は、有機物1g当りのメタン
発生量は0.281にすぎず、単相式メタン醗酵法の場
合のメタン発生量より劣るが、上記水素含有ガスをガス
発生槽へ導くと、メタン発生量は0.37/となり、単
相式メタン醗酵法の場合と遜色ないものとなる。また実
施例の場合の有機物負荷を比較例の場合の有機物負荷の
約10倍人きくするこ1とができる。
As is clear from the measurement results shown in Table 1 of Examples and the measurement results of Comparative Examples, when the hydrogen-containing gas generated in the acid generation tank is not led to the gas generation tank, the amount of methane generated per gram of organic matter is 0. The amount of methane generated is only 281, which is inferior to the amount of methane generated in the single-phase methane fermentation method, but when the above hydrogen-containing gas is led to the gas generation tank, the amount of methane generated is 0.37/, which is lower than the amount of methane generated in the single-phase methane fermentation method. It will be comparable to the case. In addition, the organic matter load in the example can be made about 10 times greater than the organic matter load in the comparative example.

発明の効果 以上の次第で、この発明によるメタン醗酵法によれば、
酸生成過程で発生した水素をガス生成過程へ導くので、
ガス生成過程にお【ノるメタン収率を大幅に向上させる
ことができる。
Depending on more than the effects of the invention, the methane fermentation method according to the present invention:
Since the hydrogen generated during the acid generation process is guided to the gas generation process,
It can significantly improve the methane yield during the gas production process.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は二相式メタン醗酵装置の概略図である。 (1)・・・原料液槽、(3)・・・酸生成槽、(4)
・・・ガス生成槽、(5)・・・沈降槽、(16)・・
・ガス導管。 以  上
The drawing is a schematic diagram of a two-phase methane fermentation apparatus. (1)... Raw material liquid tank, (3)... Acid generation tank, (4)
...Gas generation tank, (5)...Sedimentation tank, (16)...
・Gas conduit. that's all

Claims (1)

【特許請求の範囲】[Claims] (1)有機物を分解して低級脂肪酸を得る酸生成過程と
、得られた酸を分解してメタンと二酸化炭素を得るガス
生成過程とよりなるメタン醗酵において、酸生成過程で
発生した水素をガス生成過程へ導くことを特徴とするメ
タン醗酵法。
(1) In methane fermentation, which consists of an acid generation process that decomposes organic matter to obtain lower fatty acids, and a gas generation process that decomposes the resulting acid to produce methane and carbon dioxide, the hydrogen generated during the acid generation process is A methane fermentation method characterized by leading to the production process.
JP59128666A 1984-06-21 1984-06-21 Methane fermentation method Pending JPS618200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59128666A JPS618200A (en) 1984-06-21 1984-06-21 Methane fermentation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59128666A JPS618200A (en) 1984-06-21 1984-06-21 Methane fermentation method

Publications (1)

Publication Number Publication Date
JPS618200A true JPS618200A (en) 1986-01-14

Family

ID=14990435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59128666A Pending JPS618200A (en) 1984-06-21 1984-06-21 Methane fermentation method

Country Status (1)

Country Link
JP (1) JPS618200A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245443A (en) * 2004-02-05 2005-09-15 Tokyo Gas Co Ltd Method for producing methane, method for treating sea weed, apparatus for producing methane and apparatus for treating sea weed
JP2013126665A (en) * 2013-02-21 2013-06-27 Swing Corp Apparatus and method for treating organic wastewater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108593A (en) * 1980-01-31 1981-08-28 Matsushita Electric Works Ltd Methane fermentation apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108593A (en) * 1980-01-31 1981-08-28 Matsushita Electric Works Ltd Methane fermentation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245443A (en) * 2004-02-05 2005-09-15 Tokyo Gas Co Ltd Method for producing methane, method for treating sea weed, apparatus for producing methane and apparatus for treating sea weed
JP2013126665A (en) * 2013-02-21 2013-06-27 Swing Corp Apparatus and method for treating organic wastewater

Similar Documents

Publication Publication Date Title
Mizuno et al. Enhancement of hydrogen production from glucose by nitrogen gas sparging
Singhania et al. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation
JP2016532441A (en) Method and system for producing hydrogen, methane, volatile fatty acids, and alcohols from organic matter
CA2926577A1 (en) Biohydrogen production method and reactor
JPS59120297A (en) Method and apparatus for continuous anaerobic decomposition of organic compound
Pol et al. Cultivation of well adapted pelletized methanogenic sludge
JPS618200A (en) Methane fermentation method
JPS6291293A (en) Treatment of waste water based on anaerobic treatment
Reis et al. Sulfate reduction in acidogenic phase anaerobic digestion
JPH0218915B2 (en)
US4687668A (en) Continuous microbiological production of acetic acid and vinegar
JPH0538499A (en) Treatment of waste water in production of beet sugar
KR950008042B1 (en) Methane fermentation method
KR20050105302A (en) Treatment method of petro-chemical wastewater comprising terephthalic acid
US5418166A (en) Process and device for the biological treatment of effluents from wine cellars
JPS618199A (en) Methane fermentation method
JP2001149983A (en) Bio gas generator
Edwards et al. Continuous culture of Pseudomonas fluorescens with sodium maleate as a carbon source
CN218860712U (en) Anaerobic fermentation system
CN202643681U (en) System for producing organic alcohol through gas-phase substrate fermentation
JPH0231898A (en) Method for anaerobically digesting sewage sludge
Madamwar et al. Effect of mixture of surfactants and adsorbents on anaerobic digestion of water hyacinth-cattle dung
JP2008080336A (en) Method and apparatus for generating biogas
Karekar Investigating the use of selected homoacetogens: a unique bacterial group capable of fixing carbon dioxide into acetic acid with hydrogen as an electron donor
Bhadra et al. Methanogenesis from volatile fatty acids in downflow stationary fixed‐film reactor