JPS6180766A - Power generation plant of fuel cell - Google Patents

Power generation plant of fuel cell

Info

Publication number
JPS6180766A
JPS6180766A JP59203259A JP20325984A JPS6180766A JP S6180766 A JPS6180766 A JP S6180766A JP 59203259 A JP59203259 A JP 59203259A JP 20325984 A JP20325984 A JP 20325984A JP S6180766 A JPS6180766 A JP S6180766A
Authority
JP
Japan
Prior art keywords
fuel
air
pressure
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59203259A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59203259A priority Critical patent/JPS6180766A/en
Publication of JPS6180766A publication Critical patent/JPS6180766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make the good control of a differential pressure between poles possible, by keeping a flow control valve set between the discharge exit of a compressor and the air pole exit of a fuel cell under the switching control in proportion to the pressure deflection between an air pole and a fuel pole. CONSTITUTION:A flow control valve (14) is set in place inside a pipe (13), setting the pipe (13) penetrating between the discharge exit of a compressor (2) and the air pole exit of a fuel cell (1). When the pressure of the air pole becomes lower than that of the fuel pole, pressure deviation (c) has some positive value and an adjuster (17) issues a command to make a flow control valve 14 open as a signal (d) on the basis of the value. As the result, an air flow flowing through the pipe (13) increases and the air flowing through a pipe (9) increases by the amount. The amount increased in the air flow of the pipe (9) connects with the pressure loss increased in the pipe (9) and, as the result, keeps the pressure of the air pole higher and suppresses the differential pressure between the poles of the cell. Inversely, when the pressure of the air pole is higher than that of the fuel pole, the pressure of the air pole is kept lower and the differential pressure between the cell poles is suppressed as well.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、燃第1電池発電プラント、より詳細には、燃
料1(および空気極を右する燃料電池と、前記燃料極に
燃料を供給するための燃料源と、この燃料源から前記燃
料極への供給燃料流Gを調節する手段と、前記空気極に
空気を供給するための圧縮機と、この圧縮殿から前記空
気極への供給空気流量を調節する手段と、前記圧縮機を
駆動するタービンと、iiQ記空気極からのυV出空気
および前記燃料極からの排出燃料を混合して前シdター
ビンに駆動エネルギーとして供給する手段とを備えた燃
料電池発電プラント、に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a first fuel cell power generation plant, and more particularly, to a first fuel cell power plant, and more particularly, to a first fuel cell power plant, a first fuel cell (and a fuel cell having an air electrode), and a second fuel cell for supplying fuel to the fuel electrode. a fuel source for supplying air to the anode; means for regulating the supply fuel flow G from this fuel source to the anode; a compressor for supplying air to the cathode; and a supply air from the compression chamber to the cathode. A means for adjusting the flow rate, a turbine for driving the compressor, and a means for mixing the υV output air from the air electrode and the exhaust fuel from the fuel electrode and supplying the mixture to the front side turbine as driving energy. The present invention relates to a fuel cell power generation plant equipped with a fuel cell power generation plant.

〔発明の技術向背mとその問題点〕[Technological disadvantages of inventions and their problems]

燃料電池発電プラントの電池本体すなわち燃料電池その
ものにおいては、燃料極と空気極との間の圧力差(以下
、これを極間差圧という)が約0.1気圧に達すると電
池電解膜が破れることにより電池本体破損という事態に
到るおそれがある。
In the cell body of a fuel cell power generation plant, that is, in the fuel cell itself, the cell electrolyte membrane ruptures when the pressure difference between the fuel electrode and the air electrode (hereinafter referred to as interelectrode pressure difference) reaches approximately 0.1 atmosphere. This may lead to damage to the battery body.

そのため、燃料電池発電プラン1〜においては極間差圧
を極力抑制するシステム構成が要求されている。
Therefore, in the fuel cell power generation plans 1 to 1, a system configuration that suppresses the differential pressure between the electrodes as much as possible is required.

この要求に対して従来は主として2つに大別されるシス
テム構成で対応していた。
Conventionally, this requirement has been met with system configurations that are mainly divided into two types.

従来の第1の対応例は第3図に示す構成である。A first conventional example is the configuration shown in FIG.

燃料電池1の燃料極には図示していない燃料源から流量
制御弁6を介して流固調節された燃料、たとえば水素が
供給される。燃料比i′li!1の空気極には圧縮機2
から流量制御弁7を介して流m調節された空気が供給さ
れる。圧縮別2はタービン3によって駆動される。燃料
電池1の空気極からの排出空気は配管9を介して混合器
5に導入される。
The fuel electrode of the fuel cell 1 is supplied with fuel, such as hydrogen, whose flow rate has been adjusted through a flow rate control valve 6 from a fuel source (not shown). Fuel ratio i'li! Compressor 2 is installed on the air pole of 1.
A regulated air flow m is supplied from the air flow control valve 7 through the flow control valve 7. The compression section 2 is driven by a turbine 3. Air discharged from the air electrode of the fuel cell 1 is introduced into the mixer 5 via a pipe 9.

一方、燃料電池1の燃料(にからの排出燃料は改質装置
4で燃焼用燃料として利用された後、配管10を介して
排出空気と同様に混合器5に尋人され、ここで排出空気
と混合される。この混合器5からのシスデム排ガスはタ
ービン3に駆動用エネルギーとして供給される。なお、
圧縮R2の吐出口と混合器5との間は、圧縮義2の余剰
空気をバイパスさせるために制御弁8を介して連通され
ている。
On the other hand, the fuel discharged from the fuel cell 1 is used as combustion fuel in the reformer 4, and then is sent to the mixer 5 through the pipe 10 in the same way as the discharged air, where the discharged air is The system exhaust gas from the mixer 5 is supplied to the turbine 3 as driving energy.
The discharge port of the compressor R2 and the mixer 5 are communicated via a control valve 8 in order to bypass excess air of the compressor R2.

この第3図の構成は、燃料電池1の空気極から混合器5
までの配管9、および燃料電池1の燃料極から混合器5
までの配管10の各配管抵抗を微小にすることによって
各配管での圧力損失を小さくし、極間差圧を抑制するも
のである。つまり、燃料と空気の両系統の合流点である
混合器5では両系統の圧力は強制的に等しくさせられ、
したがって、配管9.10の各圧力損失が微小であれば
、両系統の圧力損失の差に相当する極間差圧も小さくな
るという理屈である。
The configuration shown in FIG. 3 is as follows:
to the pipe 9, and from the fuel electrode of the fuel cell 1 to the mixer 5.
By minimizing the resistance of each piping 10 up to the piping 10, the pressure loss in each piping is reduced and the differential pressure between poles is suppressed. In other words, in the mixer 5, which is the confluence point of both the fuel and air systems, the pressures of both systems are forced to be equal.
Therefore, the theory is that if each pressure loss in the pipes 9 and 10 is minute, the differential pressure between the poles corresponding to the difference in pressure loss between the two systems will also be small.

従来の第2の対応例は第4図に示す構成である。   
1この構成の特徴は、第3図のシステム構成を前提とし
、その空気極出口側の配管9に圧力制御弁11を配設し
、燃料(框出口側の配管10に圧力制御弁12を配設し
ていることである。同圧力制御弁11.12はそれぞれ
燃料電池1の燃料極および空気極の各圧力をそれぞれ制
罪することによって、すなわち両系統の燃料電池1から
混合器5までの各配管9,10の配管抵抗を調整可能と
することによって、大きな極間差圧の発生を防止しよう
とする構成である。
A second conventional example is the configuration shown in FIG.
1. The feature of this configuration is based on the system configuration shown in Fig. 3, in which a pressure control valve 11 is provided in the pipe 9 on the air electrode outlet side, and a pressure control valve 12 is provided in the pipe 10 on the fuel (stile outlet side). The pressure control valves 11 and 12 respectively control the pressure at the fuel electrode and the air electrode of the fuel cell 1, that is, the pressure from the fuel cell 1 to the mixer 5 in both systems. This configuration attempts to prevent the generation of a large differential pressure between poles by making it possible to adjust the piping resistance of each piping 9, 10.

しかるに、第3図のシステム構成においては、燃料電池
1から混合器5までの空気、燃料両系統の配管抵抗つま
りは配管圧力損失を完全に零にすることは不可能である
から、両系統の配管圧力損失の差に相当する極間差圧が
発生する。この極間差圧は配管抵抗の大きなプラントは
ど大きくなるのは当然である。
However, in the system configuration shown in Figure 3, it is impossible to completely reduce the piping resistance of both the air and fuel systems from the fuel cell 1 to the mixer 5, that is, the piping pressure loss, so the A differential pressure between the poles is generated, which corresponds to the difference in pipe pressure loss. Naturally, this pressure difference between poles becomes larger in plants with large piping resistance.

また、第4図のシステム構成にJ3いては、圧力制御弁
11.12により極間差圧をC3Iとんど零にすること
はできるが、各配管の配管抵抗つまり配管斥力jO失が
大きくなる、圧力制御弁11.12の誤動作は急激な極
間差圧発生の危険性につながる、圧縮n2の吐出口から
タービン30人口までの圧力差が大きくなってタービン
駆CJに必要なエネルギーが増大する、などの欠点があ
る。とくに最後に述べたエネルギーの増大はプラント全
体の効率低下につながるものである。
Furthermore, in the system configuration J3 shown in Fig. 4, the pressure difference between the poles C3I can be reduced to almost zero using the pressure control valves 11 and 12, but the piping resistance of each piping, that is, the piping repulsion jO loss increases. , malfunction of the pressure control valves 11 and 12 leads to the risk of sudden pressure difference between poles, the pressure difference from the discharge port of the compressor n2 to the turbine 30 population increases, and the energy required for the turbine drive CJ increases. There are drawbacks such as. In particular, the last-mentioned increase in energy leads to a decrease in the efficiency of the entire plant.

以上のことから、燃料電池から燃料・空気両者の合流点
までの配管抵抗を小さくし、プラン1〜全体の効率を低
下させることなく、極間差圧を良好に抑制することが望
まれていた。
Based on the above, it was desired to reduce the piping resistance from the fuel cell to the confluence of both fuel and air, and to suppress the differential pressure between the poles without reducing the overall efficiency of Plan 1. .

〔発明の目的〕[Purpose of the invention]

したがって本発明の目的は、プラント全体効率を低下さ
せることなく極間差圧を良好に抑制づることができ、し
かも誤動作による急激な極間差圧の発生を回避し得る燃
料電池発電プラントを提供することにある。
Therefore, an object of the present invention is to provide a fuel cell power generation plant that can satisfactorily suppress the differential pressure between the poles without reducing the overall efficiency of the plant, and can avoid the sudden occurrence of the differential pressure between the poles due to malfunction. There is a particular thing.

(発明の概要) この目的を達成するために本発明は、初めに述べた燃料
電池発電プラントにおいて、圧縮機の吐出口と燃料電池
の空気極出口との間を連通ずる配管と、この配管内に介
挿された流量制御弁と、燃rA電池の空気(唄と燃料極
との間の圧力漏差を検出する差圧検出手段と、この差圧
検出手段の検出出力に応じて前記圧力漏差が減少する方
向に前記流量制御弁を開閉制御する手段とを設けたこと
を特徴とするものである。
(Summary of the Invention) To achieve this object, the present invention provides a fuel cell power generation plant mentioned at the beginning, including a pipe that communicates between the discharge port of the compressor and the air electrode outlet of the fuel cell, and a flow rate control valve inserted in the fuel cell; The present invention is characterized by further comprising means for controlling opening and closing of the flow rate control valve in a direction in which the difference decreases.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示すものである。 FIG. 1 shows an embodiment of the present invention.

図中の??rn1〜10は第3図に対応している。この
実施例の特徴は、圧縮R2の吐出口と燃料電池1の空気
極出口との間を連通ずる配管13を設け、この配管13
内に流m制御弁14を配設したことにある。この流量制
御弁14の制御は、圧力検出器15によって検出された
燃料極の圧力と、圧力検出器16によって検出された空
気極の圧力との偏差の信号Cに基づき、調節器17から
出力される指令信号dによって行なわれる。
In the diagram? ? rn1 to rn10 correspond to FIG. The feature of this embodiment is that a pipe 13 is provided which communicates between the discharge port of the compression R2 and the air electrode outlet of the fuel cell 1.
This is because a flow control valve 14 is disposed inside. The flow rate control valve 14 is controlled based on a signal C of the deviation between the fuel electrode pressure detected by the pressure detector 15 and the air electrode pressure detected by the pressure detector 16, which is output from the regulator 17. This is done by a command signal d.

仮に、空気極の圧力が燃料極の圧力よりも低くなったと
すれば、圧力漏差Cは正の成る値を持ら、これに基づい
て調節器17は信号dとして流m制御弁14を開く方向
の指令を出す。これにより配〜管13を流れる空気量が
増加し、この増加分だけ配管9を流れる空気量も増加す
る。この配管9の空気流量の増加は配管9の圧力損失増
加につながり、結果として空気極の圧力を高め、電池極
間差圧を抑制する作用をもたらす。また、逆に空気極圧
力が燃料極圧力よりも高くなったときは、圧力幅差Cが
負となり、これに基づき調節器17は信号dとして流m
制御弁14を閉じる方向の指令を出す。これにより配管
13を流れる空気量が減少し、その減少分だけ配管9の
空気量が減少する。
If the air electrode pressure becomes lower than the fuel electrode pressure, the pressure leakage C has a positive value, and based on this, the regulator 17 opens the flow m control valve 14 as a signal d. Issue direction commands. As a result, the amount of air flowing through the piping 13 increases, and the amount of air flowing through the piping 9 also increases by this increase. This increase in the air flow rate in the pipe 9 leads to an increase in the pressure loss in the pipe 9, resulting in an increase in the pressure at the air electrode, which has the effect of suppressing the differential pressure between the battery electrodes. Conversely, when the air electrode pressure becomes higher than the fuel electrode pressure, the pressure width difference C becomes negative, and based on this, the regulator 17 outputs a signal d as the flow rate m.
A command to close the control valve 14 is issued. As a result, the amount of air flowing through the pipe 13 is reduced, and the amount of air in the pipe 9 is reduced by the amount of the reduction.

この空気量減少により配管9の圧力損失が減少し、結果
として空気極の圧力を低くし、同様に電池極間差圧を抑
制する。
This reduction in the amount of air reduces the pressure loss in the pipe 9, and as a result, the pressure at the air electrode is lowered, and the differential pressure between the battery electrodes is also suppressed.

本発明の実施例(第1図)と従来装置(第3図)にお【
プる負荷急変時の極間差圧の応答比較を第2図に示す。
The embodiment of the present invention (Fig. 1) and the conventional device (Fig. 3)
Figure 2 shows a comparison of the response of the differential pressure between poles when the load suddenly changes.

ここで、実線eは、時刻t1で負荷が急変した場合の従
来装@(第3図)の極間差圧応答であり、破11fは、
同様に本発明の装置(第1図)の極間差圧応答である。
Here, the solid line e is the interelectrode differential pressure response of the conventional system @ (Fig. 3) when the load suddenly changes at time t1, and the break 11f is:
Similarly, it is the interelectrode differential pressure response of the device of the present invention (FIG. 1).

図に示すごとく、本発明によれば、流量制御弁14の作
用によって、より良好に極間差圧を抑制することができ
る。また、第4図に示す従来装置では圧力制御弁11゜
12の誤動作が急激な極間差圧発生につながるのに対し
、本発明では仮に流m制御弁14が誤動作しても、それ
に伴う配管13の空気流量変動分が(ル間差圧に影響す
るだけであって、大きく急激な((間差圧の発生は回避
される。また本発明の装置は、第4図の装置に比較して
、圧縮鍬2の吐出口からタービン3の入口までの圧力差
がより小さく(7る構成であり、これによりシステム全
体として省エネルギー型とすることができる。
As shown in the figure, according to the present invention, the inter-electrode pressure difference can be suppressed more effectively by the action of the flow rate control valve 14. In addition, in the conventional device shown in FIG. 4, malfunction of the pressure control valves 11 and 12 leads to the sudden generation of differential pressure between poles, whereas in the present invention, even if the flow control valve 14 malfunctions, the associated piping The air flow rate fluctuation of 13 only affects the differential pressure between the channels, and the generation of a large and sudden differential pressure is avoided.The device of the present invention also As a result, the pressure difference between the discharge port of the compression hoe 2 and the inlet of the turbine 3 is smaller (7), thereby making the system as a whole energy-saving.

以上のように本発明装置は第3図および第4図に示す従
来例のいずれの欠点をも除去し、両者の利点を兼ね備え
たものということができる。
As described above, the device of the present invention can be said to eliminate both of the drawbacks of the conventional examples shown in FIGS. 3 and 4, and has the advantages of both.

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく、本発明によれば、極間差圧を良好に
抑制づ°ることができるとともに、流m制御弁ずなわち
流量制御手段の誤動作による急激な極間差圧の発生を回
避することができる。またシステム全体を省エネルギー
型すなわら高効率型に構成することができる。
As described above, according to the present invention, it is possible to satisfactorily suppress the differential pressure between the poles, and to avoid the sudden occurrence of the differential pressure between the poles due to malfunction of the flow control valve, that is, the flow rate control means. can do. Furthermore, the entire system can be configured to be energy-saving, that is, highly efficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は負荷
急変時の8i間差圧応答を本発明の装置と従来例とにつ
いて比較した特性線図、第3図、第4図は従来の異なる
燃料電池発電プラントの系統図である。 1・・・燃料電池、2・・・圧縮機、3・・・タービン
、4・・・改質装置、5・・・a合器、6・・・燃料流
量制御弁、7・・・空気流ffi fIII lit弁
、8・・・空気流通制御弁、9゜10.13・・・配管
、14・・・空気流通制御弁、15゜16・・・圧力検
出器、17・・・調節器。 出願人代理人  猪  股    清 も1図 62 囚 汽 3 図 h 4 凹
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a characteristic diagram comparing the 8i differential pressure response when the load suddenly changes between the device of the present invention and a conventional example, Figs. The figure is a system diagram of different conventional fuel cell power generation plants. DESCRIPTION OF SYMBOLS 1...Fuel cell, 2...Compressor, 3...Turbine, 4...Reformer, 5...A combiner, 6...Fuel flow control valve, 7...Air Flow ffi fIII lit valve, 8...Air circulation control valve, 9゜10.13...Piping, 14...Air circulation control valve, 15゜16...Pressure detector, 17...Adjuster . Applicant's agent Kiyoshi Inomata 1 Figure 62 Prisoner 3 Figure h 4 Concave

Claims (1)

【特許請求の範囲】 燃料極および空気極を有する燃料電池と、前記燃料極に
燃料を供給するための燃料源と、この燃料源から前記燃
料極への供給燃料流量を調節する手段と、前記空気極に
空気を供給するための圧縮機と、この圧縮機から前記空
気極への供給空気流量を調節する手段と、前記圧縮機を
駆動するタービンと、前記空気極からの排出空気および
前記燃料極からの排出燃料を混合して前記タービンに駆
動エネルギーとして供給する手段とを備えた燃料電池発
電プラントにおいて、 前記圧縮機の吐出口と前記空気極の出口との間を連通す
る配管と、 この配管内に介挿された流量制御弁と、 前記空気極と前記燃料極との間の圧力偏差を検出する差
圧検出手段と、 この差圧検出手段の検出出力に応じて前記圧力漏差が減
少する方向に前記流量制御弁を開閉制御する手段と を設けたことを特徴とする燃料電池発電プラント。
[Scope of Claims] A fuel cell having a fuel electrode and an air electrode, a fuel source for supplying fuel to the fuel electrode, means for adjusting the flow rate of fuel supplied from the fuel source to the fuel electrode, a compressor for supplying air to the air electrode; means for adjusting the flow rate of air supplied from the compressor to the air electrode; a turbine for driving the compressor; exhaust air from the air electrode and the fuel. A fuel cell power generation plant comprising: a means for mixing exhaust fuel from an electrode and supplying the mixture to the turbine as driving energy; a pipe communicating between a discharge port of the compressor and an outlet of the air electrode; A flow rate control valve inserted in the piping, a differential pressure detection means for detecting a pressure deviation between the air electrode and the fuel electrode, and the pressure leakage is determined according to the detected output of the differential pressure detection means A fuel cell power generation plant characterized by comprising means for controlling opening and closing of the flow control valve in the direction of decreasing flow rate.
JP59203259A 1984-09-28 1984-09-28 Power generation plant of fuel cell Pending JPS6180766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203259A JPS6180766A (en) 1984-09-28 1984-09-28 Power generation plant of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203259A JPS6180766A (en) 1984-09-28 1984-09-28 Power generation plant of fuel cell

Publications (1)

Publication Number Publication Date
JPS6180766A true JPS6180766A (en) 1986-04-24

Family

ID=16471063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203259A Pending JPS6180766A (en) 1984-09-28 1984-09-28 Power generation plant of fuel cell

Country Status (1)

Country Link
JP (1) JPS6180766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529674A (en) * 2013-08-29 2016-09-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG Pressure adjustment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529674A (en) * 2013-08-29 2016-09-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG Pressure adjustment method
US10497954B2 (en) 2013-08-29 2019-12-03 Daimler Ag Method for controlling pressure

Similar Documents

Publication Publication Date Title
JP2660097B2 (en) Fuel cell generator
CA2622400A1 (en) Fuel cell system, estimation device of amount of anode gas to be generated and estimation method of amount of anode gas to be generated
CN110197915B (en) Humidity control system for fuel cell
CN112421075A (en) Air supply system of fuel cell engine
JPH0622156B2 (en) Fuel cell device
CN113851680A (en) Cathode loop of fuel cell system and control method thereof
JP4338914B2 (en) Fuel circulation fuel cell system
US4226919A (en) Hydrogen/oxygen fuel cell
JPS6180766A (en) Power generation plant of fuel cell
JP3062830B2 (en) Fuel cell equipment
CN220121892U (en) Pressure regulating device and hydrogen fuel cell system including the same
JP3433959B2 (en) Operation and control method of fuel cell
CN116914189B (en) Drainage and exhaust method and fuel cell hydrogen circulation system
JPH0316750B2 (en)
JPS61176076A (en) Fuel battery equipment
JPS6180764A (en) Control method for fuel cell power generation system
JPS62160666A (en) Fuel cell power generation system
JPS62246266A (en) Fuel cell device
JPS62160667A (en) Fuel cell power generation system
JPS61168874A (en) Fuel cell power generating system
JPH0317354B2 (en)
JPS58164158A (en) Gas pressure control method of fuel cell
JPS60154471A (en) Air and fuel control system of fuel cell
JPS60208060A (en) Fuel cell power generating system
JPS61126774A (en) Fuel cell power generating system