JPS6180407A - Numerical control method - Google Patents

Numerical control method

Info

Publication number
JPS6180407A
JPS6180407A JP59201834A JP20183484A JPS6180407A JP S6180407 A JPS6180407 A JP S6180407A JP 59201834 A JP59201834 A JP 59201834A JP 20183484 A JP20183484 A JP 20183484A JP S6180407 A JPS6180407 A JP S6180407A
Authority
JP
Japan
Prior art keywords
machining
line
processing
coordinate system
numerical control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59201834A
Other languages
Japanese (ja)
Inventor
Kanichi Minazu
水津 寛一
Masamichi Kawakami
川上 正道
Yoshiaki Saito
斉藤 嘉章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Original Assignee
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koike Sanso Kogyo Co Ltd, Koike Sanso Kogyo KK filed Critical Koike Sanso Kogyo Co Ltd
Priority to JP59201834A priority Critical patent/JPS6180407A/en
Publication of JPS6180407A publication Critical patent/JPS6180407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To attain the application of a numerical control method even to a complicated section form by using a working line of an original coordinate system of a member to be worked as the numerical data to convert this data into the coordinates of a working machine and also designating the length of the working line to give it the segment interpolation. CONSTITUTION:An input part 34 supplies the numerical models F (X, Y, Z,-) of an original coordinate system; an input part 35 supplies the segment length DELTAL which divides a working line; and an input part 36 supplies a working speed V set along the working line respectively. A conversion processing part 37 converts the original coordinate system into motion equations G (x, y, z, theta,-) of working machines and tools. An arithmetic processing part 38 calculates a shift time DELTAT from the speed V of the original coordinate system set along the length DELTAL. While an arithmetic processing part 39 calculates the shift amounts DELTAx, DELTAy, DELTAz, DELTAtheta,- of each control shaft of a working machine system at the time T. A numerical control unit 40 uses the time DELTAT as a timing pulse to analyzes said shift amounts of each shaft into pulses. Thus the numerical control is attained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、数値制御により溶断、溶接など不連続な面、
円筒などの複雑な加工を行う方法C:係るものである。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention can be applied to discontinuous surfaces such as fusing, welding, etc. by numerical control.
Method C for performing complicated machining of cylinders, etc.: This is the method.

〈従来の技術〉 従来、数値制御を行うに際し、例えば口板を切断するN
C溶断罐に於いてはx、ylt標而で面工線を円弧と直
線で定義し、数値制御コントローラにより該加工線をパ
ルスに分解し、加工具を駆動させている。加工線がX−
y座(塁系で定義さ苅るものに対して加工具の移動の機
jfXもx−y座環系で構成され、rllに座標原点の
(1r正のみで、力a1線を定義したNC〕tマットで
そのまま加工が行われていた。
<Conventional technology> Conventionally, when performing numerical control, for example, the N
In the C fusing can, the surface machining line is defined by an arc and a straight line using the x and ylt targets, and the machining line is broken down into pulses by a numerical controller to drive the machining tool. Processing line is X-
The movement of the processing tool jfX is also composed of the x-y locus ring system, and rll is the coordinate origin (1r is only positive, and the NC that defines the force a1 line is ] The processing was carried out as is on the t-mat.

〈発明が解決しようとする問題点〉 ところが、例えば山形断面、H形断面など復歓の不連続
な面により構成された複雑な座標系をもつ条材、パイプ
のような円筒断面などの加工に於いては、加工線を定義
する座標系と加工機械の運動座標系を異にする為、座標
変換の演算を行う必要があること、また座標を変換した
場合例えば単純な円弧も最早それは円弧ではなくなり、
円弧や直線をパルス分解する従来の数値制御の方法では
加工することが出来ない、近年、ティーチングプレイバ
ック方式によるロボットを用いてこの種の加工を行うこ
とがある程度出来るようになったが、それでも加工線を
定義してこれを入力して行う数値■11B法は不可能で
あった。
<Problems to be solved by the invention> However, it is difficult to process strips with complex coordinate systems made up of discontinuous surfaces such as chevron-shaped sections and H-shaped sections, or cylindrical sections such as pipes. In this case, since the coordinate system that defines the machining line is different from the motion coordinate system of the machining machine, it is necessary to perform coordinate transformation calculations, and when the coordinates are transformed, for example, a simple circular arc is no longer a circular arc. gone,
In recent years, it has become possible to perform this type of machining to some extent using robots using the teaching playback method, which cannot be processed using conventional numerical control methods that resolve circular arcs and straight lines into pulses. The numerical method 11B, which involves defining a line and inputting it, was not possible.

本発明は、以上の被加工材上の加工線を加工機械の座標
系に変換すると共に既に変換された加工線が加工機械の
座標系では円弧と直線で定義されないことに対して従来
とは全く異なる数値制御法による方法を提供するもので
ある。
The present invention converts the machining line on the workpiece into the coordinate system of the processing machine, and is completely different from the conventional method in that the already converted machining line is not defined by arcs and straight lines in the coordinate system of the processing machine. It provides a method using different numerical control methods.

〈問題点を解決するための手段〉 図面を参照して上記問題点を解決する為の本発明に係る
一手段を説明すると、第1図に於いて1は数値化された
データの人力装置で、加工線をF(X、Y、・・・・・
・)で定義して入力するVt置、2は前記加工線F(X
、Y、・・・・・・)を加工機械の座標系に直し、加工
具の運動をa< x、y、z、・・・・・・)に変換す
る座標変換処理装置であり、また3は加工機械及び加工
具の運動をパルス補間し、デジタルコントロールを行う
制御機であり、4は加工機械である。
<Means for solving the problems> One means according to the present invention for solving the above problems will be explained with reference to the drawings. In Fig. 1, 1 is a human-powered device for digitized data. , processing line F(X, Y,...
) is the Vt position defined and input, 2 is the processing line F(X
, Y, ...) into the coordinate system of the processing machine, and transforms the motion of the processing tool into a < x, y, z, ...). 3 is a controller that performs pulse interpolation for the motion of the processing machine and processing tools and performs digital control; 4 is the processing machine.

第2図は上記の構成を更に具体的に説明する図で、−例
として山形断面条材に対する加工法の実施例を説明する
ものである。aに於いて5は山形断面条材を示し、6は
被加工材上の加工線で、加工線F(X、 Y、  Z、
・・・・・・)は被加工材の座標系で定義される。7〜
15は加工機械を示し、7はX軸の案内レールで、台車
8のX!!thはX軸運動となしたもの、9.10はZ
軸の基準レールと駆動部、11.12はy軸の基準軸と
駆動部を示し、x、  7゜2直交座標は通常被加工材
の座標軸x、’y、z直交座標と平行におかれる0次に
13はy軸アームの先端に設けられた節点でy−z平面
に回転角θを与えるようにしたもので、且つ加工具15
をx−z平面で回転せしめるようにした加工具取付アー
ム14により、y−z平面に対して角度φを与えるよう
にしたものである。
FIG. 2 is a diagram illustrating the above-mentioned configuration in more detail, and illustrates, as an example, an embodiment of a processing method for a strip having a chevron-shaped cross section. In a, 5 indicates a chevron-shaped cross-section strip, 6 is a processing line on the workpiece, and the processing line F (X, Y, Z,
...) is defined in the coordinate system of the workpiece. 7~
15 shows the processing machine, 7 is the guide rail of the X axis, and the X! ! th is the X axis motion, 9.10 is Z
The reference rail and drive part of the axis, 11.12 indicates the reference axis and drive part of the y-axis, and the x, 7°2 orthogonal coordinates are usually placed parallel to the coordinate axes x, 'y, z orthogonal coordinates of the workpiece. 0, 13 is a node provided at the tip of the y-axis arm, which gives a rotation angle θ on the y-z plane, and the processing tool 15
An angle φ is given to the yz plane by the processing tool mounting arm 14 which is configured to rotate on the xz plane.

ここで加工の与条件をF(X、Y、Z、 φ)とし、φ
は加工線の溶接のための剤種角度とすれば、加工機械、
加工具に対する運動方程式はG(x、y、z、  φ、
θ)になる。
Here, the processing conditions are F(X, Y, Z, φ), and φ
If is the chemical type angle for welding the processed line, then the processing machine,
The equation of motion for the processing tool is G(x, y, z, φ,
θ).

次に第3図(a)及び第3図(b)は山形断面材上の加
工線と加工具の関係を示し、第3図(a)は傾斜切断を
伴う場合、第3図(b)は形の加工を行う場合を示す0
図に於いて16は被加工山形断面材、17は被加工材上
の加工線、18は加工具であって第3図(a)の傾斜切
断を必要とする場合の加工線の定義はX、Y、Z直交座
標以外にY−Z平面に対する傾斜切断角φが与条件とな
り、加工線の定義はF(X、Y、Z、 φ)で与えられ
る。加工具18は■■・・・・・・の順に位置をかえて
連続的に加工を行う。
Next, FIGS. 3(a) and 3(b) show the relationship between the machining line and the machining tool on the chevron-shaped cross-section material, and FIG. 3(a) shows the relationship between the machining line and the machining tool. 0 indicates when processing the shape
In the figure, 16 is the chevron-shaped cross-section material to be machined, 17 is the machining line on the workpiece, and 18 is the machining tool. The definition of the machining line when oblique cutting is required in Figure 3 (a) is , Y, Z orthogonal coordinates, the oblique cutting angle φ with respect to the Y-Z plane is a given condition, and the definition of the processing line is given by F(X, Y, Z, φ). The processing tool 18 changes its position in the order of ■■... and performs processing continuously.

第4図は山形断面材のコーナ部切断に於ける加工具の運
動を説明するもので、これをY−ZT−面で示したもの
である0図に於いて19は被加工材、20は加工具を示
し、■■・・・・・・は加工具20の軌跡を示す、21
に示すコーナ部に於いては加工具20はY−Z平面上に
於いて回転角θを与えて漸次姿勢をかえる必要があり、
これに付随して傾斜切断の場合は傾斜面の寸法を考慮し
てX軸方向の位置も変える必要がある。従って前述の如
く、加工機械の運動はG(x、  y、  z、  φ
、θ)で与えられることになる。
Figure 4 explains the movement of the processing tool when cutting the corner part of a chevron-shaped cross-section material. 21 indicates a processing tool, and ■■... indicates the locus of the processing tool 20.
At the corner shown in , it is necessary to gradually change the posture of the processing tool 20 by applying a rotation angle θ on the Y-Z plane.
Concomitantly, in the case of inclined cutting, it is necessary to change the position in the X-axis direction in consideration of the dimensions of the inclined surface. Therefore, as mentioned above, the motion of the processing machine is G(x, y, z, φ
, θ).

次に第5図は円筒断面のパイプ加工の例を示し、図に於
いて22は被加工バイブ材で、パイプの軸心をX軸、垂
直面をZ軸、それと直交する軸をY軸として定義される
。23は加工線、24は加工具を示し、この加工綿23
は和文わる2円筒の相貫線の式として、例えば特願昭5
9−94582号などに明記されている。またパイプの
接手の開先条件がAWS、AP lなどの規格に準拠す
るためには、加工具24に加工具24の加工点を中心と
し、且つ垂直軸を中心とした円錐運動を与える必要があ
る。
Next, Figure 5 shows an example of pipe machining with a cylindrical cross section. In the figure, 22 is a vibrator material to be machined, the axis of the pipe is the X axis, the vertical plane is the Z axis, and the axis perpendicular to it is the Y axis. defined. 23 indicates a processing line, 24 indicates a processing tool, and this processed cotton 23
For example, as a formula for the mutual line of two cylinders written in Japanese,
9-94582 etc. In addition, in order for the groove conditions of the pipe joint to comply with standards such as AWS and AP1, it is necessary to give the processing tool 24 a conical motion centered on the processing point of the processing tool 24 and centered on the vertical axis. be.

25〜23は加工機械の構成例を示し、x、y、z座標
軸はX、Y、Z座標軸に平行におかれている。
Reference numerals 25 to 23 show configuration examples of processing machines, and the x, y, and z coordinate axes are placed parallel to the X, Y, and Z coordinate axes.

ここで25はX軸基準レール、26はX軸方向駆動台車
、27.28は2軸基準のレールと駆動部、29.30
はy軸基準軸と駆動部、31は加工具の節点部であり、
32に示す円誰運動を行うものである。従って加工具に
対しては、例えばX−2平面及びy−z平面の角度ξ、
ηを与え、且つパイプ材22に対し、例えばチャック、
ターニングローラなどよりなる回転装置33により回転
させ、所要の加工を行わせることが出来る。パイプの加
工線に対しては主管径D、技管径d、肉厚t、交角α、
両管の軸の偏りδ及び溶接接手の開先角度に対する規格
値Wが与えられ、これらは数式モデルF(D、d、t。
Here, 25 is the X-axis reference rail, 26 is the X-axis direction drive cart, 27.28 is the two-axis reference rail and drive unit, 29.30
is the y-axis reference axis and the drive part, 31 is the nodal part of the processing tool,
This is a circular movement shown in 32. Therefore, for the processing tool, for example, the angle ξ of the X-2 plane and the y-z plane,
η, and for the pipe material 22, for example, a chuck,
It can be rotated by a rotating device 33 consisting of a turning roller or the like to perform required processing. For the pipe processing line, main pipe diameter D, technical pipe diameter d, wall thickness t, intersection angle α,
Standard values W for the deviation δ of the axes of both pipes and the groove angle of the weld joint are given, and these are expressed by a mathematical model F (D, d, t.

α、δ、w)で表される。一方、加工機械に対しては、
加工具24の運動方程式として、G(X、  y。
α, δ, w). On the other hand, for processing machines,
The equation of motion of the processing tool 24 is G(X, y.

2、θ、ξ、η)に変換して制御する必要がある。2, θ, ξ, η) and control.

これらの解説は前述の特願昭59−94582号に記述
されている。
These explanations are described in the aforementioned Japanese Patent Application No. 59-94582.

以上2種類の実施例に於いて、何れも被加工材上の加工
線の座標と加工機械の座標系は一敗せず、その間座標変
換を必要とするが、波力u工材、加工機械の何れも幾何
学的に表現し得るので、座1望の変換は複雑ではあるが
不可能ではない。
In the above two types of embodiments, the coordinates of the machining line on the workpiece and the coordinate system of the processing machine are consistent, and coordinate transformation is required between them. Both of these can be expressed geometrically, so the transformation of the 1st position is complicated but not impossible.

しかしながら、両者に共通して加工機械の運動方程式は
円弧と直線の補間式で与えられないので、従来公知の数
値制御法を適用することは不可能であるが、この点本発
明に於いては、加工機械の運動方程式を必要な精度に於
いて線分補間を行うことを特徴としている。
However, since the equation of motion of the processing machine is not given by an interpolation formula between circular arcs and straight lines in both cases, it is impossible to apply conventionally known numerical control methods. , is characterized by performing line segment interpolation of the equation of motion of the processing machine with the necessary precision.

第6図は上記加工線の線分捕間の原理を説明する図で、
図に於いて、34はQ(x、y、z、 ・・・・・・)
で定義される加工線、p、、p、、p、は加工線上の点
とし、35は加工線を2点により分割された線分を示し
、PDPJ、PJPm・・・・・・を直線と考えるか、
PiPjP&を円弧と考えてもよ(、加工の精度に照ら
して分割点の間隔を増減してもよい。
FIG. 6 is a diagram explaining the principle of line segmentation of the processed line,
In the figure, 34 is Q (x, y, z, ...)
The machining line p, , p, , p, defined by is a point on the machining line, 35 indicates a segment where the machining line is divided by two points, and PDPJ, PJPm... are straight lines. Do you think about it?
PiPjP& may be considered as a circular arc (and the interval between dividing points may be increased or decreased in light of processing accuracy.

被加工材の加工線に対する元座標系に対する方程式F(
X、 Y、  Z、・・・・・・)を加工機械及び加工
具に対する運動方程式〇(x、y、z、・・・・・・)
に変換することは現在のコンピュータの最も得念とする
処であるが、これを制御パルスのレベルにまで細分化し
、線分の代わりに1パルスに対応する点のレベルで演算
することは処理時間の一1約上不可能である。これを加
工線上の間隔を置いた点座標・・・・・・p、、pJ、
p、・・・・・・として求める場合は、充分な演算処理
時間が許されることになる。
Equation F(
X, Y, Z,...) as the equation of motion for the processing machine and processing tool〇(x, y, z,...)
The most advantageous feature of current computers is to convert this to the level of control pulses, and calculating at the level of points corresponding to one pulse instead of line segments reduces the processing time. This is almost impossible. Point coordinates with intervals on the machining line... p, , pJ,
When calculating as p, . . . , sufficient arithmetic processing time is allowed.

輪郭制御を行う数値制御に於いては多数制御軸のある点
から点までの移動時間を揃える必要かある0元座標系の
加工線F (X、  Y、  Z、・・・・・・)に於
いて線分の長さΔLは で表され、ΔLを加工する速度をVとすれば時間ΔTは ■ で示される。
In numerical control that performs contour control, it is necessary to align the travel time from one point to another for multiple control axes. The length ΔL of the line segment is expressed by .If ΔL is the machining speed V, the time ΔT is expressed by .

一方、加工機械の運動方程式〇(x、  y、  z。On the other hand, the equation of motion of the processing machine 〇(x, y, z.

θ、・・・・・・)より、ΔT時間内の各軸の移動路F
JΔx、Δy、Δz、Δθ、・・・・・・が求められ、
加工機械はΔ×、Δy、Δス、Δθ、・・・・・の移動
頃と共通な移動時間ΔTで制御される。
θ, ...), the movement path F of each axis within ΔT time
JΔx, Δy, Δz, Δθ, ... are calculated,
The processing machine is controlled using a common movement time ΔT for the movements of Δx, Δy, Δs, Δθ, . . . .

次に第7図は上記の処理過程の解脱例を示すものであり
、図に於いて34は元座標系の数値モデルF(X、Y、
Z、・・・・・・)の入力部、35は加工線を分割する
線分長ΔLの人力部、36は加工線に沿う加工速度Vの
入力部、37は元座標系を加工aW、加工具の運動方程
式に変換処理する部分、また3日は元座標系に於いて線
分ΔLを移動する速度■より、移動時間ΔTを演算処理
する部分、39は前記ΔTなる時間に加工機械系の各f
ill ?11軸の移動する量Δx、Δy、Δz、Δθ
、・・・・・・を演算処理する゛部分である。更に40
はΔTをタイミングクロックパルスとしてΔx、Ay、
  ΔZ、Δθ、・・・・・・をパルスに分解する数値
ftl!御ユニツユニットx、 41y 。
Next, FIG. 7 shows an example of the release of the above processing process. In the figure, 34 is the numerical model F (X, Y,
35 is a human power section for the line segment length ΔL that divides the machining line, 36 is an input part for the machining speed V along the machining line, 37 is for machining the original coordinate system aW, The part that converts the processing tool into the equation of motion, and the part that calculates the moving time ΔT from the speed of moving the line segment ΔL in the original coordinate system (3), and the part 39 that calculates the processing machine system at the time ΔT. each f
ill? Amount of movement of 11 axes Δx, Δy, Δz, Δθ
, . . . is the part that performs calculation processing. 40 more
are Δx, Ay, with ΔT as the timing clock pulse,
Numerical value ftl that decomposes ΔZ, Δθ, ... into pulses! Go unit x, 41y.

・・・・・・は各制御軸に対する各軸毎のNCサーボで
あり、42は加工機械である。
... is an NC servo for each axis for each control axis, and 42 is a processing machine.

く作用〉 本発明の制御方法によれば、被加工材の元座標系に於け
る加工線の数値データを加工機械の制御軸、即ち座標系
に対する加工具の運動方程式に変え、且つ元座標系に於
ける加工線の線分長を指定し、加工速度を外挿すること
により、線分間の移動時間ΔTを定めると共に加工具の
運動方程式よりΔT時間内の制御軸の移動量Δx、Δy
、Δ2゜Δθ、・・・・・・を求め、ΔTを各動作軸の
共通のタイミングクロックとして公知のパルス分υj法
により数値制御を行わせることが出来るものである。
Effect> According to the control method of the present invention, the numerical data of the machining line in the original coordinate system of the workpiece is converted into the equation of motion of the processing tool with respect to the control axis of the processing machine, that is, the coordinate system, and By specifying the line segment length of the machining line and extrapolating the machining speed, the moving time ΔT for the line segment is determined, and the movement amount Δx, Δy of the control axis within the ΔT time is calculated from the equation of motion of the processing tool.
, Δ2° Δθ, . . . , and numerical control can be performed using the well-known pulse division υj method using ΔT as a common timing clock for each operating axis.

〈発明の効果〉 本発明の方法は上述の如く数値データを入力して行う被
加工材の元座標系に於ける加工線を数値データとして与
えこれを加工機械の座標に変換し、且つ加工線の線分長
を指定して加工線を線分補間するという独自の手段によ
り加工機械の制御軸に対して従来のさん孔テープなどに
よるNCフォマフト作成を省(ことが出来るものである
<Effects of the Invention> The method of the present invention is performed by inputting numerical data as described above, giving the machining line in the original coordinate system of the workpiece as numerical data, converting it into the coordinates of the processing machine, and This unique method of interpolating the machining line by specifying the line segment length of the machine eliminates the need to create an NC formaft using conventional punch tape for the control axis of the machining machine.

又例えばパイプの切断や溶接、複数の不連続平面より構
成される山形材、H型材などの複雑な断面形状のものに
対しても簡単に適用し得るものであり、この種の被加工
材に対し従来の方法ではNCフォマフトによるさん孔テ
ープの作成すら不可能であったことからすれば、数値制
御の通用分野の拡大に多大の寄与を為すことが出来る。
In addition, it can be easily applied to cutting and welding pipes, and to objects with complex cross-sections such as angle-shaped materials and H-shaped materials made up of multiple discontinuous planes, making it suitable for these types of workpieces. On the other hand, considering that it was impossible to create a perforated tape using an NC formaft using conventional methods, this method can greatly contribute to expanding the field of application of numerical control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法のブロンク説明図、第2図は
山形断面材を加工する場合の説明図、第3図は山形断面
材を加工する場合の加工線と加工具の関係説明図、第4
図は山形断面材のコーナ一部切断に於ける加工具の運動
説明図、第5図は円筒断面材の加工説明図、第6図は加
工線の線分補間の原理説明図、第7図は加工処理過程の
説明図である。 1は入力装置、2は座標変換処理装置、3は制御機、4
,42は加工機械、5.16.19.22は被加工材、
6.17.23.34は加工線、7,9゜11、25.
27.29は基準軸、15.1B、 20.24は加工
具、34.36は入力部、35は線分、37は変換処理
部、38.39は演算処理部、40は数値制御ユニット
、θ、φ、ξ、ηは角度である。
Fig. 1 is an explanatory diagram of a bronc according to the method according to the present invention, Fig. 2 is an explanatory diagram of machining a chevron-shaped cross-section material, and Fig. 3 is a diagram explanatory of the relationship between the machining line and the processing tool when machining a chevron-shaped cross-section material. , 4th
The figure is an explanatory diagram of the movement of the processing tool when cutting part of the corner of a chevron-shaped cross-section material, Figure 5 is an explanatory diagram of machining of a cylindrical cross-section material, Figure 6 is an explanatory diagram of the principle of line segment interpolation of machining lines, and Fig. 7 is an explanatory diagram of the processing process. 1 is an input device, 2 is a coordinate transformation processing device, 3 is a controller, 4
, 42 is a processing machine, 5.16.19.22 is a workpiece,
6.17.23.34 are processed lines, 7.9°11.25.
27.29 is a reference axis, 15.1B, 20.24 is a processing tool, 34.36 is an input section, 35 is a line segment, 37 is a conversion processing section, 38.39 is an arithmetic processing section, 40 is a numerical control unit, θ, φ, ξ, and η are angles.

Claims (2)

【特許請求の範囲】[Claims] (1)溶断、溶接等不連続な面や円筒面等の複雑な加工
をする場合の数値制御方法に於いて、被加工材の元座標
系に対する加工線F(X、Y、Z、・・・・・・)を入
力し、加工機械及び工具の構成座標系に於ける運動方程
式G(x、y、z、θ、・・・・・・)に演算処理する
と共に、元座標系の加工線をΔLなる線分長及び加工速
度Vを外挿して、線分ΔLの加工時間ΔTを求め、且つ
これに対応する加工機械の運動量ΔG(Δx、Δy、Δ
z、Δθ、・・・・・・)を求め、ΔTとΔx、Δy、
Δz、Δθ、・・・・・・を入力し、更にパルス分割を
行うことを特徴とした数値制御方法。
(1) In numerical control methods for complex machining of discontinuous surfaces, cylindrical surfaces, etc. such as fusing, welding, etc., the machining line F (X, Y, Z,... ...) is input and processed into the equation of motion G (x, y, z, θ, ...) in the constituent coordinate systems of the processing machine and tool, and the machining of the original coordinate system is performed. The line segment length ΔL and the machining speed V are extrapolated to find the machining time ΔT of the line segment ΔL, and the corresponding momentum ΔG of the processing machine (Δx, Δy, Δ
z, Δθ, ......), and calculate ΔT, Δx, Δy,
A numerical control method characterized by inputting Δz, Δθ, . . . and further performing pulse division.
(2)溶断、溶接等不連続な面や円筒面等の複雑な加工
をする場合の数値制御方法に於いて、被加工材の元座標
系に対する加工線F(X、Y、Z、・・・・・・)、加
工速度V、加工線補間線分長ΔLを与えて加工線の座標
系に対する加工機械系の運動方程式G(x、y、z、θ
、・・・・・・)に変換し、更にパルス分割を行うこと
を特徴とした数値制御方法。
(2) In numerical control methods for complex machining of discontinuous surfaces, cylindrical surfaces, etc. such as fusing, welding, etc., the machining line F (X, Y, Z,... ...), machining speed V, machining line interpolation line segment length ΔL, and equation of motion G (x, y, z, θ) of the machining machine system with respect to the coordinate system of the machining line.
,...), and further performs pulse division.
JP59201834A 1984-09-28 1984-09-28 Numerical control method Pending JPS6180407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201834A JPS6180407A (en) 1984-09-28 1984-09-28 Numerical control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201834A JPS6180407A (en) 1984-09-28 1984-09-28 Numerical control method

Publications (1)

Publication Number Publication Date
JPS6180407A true JPS6180407A (en) 1986-04-24

Family

ID=16447664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201834A Pending JPS6180407A (en) 1984-09-28 1984-09-28 Numerical control method

Country Status (1)

Country Link
JP (1) JPS6180407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158749A (en) * 2006-12-22 2008-07-10 Nissan Tanaka Corp Control method for bevel angle of torch and control device for bevel angle of torch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158749A (en) * 2006-12-22 2008-07-10 Nissan Tanaka Corp Control method for bevel angle of torch and control device for bevel angle of torch

Similar Documents

Publication Publication Date Title
Bolmsjö et al. Robotic arc welding–trends and developments for higher autonomy
JPH1190774A (en) Method for deciding feed rate adaptable to machine tool
JP2728399B2 (en) Robot control method
Sato et al. Motion accuracy enhancement of five-axis machine tools by modified CL-data
JPH08118205A (en) Main spindle normal direction control method of numerically controlled machine tool
JPH08106313A (en) Generating method for elliptic curve of numerically controlled machine tool
US20020071732A1 (en) Corner cutting method and NC controller
Sun et al. A novel tool path smoothing algorithm of 6R manipulator considering pose-dependent dynamics by designing asymmetrical FIR filters
GB2248571A (en) Computer controlled work treating robot
JP2006227701A (en) Circular machining command creation device, method and program
JPS6180407A (en) Numerical control method
JPH0570162B2 (en)
Chen et al. Trajectory planning for automated robotic deburring on an unknown contour
JPS60230207A (en) Interlocking controlling system of industrial robot and positioner
JP2007172325A (en) Method of machining free curve and numerical control device
JP4528577B2 (en) Industrial robot
JPS6199573A (en) Pipe cutter and numerical control method in pipe cutting
JPS59194213A (en) Arc interpolating method of robot
JPH05265537A (en) Automatic teaching method for robot
JPS63303404A (en) Numerical controller
JPS60231207A (en) Command generating system of multi-axis servo system
JP3089027B2 (en) Robot profiling control device
Bollinger Using a tactile sensor to guide a robotic welding machine
JPS6163359A (en) Working device of angle bar
JPH06262562A (en) Operation teaching method for working robot