JPS6163359A - Working device of angle bar - Google Patents

Working device of angle bar

Info

Publication number
JPS6163359A
JPS6163359A JP18362684A JP18362684A JPS6163359A JP S6163359 A JPS6163359 A JP S6163359A JP 18362684 A JP18362684 A JP 18362684A JP 18362684 A JP18362684 A JP 18362684A JP S6163359 A JPS6163359 A JP S6163359A
Authority
JP
Japan
Prior art keywords
angle
torch
axis
coordinate system
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18362684A
Other languages
Japanese (ja)
Other versions
JPH0312995B2 (en
Inventor
Yoshio Koike
小池 義夫
Kanichi Minazu
水津 寛一
Shigeo Mori
森 繁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Original Assignee
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koike Sanso Kogyo Co Ltd, Koike Sanso Kogyo KK filed Critical Koike Sanso Kogyo Co Ltd
Priority to JP18362684A priority Critical patent/JPS6163359A/en
Publication of JPS6163359A publication Critical patent/JPS6163359A/en
Publication of JPH0312995B2 publication Critical patent/JPH0312995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/287Supporting devices for electrode holders

Abstract

PURPOSE:To execute a numerical control working by providing an upright column and an arm for running straight in the truck driving direction and the column on a truck for executing a linear driving, positioning a straight running coordinate, and also rotating the arm. CONSTITUTION:A horizontal moving truck 23 has an upright column 25, and driven by a servo-motor 24 along a guide rail 22 of the (x) axis direction. A truck 27 is moved in the vertical direction by a (z) axis driving servo-motor 26, and executes positioning of a (z) axis. A torch supporting arm 28 is guided by the (z) axis truck 27, and positioning of a (y) axis is executed by a (y) driving servo-motor 29. An arm shaft tip block 30 controls a turning angle theta by a servo-motor 31, and a driving mechanism 32 gives a groove angle to a torch 35. According to this mechanism, each control shaft for converting a coordinate of a working line to a coordinate of a machine can be controlled, therefore, a numerical control working can be executed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は山形材の溶断、i8接を行う加工装置に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a processing device for fusing and welding angle-shaped materials.

〈従来の技術〉 山形材はその形状断面でフランヂ面、ウェブ面の2つの
面をもち、この山形材の切断或いは溶接をイ?う装置に
於いては材料の形状に対応する加工機械との対応が平面
の加工のように加工線と機構部の連動が一敗しない。従
って加工線の与条件(座標)を加工a@の座標系に移し
換える必要があった。
<Prior art> An angle-shaped material has two surfaces, a flange surface and a web surface, in its cross section, and it is difficult to cut or weld this angle-shaped material. In this equipment, the correspondence between the processing machine and the shape of the material is the same as when processing a flat surface, and the interlocking of the processing line and the mechanical part never fails. Therefore, it was necessary to transfer the given conditions (coordinates) of the machining line to the coordinate system of machining a@.

〈発明が解決しようとした問題点〉 上記の如〈従来の山形材の加工装置は加工線の与条件(
座tりを加工機械の座標系に移し換える必要がある為数
値制御に於いて、NCフォマフトを作成し数値制御機械
によって加工することが出来ず、コーナ部の加工に際し
てトーチのhk回を必要゛としたなどの解決が得られな
い為に、山形材を自動的に溶断、溶接することが出来な
い問題があっ1こ。本発明は従来の前記問題点を根本的
に解決するものである。
<Problems sought to be solved by the invention> As mentioned above, the conventional machining equipment for angle-shaped materials does not meet the given conditions (
Because it is necessary to transfer the seat to the coordinate system of the processing machine, it is not possible to create an NC formaft and process it with a numerically controlled machine in numerical control, and it is necessary to use the torch HK times when processing the corner part. There is one problem that cannot be solved automatically such as cutting and welding angle-shaped materials. The present invention fundamentally solves the above-mentioned conventional problems.

〈問題点を解決するための手段〉 次に図面をり昭して上記間顕、占を解決する/)の本発
明に係る一手段を説明する。第1図は山形材の形状断面
を示す図で、図に於いてlaは山形材のウェブ面、1b
は山形材のフランヂ面、2は山形材の背部1.3は山形
材の内面でコーナー部の1曲部の中心点を示し、フラノ
ヂ厚みT、ウェブ厚みt、内面コーナー部の曲率半径r
とウェブ及びフランチの長さW及びrで断面形状が現定
さ1一般にT≠tで且つT>tとなっている。
<Means for Solving the Problems> Next, referring to the drawings, one means according to the present invention for solving the above problems will be explained. Fig. 1 is a diagram showing a cross-section of the shape of the angle-shaped material, and in the figure, la is the web surface of the angle-shaped material, 1b
is the flange surface of the angle-shaped member, 2 is the back of the angle-shaped member 1.3 is the inner surface of the angle-shaped member, and indicates the center point of one curved part of the corner part, the flange thickness T, the web thickness t, the radius of curvature of the inner corner part r
The cross-sectional shape is determined by the lengths W and r of the web and the flange.1 Generally, T≠t and T>t.

第2図は山形材の切断形状の例を示し、(a)図は型切
断、(b)図は溶接の為に前核された切断を示す。又1
a、■bはそれぞれウェブ及びフランチを示し4a、4
bは表面(又は背側)と内面(又は腹側)の切断線を示
す。(b)図の切断線は裏開先の場合内面の切断4bを
一直キ♀に揃えると、切断厚みにより表面の切断縁4a
か切断部の厚さによって一直線になることはなく図に於
いてコーナー部5は特に複雑な曲線になる。
FIG. 2 shows examples of cut shapes of angle-shaped materials, (a) shows die cutting, and (b) shows prenucleated cutting for welding. Again 1
a and ■b indicate web and flange, respectively 4a and 4
b indicates the cutting line between the surface (or dorsal side) and the inner surface (or ventral side). (b) If the cutting line in the figure is a back bevel, if the cut 4b on the inner surface is aligned in a straight line, the cut edge 4a on the surface will depend on the thickness of the cut.
However, depending on the thickness of the cut portion, the cut portion does not form a straight line, and the corner portion 5 in the figure has a particularly complicated curve.

第3図は傾斜切断に於いて板厚の変化と(オ料の裏面と
表面の切断線の位置のズレを説明する図で、6は切断ト
ーチ、7は材料の表面、8は材料の裏面、更に9は材料
の裏面の切断線を示す。2種の板厚をt、、L、とし、
開先の角度をαとすれば表面7に対する切り込み点10
a、Jobの下面の切断縁よりのズレの寸l去はそれぞ
れ板厚’l+t!に対してt、 −tan α、5・t
an αとなる。
Figure 3 is a diagram illustrating the change in plate thickness and the positional deviation of the cutting lines on the back and front surfaces of the material during oblique cutting, where 6 is the cutting torch, 7 is the front surface of the material, and 8 is the back surface of the material. , and 9 indicates the cutting line on the back side of the material. Let the two types of plate thickness be t, , L,
If the angle of the groove is α, the cut point 10 on the surface 7
a, the deviation of the bottom surface of the job from the cutting edge is the plate thickness 'l + t! t, −tan α, 5・t
an α.

第4図は山形材の断面に対する切断の状況と切断トーチ
の運動を示し、11は断面で筋目は切断の方向、12は
断面のコーナー部の曲率の中心で切断トーチ13の回転
の中心になる。14はトーチの位置の基準点で且つトー
チの回転の支点、15はトーチの支点14の動線を示す
。切断板厚はコーナー部に於いて連続的に変化する状況
も併せて示している。
Figure 4 shows the cutting situation and the movement of the cutting torch for the cross section of the angle-shaped material, where 11 is the cross section, the lines are in the cutting direction, and 12 is the center of curvature of the corner of the cross section, which is the center of rotation of the cutting torch 13. . Reference numeral 14 indicates a reference point for the position of the torch and a fulcrum for rotation of the torch, and 15 indicates a flow line of the fulcrum 14 of the torch. It also shows how the cut plate thickness changes continuously at the corners.

第5図は更に詳しく切断トーチの動きを示したもので、
16は被加工山形材、17は切断トーチで18は切断ト
ーチの回転、旋回、移動の支点を示し、19はトーチの
動線、20は開先切断のためのトーチ頭角φ設定、21
はコーナ部切断のための旋回角θの動きを示し、これら
を整理すると、山形材切断のための切断トーチ17の動
きは切断線に対しては座標系g (x、  y、  z
、  θ、φ)とし、x、  y。
Figure 5 shows the movement of the cutting torch in more detail.
16 is the angle-shaped material to be processed, 17 is the cutting torch, 18 is the fulcrum of rotation, rotation, and movement of the cutting torch, 19 is the flow line of the torch, 20 is the torch head angle φ setting for bevel cutting, 21
indicates the movement of the turning angle θ for corner cutting, and when these are organized, the movement of the cutting torch 17 for cutting the angle-shaped material is expressed by the coordinate system g (x, y, z) with respect to the cutting line.
, θ, φ), and x, y.

2座標、トーチの傾角φ、コーナ部の旋回角θで定義す
ることが出来る。
It can be defined by two coordinates, the inclination angle φ of the torch, and the turning angle θ of the corner portion.

第6図はx、  y、zにより表される直交座標及びθ
、φで示される山形材コーナ部の旋回とトーチ角度を与
える回転座標系の5!′h制御を行う機構の実施例を示
し、図に於いて22〜24はX軸駆IFII系を示し、
22はX軸方向の運動の案内レール、23は案内レール
22に沿い駆動用サーポモーク24により駆動され、X
軸位置を連続的に与える水平移動台車である。25〜2
7は2軸駆動系を示し、25はX軸に対して垂直方向に
台車23に固定されX軸方向を案内するコラムとレール
で26に示す2軸駆動用サーボモータにより垂直上下す
る台車27で2軸の位置決めを行う。28〜29はy@
駆動系を示し28はトーチ支持アームでZ軸台車27に
案内され、yI:h駆動サーボモータ29により位置決
めされる。内、X軸方向はX軸、z軸に直交する方向と
され11;1記22〜29の典構によりX、Y、Z軸の
位置決め制御が行われる。、30〜35はアーム先端に
■合わさねたト−チ旧持機構で、30は山形tオのコー
ナ部でトーチを旋回する機構を含むアーム先端ブロック
であり、θ軸駆動用サーボモータ31により旋回角θを
制御する。32はトーチ35に開先角度を与えるφ軸駆
動用モーフにより駆動するi椹で、アーム先端プロ7り
30に組みつけられ旋回角度θをトーチアーム33に(
云える。34はトーチアーム33とトーチ35を連結す
るホルダ一部分を示す。実際の加工作業はX。
Figure 6 shows the orthogonal coordinates represented by x, y, z and θ.
, 5 of the rotating coordinate system that gives the turning of the corner of the angle-shaped material and the torch angle indicated by φ! An example of a mechanism for performing 'h control is shown, and in the figure, 22 to 24 indicate the X-axis drive IFII system,
22 is a guide rail for movement in the X-axis direction; 23 is driven along the guide rail 22 by a driving serpo moke 24;
This is a horizontally movable trolley that continuously provides axis position. 25-2
7 shows a two-axis drive system, 25 is a column and rail fixed to the cart 23 in a direction perpendicular to the X-axis and guided in the X-axis direction, and 26 is a cart 27 which is vertically moved up and down by a servo motor for driving the two-axes. Performs two-axis positioning. 28-29 is y@
A drive system 28 is a torch support arm guided by the Z-axis truck 27, and positioned by a yI:h drive servo motor 29. Among them, the X-axis direction is a direction perpendicular to the X-axis and the Z-axis, and positioning control of the X-, Y-, and Z-axes is performed according to the standard structure 11; 1, 22-29. , 30 to 35 are the torch holding mechanisms fitted to the arm tips, and 30 is the arm tip block that includes a mechanism for rotating the torch at the corner of the chevron. Control the turning angle θ. Reference numeral 32 is an i-shape driven by a φ-axis driving morph that gives the torch 35 a bevel angle, and is assembled to the arm tip pro 7 ri 30 to set the turning angle θ to the torch arm 33 (
I can say that. Reference numeral 34 indicates a portion of a holder that connects the torch arm 33 and the torch 35. The actual processing work is X.

y、z、  θは相互に関連があって連動せしめる必要
があり、φ軸に対しては定角とされる場合が多いが、時
に連動を必要としたことがある。
y, z, and θ are related to each other and must be interlocked, and although they are often set at a constant angle with respect to the φ axis, interlocking is sometimes required.

第7図はこれら角座標軸の連動の関係を更に詳しく説明
する図で、図に於いて36はX軸、37はz軸、38は
y軸、39はθ軸、40はφ軸を示し、41はトーチ支
持アーム、42はトーチを示し、Pは山形材表面の加工
線上の点、Qはトーチの把持点でトーチ傾斜角の回転中
心、Rはトーチ旋回の回転中心点を示す。
FIG. 7 is a diagram explaining in more detail the interlocking relationship of these angular coordinate axes. In the figure, 36 is the X axis, 37 is the Z axis, 38 is the Y axis, 39 is the θ axis, 40 is the φ axis, 41 is a torch support arm, 42 is a torch, P is a point on the machining line on the surface of the angle-shaped material, Q is the gripping point of the torch and is the center of rotation of the torch inclination angle, and R is the center of rotation of the torch.

次に山形材表面の加工′!3fがf  (x、  Y、
  Z。
Next, machining the surface of the chevron! 3f is f (x, Y,
Z.

φ)で与えられた場合を想定し、X、Y、Z、  θ。Assuming the case given by φ), X, Y, Z, θ.

φの相関を求めるために第8図によって説明する。In order to obtain the correlation of φ, an explanation will be given with reference to FIG.

図に於いてはトーチのI+4′I角中5よ0°の場合を
示し相関IFJI係を求めるに際してΦの1iタデξを
付加して説明する。43は山形材、44はトーチ、45
はトーチ支持アーム、(P、、  P、・・・・・・ 
R7)、(Q +、Q2・・・・・Q7)、(R,、R
2・・・・・R?)は人〜、、+’I、 7図に示した
切断点、及びトーチの傾斜、旋回の支点に対応するもの
であり、46はR点の軌跡を示す。又S但は山形材裏面
の加工線上の点を示す。
The figure shows the case of 5-0 degrees in the I+4'I angle of the torch, and when calculating the correlation IFJI coefficient, 1i tad ξ of Φ will be added for explanation. 43 is a chevron, 44 is a torch, 45
is the torch support arm, (P,, P,...
R7), (Q +, Q2...Q7), (R,, R
2...R? ) corresponds to the cutting point shown in Figure 7 and the fulcrum of tilting and turning the torch, and 46 indicates the locus of point R. Also, S indicates a point on the processing line on the back side of the chevron.

第8図及び第9図に示した幾何モデルにより、裏開先の
場合のP点及びR点の軌跡(x、  ”i’、  Z)
、(X、Y、Z)とθとの相関を求めると第8図に処1
して裏開先のある場合は加工線はP′点で与えられPM
 x、、Y、、Z、)からx、  y、2座標系への変
換を要し、表1のようになる。又、相関のパラメータと
し、I?Qの長さをβ、PQの長さヲh cosφ、フ
ランヂの厚さをT、ウェブの厚さをLとした。又■■■
・・・・・・・・・■はトーチの位置変化の順序を示す
。表1は第8図に於けるトーチの位置、■■■・・・・
・・・・・■に対し、加工線上の所期のP点の座標x、
 y、 z、φに対し、第7図に略記した機構のR点ゐ
位置座標x+  y+”及びθ、φの関連を示すもので
ある。一般に傾角φは初期設定角であるからX、Y、Z
は夫々旋回角θをパラメータとした関数であることがわ
かる。
Using the geometric model shown in Figures 8 and 9, the trajectory of the P point and R point (x, "i', Z) in the case of a back groove
, (X, Y, Z) and θ are found in Figure 8.
If there is a back groove, the machining line is given by point P' and PM
x, , Y, , Z,) to an x, y, two coordinate system, as shown in Table 1. Also, as a correlation parameter, I? The length of Q is β, the length of PQ is cosφ, the thickness of the flange is T, and the thickness of the web is L. Also■■■
. . .■ indicates the order in which the position of the torch changes. Table 1 shows the position of the torch in Figure 8, ■■■...
...For ■, the coordinates x of the desired P point on the machining line,
This shows the relationship between y, z, and φ, and the positional coordinates of the R point x+y+'' of the mechanism shown in FIG. Z
It can be seen that each of is a function with the turning angle θ as a parameter.

第9図による場合は表1の数式モデルは変わるが、x、
 Y、 Z、φ−x、  y、  z、 θ、φへの変
換の原理は同様であるから省略する。また裏開先又は開
先のない場合はP’、P点の指示座標は一致する。
In the case of Figure 9, the formula model in Table 1 changes, but x,
The principles of conversion to Y, Z, φ-x, y, z, θ, and φ are the same, so they will be omitted. In addition, in the case of a back groove or no groove, the designated coordinates of points P' and P match.

又、表により加工の速度VはP点の移動速度によるが、
P点の移動速度■は 〜■についてはθ=0°又はθ=90°であるからx、
  y、  zFl標はθとは関数関係にないことが明
らかであるが■〜■の位置に於いては、x+1−2の座
標はθと関数関係にある。従ってR点の移動速度Vは で示され、且つ第8図で五′に示される長さもθの関数
であり且つ切断厚さになることから加工−−−−−−−
−−・“−−(iv )となり、θ°もθの関数と考え
る必要がある。但しiとθの関係は論理式で簡単に割り
切ることは出来ないので数種のパターンを演算に際して
外挿する必要がある。
Also, according to the table, the processing speed V depends on the moving speed of point P,
The moving speed of point P is θ=0° or θ=90° for ~■, so x,
It is clear that the y and zFl marks are not in a functional relationship with θ, but at the positions ■ to ■, the coordinates of x+1-2 are in a functional relationship with θ. Therefore, the moving speed V of point R is shown as , and the length shown at 5' in Fig. 8 is also a function of θ and becomes the cutting thickness.
−−・“−−(iv), and it is necessary to consider θ° as a function of θ.However, since the relationship between i and θ cannot be easily divided by a logical formula, several types of patterns are extrapolated during calculation. There is a need to.

次に第1O図は本発明の装置の数値制御を説明する図で
、図に於いて47はさん孔テープ、カセノI・テープま
たはコンピュータダイレクトによる人力情報媒体、イ8
はテープリーグなどよりなる入力装置を示す、52はx
、Y、Z、  φで与えられる入力端軸をNC切断機6
1の座標X、Y、Z、  φ、θに変換する演算処理部
でθを分割し、動作経路を直線補間し、短い線分Δx、
Δy、Δ2.Δφを演算する役割を果たし、49は表1
に示した数学モデルの処理プログラム部である。50は
前記の速度式(1)%式% を演算処理するプログラム部でΔTによりx、y。
Next, Fig. 1O is a diagram for explaining the numerical control of the apparatus of the present invention.
indicates an input device such as a tape league, 52 indicates x
, Y, Z, and the input end shaft given by φ are cut by the NC cutting machine 6.
1 coordinates X, Y, Z, φ, θ is divided by the arithmetic processing unit, the motion path is linearly interpolated, and short line segments Δx,
Δy, Δ2. It plays the role of calculating Δφ, and 49 is shown in Table 1.
This is the processing program section of the mathematical model shown in . Reference numeral 50 denotes a program unit for calculating the speed formula (1) % formula %.x, y by ΔT.

2、θ、φの動作速度の相互の関連をもたせるものであ
る。又51は該プログラムに対しV(θ)を可変とした
ようなパラメータを入力する操作部を示し、演算処理部
52の演算処理の結果は表2に示すようなマトリックス
として一時記憶される。53はレジスタ部をもったパル
ス分配装置でその内容を入力し、へT1時間内に各制御
軸の導多動忙Δx1゜Δ71.ΔZi、Δφ、、Δθ、
に相当するパルスを出力する部分である。54〜60は
一般に公知のパルス制御サーボ系の例を示し、54φ、
54θ154x、54y、54zはパルス出力部53の
出力パルスをうけるカウンタ部で夫々φ1 θ、x、 
 y、X座標に対応するものである。55φ、55θ、
55x、55y。
2, the operating speeds of θ and φ are related to each other. Reference numeral 51 denotes an operation unit for inputting parameters such as variable V(θ) to the program, and the results of the arithmetic processing by the arithmetic processing unit 52 are temporarily stored as a matrix as shown in Table 2. Reference numeral 53 is a pulse distribution device having a register section, which inputs the contents and calculates the guiding hyperactivity Δx1°Δ71. of each control axis within time T1. ΔZi, Δφ,, Δθ,
This is the part that outputs a pulse corresponding to . 54 to 60 indicate examples of generally known pulse control servo systems; 54φ,
54θ154x, 54y, and 54z are counter units that receive output pulses from the pulse output unit 53, and φ1θ, x, respectively.
This corresponds to the y and x coordinates. 55φ, 55θ,
55x, 55y.

552はD/A変換器、56φ、56θ、 56x、 
56y。
552 is a D/A converter, 56φ, 56θ, 56x,
56y.

SSZはプレアンプであり、又57φ、57θ、57x
SSZ is a preamplifier, and also 57φ, 57θ, 57x
.

57y、57zはパワーアンプ 58φ、58θ、58
x。
57y, 57z are power amplifiers 58φ, 58θ, 58
x.

58y、58zは各制御軸用のサーボモータであり、更
に59.60はそれぞれタコジエ不レーク及びパルス発
(+3器を示し、前者はアナログ系に、後者は対応する
カラ/り54φ、54θ、 54x、 54y、 54
zにフィードハックされる。
58y, 58z are servo motors for each control axis, and 59.60 are tachometer and pulse generators (+3 units), the former is an analog system, and the latter is a corresponding color/reference 54φ, 54θ, 54x , 54y, 54
Feed hacked by z.

〈発明の効果〉 山形材の切断或いは溶接を行う装置に於いて材料の形状
に対応する加工機械との対応が平面の加工のようには加
工線と機構部の運動が一致せず、加工線の与条件〈座標
)を加工機械の座標系に移し換える必要がある為、従来
の数値制御に於いてはNCフォマ7トを作成し、数値制
御機械によって加工することば不可能であった。しかし
本発明の方法によれば、第9図に於ける入力情報媒体4
7〜パルス出力部53に示した部分で表1に示した座標
変換の数式モデルを用い、加工線の座標を機械の座標に
移し換えるに当たり、各座標軸の運動を山形材のコーナ
ー部に於いて山形材内面のコーナーの曲がりの中心点を
トーチの旋回中心とし、且つトーチの旋回角θを分割し
、旋回角θをパラメータとして各座標軸の移動の微小な
増分値を演算し、更にトーチの先端の移動速度Vを規定
して各制御軸の移動速度を制御することにより、加工を
可能ならしめることが出来る。
<Effects of the Invention> In equipment for cutting or welding angle-shaped materials, the processing line and the movement of the mechanism do not match as in the case of flat processing, where the correspondence with the processing machine corresponding to the shape of the material does not match, and the processing line Since it is necessary to transfer the given conditions (coordinates) to the coordinate system of the processing machine, it has been impossible to create an NC format and process it with the numerical control machine using conventional numerical control. However, according to the method of the present invention, the input information medium 4 in FIG.
7 - Using the mathematical model of coordinate transformation shown in Table 1 in the part shown in pulse output section 53, when transferring the coordinates of the machining line to the coordinates of the machine, the movement of each coordinate axis is The center point of the corner bend on the inner surface of the chevron is set as the turning center of the torch, and the turning angle θ of the torch is divided, minute increments of movement of each coordinate axis are calculated using the turning angle θ as a parameter, and the tip of the torch is Machining can be made possible by defining the moving speed V of and controlling the moving speed of each control axis.

更に本発明の波及効果は、例えば船体の肋材の加工など
、従来手作業に頼らざるを得なかった分野の自動化、特
に既存のCAD/CAM体it、I+と結合することが
出来るので経済的効果は絶大である。
Furthermore, the ripple effect of the present invention is the automation of fields that traditionally had to rely on manual labor, such as the processing of ship hull ribs, and is particularly economical as it can be combined with existing CAD/CAM systems IT and I+. The effect is tremendous.

尚、溶接については具体的に記述を省いているが、本発
明に係る装置はトーチを切断トーチにすれば切断、溶接
トーチに置き換えれば溶接′A置になることは当然であ
り、又山形材と加工機械との位置の関係についても山形
材を加工機械のX座標と平行に置くこと以外には特に制
限はない。
Although a specific description of welding has been omitted, it is obvious that the device according to the present invention can be used for cutting if the torch is replaced with a cutting torch, and for welding at position A if replaced with a welding torch. There is no particular restriction on the relationship between the position of the angle-shaped member and the processing machine, other than placing the angle-shaped member parallel to the X coordinate of the processing machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は山形材の形状断面説明図、第2図は山形材の切
断形状の説明図、第3図は(中耕切断、に於ける材料の
裏面と表面の切断線の位置のズレの説明図、第11図乃
至第9図は山形材切断に於ける切断トーチの構造及び動
作説明図、第+01mは加工装置に於ける数値制御の説
明図である。 6.13,17.35,42.、+4は切断1・−チ、
14.18は支点、15.19はドーグ−動線、22.
25はレール、23.27は台東、24.2G、29.
31 はサーボモータ、33.41.45はトーヂ支1
!fアーム、47は人力情報媒体、イ8は人力装置、4
9.50は処理プロゲラ1.部、51は操作部、52は
24′n処理部、53は出力部、54はカウンタ部、5
5はf)/、へ変換器、56.57はアンプ、58は制
御φII+、59はタコジェ不レーク、6oはパルス発
信器、61は切UI機、θはトーチ旋回角、φはトーチ
M角である。
Figure 1 is an explanatory diagram of the cross-sectional shape of an angle-shaped material, Figure 2 is an explanatory diagram of the cutting shape of an angle-shaped timber, and Figure 3 is an explanation of the deviation in the position of the cutting line between the back and surface of the material during intermediate cutting. Figures 11 to 9 are explanatory diagrams of the structure and operation of the cutting torch in cutting angle-shaped materials, and +01m is an explanatory diagram of numerical control in the processing device. 6.13, 17.35, 42 ., +4 is cutting 1・-chi,
14.18 is the fulcrum, 15.19 is the Dawg flow line, 22.
25 is Rail, 23.27 is Taito, 24.2G, 29.
31 is the servo motor, 33.41.45 is the torque support 1
! f-arm, 47 is a human-powered information medium, A8 is a human-powered device, 4
9.50 is processed progera 1. 51 is an operation section, 52 is a 24'n processing section, 53 is an output section, 54 is a counter section, 5
5 is a converter to f)/, 56.57 is an amplifier, 58 is a control φII+, 59 is a tachometer non-rake, 6o is a pulse transmitter, 61 is a cut UI device, θ is a torch rotation angle, φ is a torch M angle It is.

Claims (3)

【特許請求の範囲】[Claims] (1)山形材を切断、溶接する装置に於いて、山形材の
加工面をX、Y、Zの直交座標系で示し、且つ加工線を
X、Y、Z座標で表し、X、Y、Z座標系と平行するx
、y、z座標系よりなる加工装置に山形材のコーナー部
分を旋回して加工し得るようにx、y、z座標軸の先端
に旋回角θを与えるレバーの先に開先角度設定用の傾角
φを与える機構を設け、山形材の加工線f(X、Y、Z
、Φ)を加工装置の座標系g(x、y、z、θ、φ)に
変換し、且つ加工線に(X、Y、Z)に沿う加工速度を
与えてx、y、z、θ、φの速度に変換して数値制御に
より加工を行うようにした山形材の加工装置。
(1) In a device that cuts and welds angle-shaped materials, the machined surface of the angle-shaped materials is expressed in an orthogonal coordinate system of X, Y, and Z, and the processing line is expressed in X, Y, and Z coordinates. x parallel to the Z coordinate system
, y, z coordinate system, so that the corner part of the angle-shaped material can be machined by turning A mechanism is provided to give φ, and the machining line f (X, Y, Z
, Φ) to the coordinate system g (x, y, z, θ, φ) of the processing device, and give the processing speed along (X, Y, Z) to the processing line, and This is a machining device for angle-shaped materials that converts the speed to φ and performs machining using numerical control.
(2)山形材の加工線f(X、Y、Z、Φ)をX、Y、
Z直交座標系と平行なx、y、z直交座標系に対し加工
装置の運動を座標系g(x、y、z、θ、φ)とし、山
形材コーナー部のトーチ旋回角θをパラメータとして座
標変換の論理に従ってθの微小な増分に対してx、y、
z、θ、φの微小増分を演算すると共に加工線上のトー
チの移動速度によりx、y、z、θ、φの増分Δx_i
、Δy_i、Δz_i、Δθ_i、Δφ_iに対する微
小時間ΔT_iを演算し、これらをパルスに変えること
により数値制御を行うことを特徴とした特許請求の範囲
第1項記載の山形材の加工装置。
(2) The machining line f (X, Y, Z, Φ) of the angle-shaped material is
The motion of the processing device is defined as the coordinate system g (x, y, z, θ, φ) with respect to the x, y, z orthogonal coordinate system parallel to the Z orthogonal coordinate system, and the torch rotation angle θ at the corner of the angle shape is used as a parameter. According to the logic of coordinate transformation, x, y,
Calculate the minute increments of z, θ, φ and calculate the increment Δx_i of x, y, z, θ, φ by the moving speed of the torch on the processing line.
, Δy_i, Δz_i, Δθ_i, Δφ_i, and numerically controlled by calculating minute time ΔT_i for Δy_i, Δz_i, Δθ_i, Δφ_i and converting these into pulses.
(3)山形材を切断、溶接する装置に於いて、直線駆動
力(x軸)を行う台車上に直立するコラム(z軸)と、
コラム及び台車駆動方向に対して直行するアーム(y軸
)により慣行の直行座標位置決めを行うと共にその点を
中心としてy−z平面上で旋回するアームの先端に切断
器、溶断トーチ等の加工具を保持し、且つ回転を与える
ようにしたことを特徴とした山形材の加工装置。
(3) In a device for cutting and welding angle-shaped materials, a column (z-axis) that stands upright on a trolley that provides linear driving force (x-axis);
Conventional orthogonal coordinate positioning is performed using an arm (y-axis) that is perpendicular to the driving direction of the column and bogie, and a processing tool such as a cutter or a cutting torch is attached to the tip of the arm that rotates on the y-z plane around that point. A processing device for a chevron-shaped material, which is characterized in that it holds and rotates the material.
JP18362684A 1984-09-04 1984-09-04 Working device of angle bar Granted JPS6163359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18362684A JPS6163359A (en) 1984-09-04 1984-09-04 Working device of angle bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18362684A JPS6163359A (en) 1984-09-04 1984-09-04 Working device of angle bar

Publications (2)

Publication Number Publication Date
JPS6163359A true JPS6163359A (en) 1986-04-01
JPH0312995B2 JPH0312995B2 (en) 1991-02-21

Family

ID=16139060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18362684A Granted JPS6163359A (en) 1984-09-04 1984-09-04 Working device of angle bar

Country Status (1)

Country Link
JP (1) JPS6163359A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982126B1 (en) 2008-04-17 2010-09-14 현대중공업 주식회사 Automatic Horizontal Welding Carriage and method for Ship Hulls
JP2012500121A (en) * 2008-08-21 2012-01-05 エーエスアーベー アーベー Welding equipment
CN103143819A (en) * 2013-03-22 2013-06-12 浙江正特集团有限公司 Automatic welding machine and control method thereof
CN108058050A (en) * 2017-10-25 2018-05-22 南通新锐特机械有限公司 A kind of numerically-controlled machine tool anticollision knife system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310022A (en) * 1976-07-14 1978-01-30 Mitsubishi Electric Corp Electric machine and apparatus
JPS5522455A (en) * 1978-08-04 1980-02-18 Komatsu Ltd Control unit of automatic welding equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310022A (en) * 1976-07-14 1978-01-30 Mitsubishi Electric Corp Electric machine and apparatus
JPS5522455A (en) * 1978-08-04 1980-02-18 Komatsu Ltd Control unit of automatic welding equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982126B1 (en) 2008-04-17 2010-09-14 현대중공업 주식회사 Automatic Horizontal Welding Carriage and method for Ship Hulls
JP2012500121A (en) * 2008-08-21 2012-01-05 エーエスアーベー アーベー Welding equipment
CN103143819A (en) * 2013-03-22 2013-06-12 浙江正特集团有限公司 Automatic welding machine and control method thereof
CN108058050A (en) * 2017-10-25 2018-05-22 南通新锐特机械有限公司 A kind of numerically-controlled machine tool anticollision knife system

Also Published As

Publication number Publication date
JPH0312995B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
JP3599800B2 (en) Spindle normal direction control method for numerically controlled machine tools
JPS61156309A (en) Numerically controlled device containing speed difference smoothing function
JP2728399B2 (en) Robot control method
KR880001647B1 (en) Robot control apparatus
JPS6163359A (en) Working device of angle bar
WO2008053601A1 (en) Working control device, and its program
JPH0645120B2 (en) Precision shape cutting method for water jet cutting
JPH06110534A (en) Position control method for machine tool
JPH03238184A (en) Laser beam machining method
CN207992793U (en) A kind of blade groover control system based on CNC
JP7070114B2 (en) Robot control device and robot control method
JPS6199573A (en) Pipe cutter and numerical control method in pipe cutting
JP2002210654A (en) Multi-spindle nc polishing machine
JPH0825260A (en) Deflection correcting method for industrial robot
JPH0519729B2 (en)
JP3576421B2 (en) Work posture control method for machine tools
JPS614651A (en) Automatic curve machining device
JP2686293B2 (en) Three-dimensional laser processing method
JPS63105864A (en) Method and device for nc machining
JPH03109606A (en) Tool correction system
JPH0474205A (en) Correction system for tool diameter
JPS6180407A (en) Numerical control method
Yagishita et al. Arc welding robot systems for large steel constructions
JP2001328087A (en) Off-line teaching system of working robot
JPH01175004A (en) Robot control device