JPS6179748A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS6179748A
JPS6179748A JP59201800A JP20180084A JPS6179748A JP S6179748 A JPS6179748 A JP S6179748A JP 59201800 A JP59201800 A JP 59201800A JP 20180084 A JP20180084 A JP 20180084A JP S6179748 A JPS6179748 A JP S6179748A
Authority
JP
Japan
Prior art keywords
permanent magnet
weight
magnet alloy
alloy
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59201800A
Other languages
Japanese (ja)
Inventor
Tsutomu Okada
力 岡田
Kazuhiro Yamamoto
和弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP59201800A priority Critical patent/JPS6179748A/en
Publication of JPS6179748A publication Critical patent/JPS6179748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain permanent magnet alloy inexpensive, easy in manufacture and suitable for mass production, by combining specified ratios of rare earth elements composed of specified quantities of Pr, Ce, Nd and Fe, B and processing said mixture to sintered body. CONSTITUTION:A material metal exhibited by a formula RXFeYBZ in which R is rear earth elements composed of 5-15wt% Pr, >=15wt%-40wt% (contg. 40wt%) range Ce and the balance Nd, X; 11.5-20.0atomic%, Z; 5.5-12.0atomic%, Y; the balance is melted at about 1500 deg.C, and cast to prepare an alloy ingot. The ingot is crushed, then the powder is press molded in about 10 Koe magnetic field, and said body is sintered at about 1000-1100 deg.C for about 1hr. In this way, permanent magnet alloy being magnetically anisotropic sintered body having large max. energy product is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は永久磁石合金、更に詳細には希土類元素−鉄−
ホウ素系の永久磁石合金に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a permanent magnet alloy, more specifically a rare earth element - iron -
Regarding boron-based permanent magnet alloys.

(従来の技術) 従来より希土類元素−鉄−ホウ素系永久磁石合金として
はNd−Fe−B系焼結体が公知であり、この合金材料
はSm−Go系永久磁石合金に比較して原料が入手しや
すく、比較的安価で且つ高性能であることから特に注目
を集めている。
(Prior art) Nd-Fe-B sintered bodies have been known as rare earth element-iron-boron permanent magnet alloys, and this alloy material requires less raw materials than Sm-Go permanent magnet alloys. It is attracting particular attention because it is easily available, relatively inexpensive, and has high performance.

しかしながら、近年の電気電子機器の小型化。However, in recent years, electrical and electronic equipment has become smaller.

高効率化の要求を満たすには更に安価で高磁気特性を有
する永久磁石材料が要望される。
In order to meet the demand for higher efficiency, there is a need for permanent magnet materials that are cheaper and have higher magnetic properties.

(発明が解決しようとする問題点) 本発明によれば、Nd−Fe−B系焼結体永久磁石合金
より更に安価で製造が容易であり、大量生産に適した高
磁気特性を有する永久磁石合金を提供することを目的と
する。
(Problems to be Solved by the Invention) According to the present invention, a permanent magnet that is cheaper and easier to manufacture than a Nd-Fe-B based sintered permanent magnet alloy and has high magnetic properties suitable for mass production. The purpose is to provide alloys.

(問題点を解決するための手段) 本発明の永久磁石合金は、下記の一般式%式% (式中、Rは5乃至15重重量のPr、15重量%を越
え40重重量の範囲(40重量%を含む)のCe及び残
部Ndからなる希土類元素、Feは鉄、Bはホウ素を表
わし、Xは11.5〜20.0 fi子%、Zは5.5
〜12.0原子%、Yが残部を示す)で表わされる磁気
異方性焼結体であることを特徴とする。
(Means for Solving the Problems) The permanent magnet alloy of the present invention has the following general formula % formula % (wherein R is Pr in the range of 5 to 15 wt. A rare earth element consisting of Ce (including 40% by weight) and the balance Nd, Fe is iron, B is boron, X is 11.5 to 20.0% by weight, Z is 5.5
~12.0 atomic %, Y represents the remainder).

以下1本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の永久磁石合金材料として使用する希土類元素は
5乃至15重素置のプラセオジム(Pr)、、15重量
%を越え40重量%の範囲(40重量%を含む)のセリ
ウム(Ce)及び残部ネオジム(Nd)からなる希土類
元素を用いる(工業上不可避な不純物を含有するものも
使用できる)。
The rare earth elements used as the permanent magnet alloy material of the present invention are praseodymium (Pr) with 5 to 15 elements, cerium (Ce) in the range of more than 15% by weight and 40% by weight (including 40% by weight), and the balance A rare earth element consisting of neodymium (Nd) is used (those containing industrially unavoidable impurities can also be used).

本発明では天然に存在する希土類元素よりセリウム(C
e)、ランタン(La)、サマリウム(S m)等を各
方面の用途に応じて分離した後に副生する、酸化ネオジ
ム50〜70重量%、酸化プラセオジム5〜15重量%
、酸化セリウム゛15〜40重量%からなる混合物(ジ
ジム化合物)を利用して酸化物溶融塩電解法により希土
類元素金属混合物を得ることができるので、ネオジムを
単体として含む従来のNd−Fe−B系永久磁石合金材
料に比して大幅に安価であり、工業的規模での大量生産
が可能である。もちろん、別個に調製されたネオジム、
プラセオジム、セリウム金属を溶融炉にて合金化して用
いることもできる。
In the present invention, cerium (C) is selected from naturally occurring rare earth elements.
e) 50-70% by weight of neodymium oxide and 5-15% by weight of praseodymium oxide, which are by-produced after separating lanthanum (La), samarium (Sm), etc. according to various uses.
A rare earth metal mixture can be obtained by oxide molten salt electrolysis using a mixture (didymium compound) consisting of 15 to 40% by weight of cerium oxide. It is significantly cheaper than permanent magnet alloy materials and can be mass-produced on an industrial scale. Of course, separately prepared neodymium,
Praseodymium and cerium metals can also be alloyed in a melting furnace and used.

本発明の永久磁石合金では希土類元素としてネオジム単
体を用いずに5乃至15重量%のプラセオジム、15重
量%を越え40重量%の範囲(40重量%を含む)のセ
リウムを更に加え三元系希土類元素として用いる点に大
きな特徴を有する。
In the permanent magnet alloy of the present invention, 5 to 15% by weight of praseodymium is not used as a rare earth element, and cerium is added in an amount of more than 15% by weight to 40% by weight (including 40% by weight) to form a ternary rare earth element. It has a major feature in that it is used as an element.

Ce −F e −B系合金材料はNd−Fe−B系合
金材料に比して飽和磁化Isが前者の場合1.16テス
ラ(T)、後者の場合1.57テスラ(T)、また異方
性磁場Haが前者では3.7 MA/m、後者では12
MA/mと極端に差があるため、セリウムを永久磁石材
料中に含ませると飽和磁化、保磁・力が低くなり、高磁
気特性が得られないと推測されていた。故に、磁石材料
中にはセリウムをできる限り除去することが常識とされ
ていた。しかしながら、驚くべきことに特許請求の範囲
に記載する特定範囲の量のセリウムを、特定範囲の量の
プラセオジムと併用することにより焼結性が著しく改善
され、製造が容易で大量生産に適し、しかも高密度の焼
結体が得られ、最大エネルギー積が大きい永久磁石合金
が得られることが今般本発明により明らかとなった。
Compared to Nd-Fe-B alloy materials, Ce-Fe-B alloy materials have a saturation magnetization Is of 1.16 Tesla (T) for the former and 1.57 Tesla (T) for the latter. The directional magnetic field Ha is 3.7 MA/m in the former case and 12 MA/m in the latter case.
Because of the extreme difference in MA/m, it was assumed that if cerium was included in the permanent magnet material, the saturation magnetization, coercive force, and force would decrease, making it impossible to obtain high magnetic properties. Therefore, it has been common knowledge to remove as much cerium as possible from magnet materials. However, surprisingly, by using cerium in an amount in a specific range as described in the claims in combination with praseodymium in an amount in a specific range, sinterability is significantly improved, and it is easy to manufacture and suitable for mass production. The present invention has now revealed that a high-density sintered body can be obtained and a permanent magnet alloy with a large maximum energy product can be obtained.

セリウムが15重重量以下、プラセオジムが5重量%未
満となると、高密度の焼結体が得られず。
If cerium is less than 15% by weight and praseodymium is less than 5% by weight, a high-density sintered body cannot be obtained.

また一方セリウムが40重量%を越え、プラセオジムが
15重素置を越えると、飽和磁化Is磁束密度Br、及
び保磁力i Hcが低くなり、特性が発現されない。
On the other hand, if cerium exceeds 40% by weight and praseodymium exceeds 15 atoms, the saturation magnetization Is magnetic flux density Br and coercive force iHc become low, and the characteristics are not expressed.

本発明に用いるホウ素としては純ボロン、フェロボロン
等を用いることができ、不純物としてケイ素、アルミニ
ウム、炭素等を含んでいてもよい。
As the boron used in the present invention, pure boron, ferroboron, etc. can be used, and silicon, aluminum, carbon, etc. may be included as impurities.

また鉄としては電解鉄、純鉄、低炭素軟鉄等を用いるこ
とができる。
Further, as the iron, electrolytic iron, pure iron, low carbon soft iron, etc. can be used.

本発明では上述の希土類元素11.5〜20.0原子%
、ホウ素5.5〜12.0原子%、残部が鉄の範囲の組
成とする。希土類元素が11.5原子%未満ではα−F
eの初晶がでてくるので強磁性体が得られず。
In the present invention, 11.5 to 20.0 at% of the above-mentioned rare earth elements
, 5.5 to 12.0 atomic % of boron, and the balance is iron. If the rare earth element is less than 11.5 at%, α-F
Since primary crystals of e appear, a ferromagnetic material cannot be obtained.

一方20.0原子%を越えると強磁性相の量が減少し、
高磁気特性が発現しない。また、ホウ素が5.5原子%
未満では安定な強磁性相が得られない。また。
On the other hand, when it exceeds 20.0 at%, the amount of ferromagnetic phase decreases,
High magnetic properties are not developed. In addition, boron is 5.5 atomic%
If it is less than that, a stable ferromagnetic phase cannot be obtained. Also.

ホウ素量の増加に伴い飽和磁化Isが低下し、12.0
原子%以上では高特性が得られない。
As the amount of boron increases, the saturation magnetization Is decreases to 12.0
High characteristics cannot be obtained at atomic % or more.

本発明の永久磁石合金を製造するにあたって原料金属を
1500℃程度にて溶解し、鋳造して合金インゴットを
調製し、これを粉砕した後、得られた粉末を10KOe
程度の磁界中で圧縮成形し、次いで1000″〜110
0℃程度で約1時間焼結することにより焼結体として得
ることができる。
In producing the permanent magnet alloy of the present invention, raw metal is melted at about 1500°C, cast to prepare an alloy ingot, and after pulverizing this, the obtained powder is 10KOe
Compression molding in a magnetic field of about 1000" to 110"
A sintered body can be obtained by sintering at about 0° C. for about 1 hour.

(実施例) 以下、本発明を実施例につき説明する。(Example) Hereinafter, the present invention will be explained with reference to examples.

寒胤匠よ 酸化物溶融塩電解法にてジジム化合物より希土類元素合
金(Nd  70wt%、Pr14wt%、Ce1.6
wt%)335gを製造し、Feとして電解鉄655g
、B10gと共にアルミナルツボに入れ、l0KVAの
高周波真空溶解炉中にてアルゴン気中1500℃にて溶
解して合金インゴットを製造した。
Kantane Takumi, rare earth element alloy (Nd 70wt%, Pr14wt%, Ce1.6
wt%) 335g, and 655g of electrolytic iron as Fe.
, B was placed in an aluminum crucible together with 10 g of B, and melted at 1500° C. in an argon atmosphere in a 10 KVA high frequency vacuum melting furnace to produce an alloy ingot.

この合金インゴットを鉄乳鉢中で粗粉砕した後、ヘキサ
ン中ボールミルで粉砕し、平均粒径3〜5μmの微粉末
を得た。次いで、この微粉末を10KOeの磁界中で1
.5 Tor/aJの圧力にて金型を用いて圧縮成形し
た。この成形体を1040〜1100℃、1時間焼結後
、400〜600℃にて1時間熱処理し、本発明の永久
磁石合金を得た。
This alloy ingot was coarsely ground in an iron mortar and then ground in a ball mill in hexane to obtain a fine powder with an average particle size of 3 to 5 μm. Next, this fine powder was heated at 1°C in a magnetic field of 10KOe.
.. Compression molding was performed using a mold at a pressure of 5 Tor/aJ. This compact was sintered at 1040-1100°C for 1 hour and then heat-treated at 400-600°C for 1 hour to obtain a permanent magnet alloy of the present invention.

磁気特性を測定した結果を表に記載する。The results of measuring the magnetic properties are listed in the table.

実施例2 米国、リサーチ・ケミカル社製のNdメタル(純度99
.9%)、Prメタル(純度99%)、Ceメタル(純
度99.9%)を使用した以外は実施例1と同様の方法
により本発明の永久磁石合金を製造し、その磁気特性を
測定した。その結果を表に記載する。
Example 2 Nd metal manufactured by Research Chemical Company, USA (purity 99
.. A permanent magnet alloy of the present invention was manufactured in the same manner as in Example 1 except that Pr metal (purity 99%), Ce metal (purity 99.9%) was used, and its magnetic properties were measured. . The results are listed in the table.

実施例3、比較例1〜2 実施例1の手法に従って表に記載の組成の各種合金を製
造した。その磁気特性を表に記載する。
Example 3, Comparative Examples 1 and 2 Various alloys having the compositions listed in the table were manufactured according to the method of Example 1. Its magnetic properties are listed in the table.

(以下余白) 表に示されるように、実施例1〜3では最大エネルギー
積(BH)maxが216〜280KJ耐と大なる値を
示し、磁気飽和Is、磁束密度(Br)、保磁力iHc
においても優れるが、Ceが多すぎると比較例に示すよ
うに最大エネルギー積が低下するほか、他の磁気特性も
低下してしまうことがわかる。
(Margins below) As shown in the table, in Examples 1 to 3, the maximum energy product (BH) max showed a large value of 216 to 280 KJ, and the magnetic saturation Is, magnetic flux density (Br), coercive force iHc
However, it can be seen that if there is too much Ce, the maximum energy product decreases as shown in the comparative example, and other magnetic properties also decrease.

Claims (1)

【特許請求の範囲】 下記の一般式 R_XFe_YB_Z (式中、Rは5乃至15重量%のPr、15重量%を越
え40重量%の範囲(40重量%を含む)のCe及び残
部Ndからなる希土類元素、Feは鉄、Bはホウ素を表
わし、Xは11.5〜20.0原子%、Zは5.5〜1
2.0原子%、Yが残部を示す)で表わされる磁気異方
性焼結体であることを特徴とする永久磁石合金。
[Claims] The following general formula R_XFe_YB_Z (wherein R is a rare earth element consisting of 5 to 15% by weight of Pr, more than 15% by weight and 40% by weight (including 40% by weight) of Ce, and the balance Nd) Elements, Fe represents iron, B represents boron, X is 11.5 to 20.0 at%, Z is 5.5 to 1
A permanent magnet alloy characterized in that it is a magnetically anisotropic sintered body represented by 2.0 atomic % (Y represents the balance).
JP59201800A 1984-09-28 1984-09-28 Permanent magnet alloy Pending JPS6179748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201800A JPS6179748A (en) 1984-09-28 1984-09-28 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201800A JPS6179748A (en) 1984-09-28 1984-09-28 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS6179748A true JPS6179748A (en) 1986-04-23

Family

ID=16447135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201800A Pending JPS6179748A (en) 1984-09-28 1984-09-28 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS6179748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331468A (en) * 2020-10-14 2021-02-05 宁波韵升股份有限公司 Preparation method of high-remanence sintered neodymium-iron-boron magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331468A (en) * 2020-10-14 2021-02-05 宁波韵升股份有限公司 Preparation method of high-remanence sintered neodymium-iron-boron magnet

Similar Documents

Publication Publication Date Title
US4684406A (en) Permanent magnet materials
US4597938A (en) Process for producing permanent magnet materials
EP0126802B1 (en) Process for producing of a permanent magnet
JPS6134242B2 (en)
JPH0316761B2 (en)
JPH03236202A (en) Sintered permanent magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH0369981B2 (en)
US4973415A (en) Rapidly quenched ribbon magnet and plastic magnet containing powders of the rapidly quenched ribbon magnet
JP2610798B2 (en) Permanent magnet material
JPH0316762B2 (en)
JPH0355540B2 (en)
JPS6179748A (en) Permanent magnet alloy
JPH0146575B2 (en)
JPS6179747A (en) Permanent magnet alloy
JPH0422006B2 (en)
JPS6365742B2 (en)
JPH0467324B2 (en)
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH0467322B2 (en)
JPH0346963B2 (en)
JPH044725B2 (en)
JPS62170455A (en) Permanent magnet alloy
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH0467325B2 (en)