JPS6179719A - Thermo-mechanical treatment - Google Patents

Thermo-mechanical treatment

Info

Publication number
JPS6179719A
JPS6179719A JP20050784A JP20050784A JPS6179719A JP S6179719 A JPS6179719 A JP S6179719A JP 20050784 A JP20050784 A JP 20050784A JP 20050784 A JP20050784 A JP 20050784A JP S6179719 A JPS6179719 A JP S6179719A
Authority
JP
Japan
Prior art keywords
shot
shot peening
low
peening
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20050784A
Other languages
Japanese (ja)
Inventor
Toru Yamaguchi
徹 山口
Hirotomo Komine
厚友 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP20050784A priority Critical patent/JPS6179719A/en
Publication of JPS6179719A publication Critical patent/JPS6179719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the fatigue strength of machine parts or a structural member by quenching a low-carbon low-alloy steel after reheating, shot-peening the steel under cooling and shot-peening it again at room temp. CONSTITUTION:A carburized, hardened and tempered low-carbon low-alloy steel having 0.7-0.9% surface concn. of carbon is reheated to a temp. in the austenite range of 800-850 deg.C and quenched to 300-550 deg.C with a hot bath, or a low-carbon low-alloy steel is quenched to 300-550 deg.C with a hot bath immediately after carburization. The steel is then shot-peened again at room temp. with shot having a diameter which is equal to or larger than the diameter of shot used in the first shot peening. By this treatment, a mechanically treated layer and a layer having compressive residual stress can be formed up to a sufficiently large depth each, and the surface roughness of the steel as well as the fatigue strength can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、動力伝達軸、歯車等の動力伝達用構成部品な
ど、機械部品や構造部材の疲労強度を著しく高めること
のできる加工熱処理法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a processing heat treatment method that can significantly increase the fatigue strength of mechanical parts and structural members, such as power transmission components such as power transmission shafts and gears. be.

従来の技術 従来、機械部品や構造部材の繰返し荷重に対する疲労強
度向上のため、表面層に圧縮残留応力を生せしめると同
時に表面層を硬化する方法としては、 (α)浸炭、窒化、タフトライド処理、高周波焼入れ等
の各種熱処理、 (b)表面圧延、ショットピーニング等の表面冷間加工
、 (C)  オースフォーミング等の加工熱処理、が採用
されている。
Conventional technology Conventionally, in order to improve the fatigue strength of mechanical parts and structural members against repeated loads, methods of generating compressive residual stress in the surface layer and hardening the surface layer at the same time include (α) carburizing, nitriding, tuftride treatment, Various heat treatments such as induction hardening, (b) surface cold treatments such as surface rolling and shot peening, and (C) processing heat treatments such as ausforming are employed.

しかしながら、オースフォーミングに代表される上記(
C)の加工熱処理は、強加工を施すため圧延等を行なう
ので、動力伝達軸のような複雑な形状のものには加工し
難いという欠点があると共に、Cr等の含有量の多い高
合金鋼を使用するため高価であるという難点がある。
However, the above (as represented by ausforming)
Processing heat treatment (C) involves rolling, etc. to perform strong working, so it has the disadvantage that it is difficult to process products with complex shapes such as power transmission shafts. The disadvantage is that it is expensive because it uses

一方、前記(α)及び(A)の表面硬化法は、加工の点
で問題がないことから広く行なわれている。
On the other hand, the surface hardening methods (α) and (A) are widely used because they do not pose any problems in terms of processing.

例えば、特開昭54−164079号公報には、抜加工
物に引張応力を生じさせるため金属の被加工物を心棒に
締め付け、次いでショットピーニングにより被加工物の
表面に圧縮応力を誘起せしめ、被加工物の外面に残留圧
縮応力を生ぜしめる方法が提案されている。しかしなが
ら、このようなショットピーニングなどの上記<b>の
表面冷間加工並びに上記(α)の熱処理法においては、
回転曲げ疲労強度(100回)が50〜90 kg/a
程度であり、(C)の加工熱処理法による場合の100
〜l l OkgAjに比べて低いという問題がある。
For example, Japanese Patent Application Laid-Open No. 54-164079 discloses that a metal workpiece is tightened to a mandrel in order to generate tensile stress in the workpiece, and then compressive stress is induced on the surface of the workpiece by shot peening. Methods have been proposed to create residual compressive stress on the outer surface of the workpiece. However, in the surface cold processing of <b> above, such as shot peening, and the heat treatment method of (α) above,
Rotational bending fatigue strength (100 times): 50 to 90 kg/a
100 when using the processing heat treatment method of (C)
~l l There is a problem that it is lower than OkgAj.

発明の背景ないし基礎知見 本発明者らは、鉄系金属部品の疲労強度を向上させるた
め、前記(α)の熱処理と(h)のショットピーニング
を組み合わせた方法、すなわち、熱処理後にショットピ
ーニングを行ない、表面層の加工硬化と圧縮残留応力の
付与により疲労強度の向上を図ることができる処理法を
見い出し、別途特許出願している(特願昭59−729
97号及び特願昭59−72998号)。すなわち、浸
炭部品に最適の条件でショットピーニングを施した場合
、加工硬化により最大Hv中1000程度の硬さが得ら
れ、また圧縮残留応力は最大約120に9.−にも達し
、疲労強度は浸炭のみの場合の1.5倍と著しく向上し
、表面粗さも3.2〜5.5S程度とかなり良好である
Background of the Invention or Basic Knowledge In order to improve the fatigue strength of ferrous metal parts, the present inventors have developed a method that combines the heat treatment (α) and the shot peening (h), that is, shot peening is performed after the heat treatment. discovered a treatment method that could improve fatigue strength by work-hardening the surface layer and imparting compressive residual stress, and filed a separate patent application (Japanese Patent Application No. 59-729).
No. 97 and Japanese Patent Application No. 59-72998). That is, when shot peening is applied to a carburized part under optimal conditions, a hardness of about 1000 in maximum Hv is obtained due to work hardening, and the compressive residual stress reaches a maximum of about 120 to 9. -, the fatigue strength is significantly improved to 1.5 times that of carburizing alone, and the surface roughness is also quite good at about 3.2 to 5.5S.

しかしながら、ショットピーニングによって得られる加
工層及び圧縮残留応力層は高々0・2〜0.31111
1にすぎないという難点がある。従って、被処理品の寸
法が大きくなる程、寸法効果により疲労強度の向上率は
減じることになる。
However, the processed layer and compressive residual stress layer obtained by shot peening are at most 0.2 to 0.31111
The problem is that it is only 1. Therefore, as the size of the workpiece increases, the rate of improvement in fatigue strength decreases due to size effects.

そこで、本発明者らはさらに、加工層及び圧縮残留応力
層を増すために、オースフォーミング処理(泪をオース
テナイト化後適当な温度域に急冷し、適冷オーステナイ
トに機械的加工を施す加工熱処理法)とショットピーニ
ング処理とを組み合わせた処理法を開発し、別途特許出
願している(特願昭59−18392 )。すなわち、
この処理法は、前記した(c)の加工熱処理の範嗜に属
するものであるが、その代表例であるオースフォーミン
グが、中炭素及が高炭素合金鋼をオーステナイト化温度
に加熱し、5EllllI線のオーステナイト湾(40
0〜7oo℃)まで急冷し、この温度で圧延等による塑
性変形を与えて常温まで急冷するのに対し、低炭素低合
金鋼に浸炭焼入れ・焼戻しを施した謂を素材として用い
ること、及びこれを8oo〜8501:のオーステナイ
ト化温度に再加熱し、300〜550 ℃の熱浴に急冷
し、一定時間保持後シヨツトピーニングを開始し、表面
層の加工及びショットによる+IO〜130℃/(各温
度から2oo℃まで)の冷却を行ない、室温近傍まで冷
却しながら加工を施すことを特徴とするものである。
Therefore, in order to increase the processed layer and the compressive residual stress layer, the present inventors further developed an ausforming treatment (mechanical heat treatment method in which the austenite is rapidly cooled to an appropriate temperature range after being turned into austenite, and the appropriately cooled austenite is mechanically processed. ) and shot peening treatment, and has separately filed a patent application (Japanese Patent Application No. 18392/1983). That is,
This treatment method belongs to the above-mentioned (c) heat treatment category, and ausforming, which is a typical example, heats medium-carbon and high-carbon alloy steel to an austenitizing temperature and forms 5EllllI wires. Austenite Bay (40
0 to 7oooC), then subjected to plastic deformation by rolling etc. at this temperature and then rapidly cooled to room temperature, whereas low carbon low alloy steel is carburized and quenched and then tempered. was reheated to an austenitizing temperature of 800 to 8501°C, rapidly cooled in a heat bath of 300 to 550°C, held for a certain period of time, shot peening was started, and the surface layer was processed and shot to an austenitizing temperature of +IO to 130°C/(each This method is characterized by performing processing while cooling the material to near room temperature.

このような処理法を採用することにより、加工層及び圧
縮残留応力層を0.5〜Q、6錦と通常のショットピー
ニング処理の場合のほぼ2倍とすることができる。しか
し、この処理の場合、中温域(300〜550 ℃)か
らの加工であるために、表面粗さが20〜275程度と
なり、通常のショットピーニング処理に比べて寸法精度
が悪くなる。また、圧縮残留応力分布は、上記のように
約2倍の深さまで高いレベルを維持するが、その絶対値
は−90〜−+00#/jと通常のショットピーニング
よす低い。
By employing such a treatment method, the processed layer and the compressive residual stress layer can be made 0.5 to Q, 6 brocade, which is approximately twice that in the case of ordinary shot peening treatment. However, in the case of this treatment, since processing is performed at a medium temperature range (300 to 550° C.), the surface roughness is about 20 to 275, and the dimensional accuracy is worse than that of normal shot peening treatment. Further, the compressive residual stress distribution maintains a high level up to about twice the depth as described above, but its absolute value is -90 to -+00#/j, which is lower than that of normal shot peening.

発明が解決しようとする問題点 従って、従来技術から見た場合の本発明の一般的目的は
、前記した従来法の欠点を改善し、複雑な形状の部品に
も容易に加工できると共に、動力伝達軸、歯車等の動力
伝達用構成部品など、機械部品や構造部材の疲労強度を
著しく高めることのできる加工熱処理法を提供すること
にある。
Problems to be Solved by the Invention Accordingly, the general object of the present invention from the perspective of the prior art is to improve the drawbacks of the prior art methods described above, to facilitate processing of parts with complex shapes, and to improve power transmission. The object of the present invention is to provide a processing heat treatment method that can significantly increase the fatigue strength of mechanical parts and structural members such as power transmission components such as shafts and gears.

また、上記本発明者らの関連発明から見た場合の本発明
の直接的目的は、前記オース7オーミング処理士ショッ
トピーニング処理による疲労強度向上法の欠点である表
面粗さを改善し、かつ疲労強度の向上に寄与の大きい圧
縮残留応力をより一層高めることのできる加工熱処理法
を提供することにある。
Further, the direct object of the present invention when viewed from the above-mentioned related inventions of the present inventors is to improve surface roughness, which is a drawback of the method for improving fatigue strength by shot peening treatment, and to improve fatigue strength. The object of the present invention is to provide a processing heat treatment method that can further increase compressive residual stress, which greatly contributes to improving strength.

問題点を解決するための手段及び作用 本発明に係る加工熱処理法は、前記目的を達成するため
、浸炭処理を施して表面炭素濃度を0.7〜0.9%と
した低炭素低合金鋼を、800〜850℃のオーステナ
イト域に再加熱後、300〜550℃の熱浴に急冷し、
一定時間保持後、この’tMW範囲からショットピーニ
ングを施し、浸炭層のノ動点以下まで冷却しながら加工
し、これを室温まで冷却した後、引き続き、上記ショッ
トピーニングで用いたショット径と同じかそれより小さ
なショット径を有するショットを用いて室温でショット
ピーニングを行なうものであり、これにより、表面粗さ
を3.9〜5.9S程度に改善し、圧縮残留応力の最大
値を−110”9/、j以上とすることができる。
Means and Function for Solving the Problems In order to achieve the above-mentioned object, the processing heat treatment method according to the present invention provides low carbon, low alloy steel that is carburized to have a surface carbon concentration of 0.7 to 0.9%. is reheated to the austenite region of 800 to 850°C, then rapidly cooled in a heat bath of 300 to 550°C,
After holding the carburized layer for a certain period of time, shot peening is performed from this 'tMW range, and processing is performed while cooling the carburized layer to below the no-motion point. Shot peening is performed at room temperature using a shot with a smaller shot diameter, and this improves the surface roughness to about 3.9 to 5.9S and reduces the maximum value of compressive residual stress to -110" 9/, j or more.

本発明に係る他の加工熱処理法は、上記処理法におζ゛
て、浸炭焼入れ・焼戻し後F300〜850℃に再加熱
した後300〜550℃の熱浴に急冷する工程に代えて
、浸炭後ただちに300〜550℃の熱浴に急冷する工
程とし、以降を上記処理法と同様の工程とするものであ
り、上記処理法と同様の効果を得ることができる。
Another processing heat treatment method according to the present invention is that in the above treatment method, instead of the step of reheating to F300 to 850°C after carburizing and quenching and tempering, and then rapidly cooling in a 300 to 550°C hot bath, carburizing is performed. This is followed by a step of rapidly cooling in a 300 to 550° C. heat bath, and the subsequent steps are similar to the above treatment method, and the same effects as the above treatment method can be obtained.

発明の態様 本発明に係る加工熱処理法を適用する素材は低炭素低合
金銅(例えば、SCMAI5など)であや、これに通常
の浸炭焼入れ処理を行なった後、150〜200℃の低
温焼戻し処理を施し、表面炭素濃度を0.7〜0.9%
とした銅を用いる。このような素材を用いることにより
、高合金側を使用せずとも、表面層の炭素濃度が高いこ
とにより、表面層のS曲線の変態開始曲線が長時間側に
移行することを利用し、適冷オーステナイト状態にある
表面層の加工熱処理を可能とすることができる。
Aspects of the Invention The material to which the processing heat treatment method according to the present invention is applied is low-carbon, low-alloy copper (such as SCMAI5), which is subjected to ordinary carburizing and quenching treatment and then low-temperature tempering at 150 to 200°C. to reduce the surface carbon concentration to 0.7-0.9%.
Use hardened copper. By using such a material, the transformation start curve of the S curve of the surface layer shifts to the long time side due to the high carbon concentration in the surface layer, which can be used to suitably It is possible to perform mechanical heat treatment on the surface layer in a cold austenitic state.

上記素材は、本発明に従って8oo〜gso cのオー
ステナイト域に再加熱後、300〜550 t::の熱
浴に急冷し、一定時間保持後、上記状態において表面に
ショットピーニングを施すつ塑性変形を与える方法とし
てショットピーニングを用いる理由は、動力伝達軸のよ
うな複雑な形状の部品に容易に加工を施せると共に、表
面層の塑性変形後の冷却速度を空冷以上(110〜+3
0’C/am)とし、表面層の焼入性を確保するためで
ある。
According to the present invention, the above material is reheated to an austenite range of 800 to 550 gsoc, then rapidly cooled in a hot bath of 300 to 550 t::, held for a certain period of time, and then subjected to shot peening and plastic deformation on the surface in the above state. The reason why shot peening is used as a method for applying this is that it can easily process parts with complex shapes such as power transmission shafts, and the cooling rate after plastic deformation of the surface layer can be increased to a rate higher than that of air cooling (110 to +3
This is to ensure hardenability of the surface layer.

また、ショットピーニングは冷却を兼ねた加工であるた
め、適冷オーステナイトへの加工、変態途中及び変態後
のマルテンサイトへの加工が行なえ、複合的加工熱処理
を施すことができ、それによって顕著な疲労強度の向上
が図れる。
In addition, since shot peening is a process that also serves as a cooling process, it is possible to process properly cooled austenite, process martensite during and after transformation, and perform complex process heat treatment, resulting in noticeable fatigue. Strength can be improved.

本発明の他の態様によれば、低炭素低合金Δに通常の浸
炭、例えば900〜950℃で6〜20時間浸炭を行な
った後さらに850℃で所定時間浸炭を行ない、ただち
に300〜550 ℃の熱浴に急冷し、一定時間保持後
、この温度範囲からショットピーニングを施す。
According to another aspect of the present invention, the low carbon low alloy Δ is carburized in a conventional manner, for example, at 900 to 950°C for 6 to 20 hours, then further carburized at 850°C for a predetermined time, and then immediately carburized at 300 to 550°C. After cooling rapidly in a hot bath and holding for a certain period of time, shot peening is applied from this temperature range.

前記中温域からのショットピーニングは、前記したよう
に300〜550℃の温度から開始すムこの開始温度を
300〜550℃とした理由は、疲労強度に大きな影響
をもたらす表面近傍の軸方向圧縮残留応力分布が、この
温度範囲からの処理の場合−90〜−1009/jと非
常に高−・レベルにあるのに対し、300℃未満からの
処理の場合、この位置での圧縮残留応力レベルは−30
〜−40臀−と上記温度範囲からの処理に比べて半減し
、通常の浸炭処理材に比べて疲労強度の顕著な向上が望
めないためである。
Shot peening from the medium temperature range starts from a temperature of 300 to 550°C as described above. The reason for setting this starting temperature to 300 to 550°C is to reduce the axial compression residual near the surface, which has a large effect on fatigue strength. In the case of processing from this temperature range, the stress distribution is at a very high level of -90 to -1009/j, whereas in the case of processing from below 300°C, the compressive residual stress level at this position is -30
This is because the fatigue strength is reduced by half compared to treatment from the above-mentioned temperature range of -40 -, and no significant improvement in fatigue strength can be expected compared to ordinary carburized materials.

上記ショットピーニングの条件としては、゛遠心式の装
置を用い、ショット径0.6〜0.8此、投射速度35
〜50 ml!、投射時間5〜4O−1=に設定するこ
とが好ましい。ショットピーニングの条件が不適当な場
合には、疲労強度の著しい向上が望めなかったり、逆に
疲労強度の低下がおこるため、その最適条件で行なう必
要がある。
The conditions for the above shot peening are: ``A centrifugal device is used, the shot diameter is 0.6 to 0.8, and the projection speed is 35.
~50ml! , the projection time is preferably set to 5 to 4O-1=. If shot peening conditions are inappropriate, a significant improvement in fatigue strength may not be expected, or conversely, fatigue strength may decrease, so it is necessary to perform shot peening under optimal conditions.

まず、ショツト粒径は、小さすぎると軸方向の圧縮残留
応力の影響層が浅く、従って疲労強度の増加が少なく、
一方、大きすぎると、実用上、動力伝達軸のような複雑
な形状物の応力集中部(例えば各種の溝など)へのピー
ニングが不可能となる。このため、0.3〜+、o 朋
好ましくは0.6〜0.8餌の径のショットを用いるの
が良い。
First, if the shot grain size is too small, the influence layer of compressive residual stress in the axial direction will be shallow, and therefore the increase in fatigue strength will be small.
On the other hand, if it is too large, it becomes practically impossible to peen stress concentration parts (for example, various grooves) of a complex-shaped object such as a power transmission shaft. For this reason, it is best to use a shot with a bait diameter of 0.3 to +, o, preferably 0.6 to 0.8.

また、ショットの投射時間は、5分間の投射時間までは
時間が長い方が疲労強度は向上するが、それ以降は飽和
する傾向にある。このため、ショットによる冷却と考え
併せて、投射時間は5〜40分の範囲が好ましい。
Further, as for the shot projection time, the longer the shot projection time is, the better the fatigue strength will be, but after that the fatigue strength tends to be saturated. Therefore, considering the cooling by shots, the projection time is preferably in the range of 5 to 40 minutes.

さらに、ショットの投射速度(遠心式の装置では別車の
回転数に対応)は、小さすぎるとその効果が現われず、
また大きすぎても表面粗さが増したり、表面に微小亀裂
を発生させるため、35〜50 m/Iの範囲が好まし
く、また最も好ましいのは45〜50 m/!の範囲で
ある。
Furthermore, if the shot projection speed (corresponding to the rotation speed of another car in a centrifugal device) is too low, the effect will not be apparent.
Also, if it is too large, the surface roughness will increase or micro-cracks will occur on the surface, so it is preferably in the range of 35 to 50 m/I, and most preferably 45 to 50 m/I! is within the range of

以上のように中温域からのショットピーニングを行なっ
た後、本発明に従ってさらに室温でショットピーニング
を行なう。この場合のショットピーニングの条件は、基
本的には前記中温域からのショットピーニングの条件が
そのまま適用できるが、この室温での7ヨツトビーニン
グは、疲労強度の向上に寄与の大きい圧縮残留応力をよ
り一層高める他に、表面粗さを改善するために行なうも
のであるから、中温域からのショットピーニングで用い
たショット径と同じかそれより小さなショット径を有す
るショットを用いることが好ましい。この2回目のショ
ットピーニングにより、表面粗さは3.9〜5.9I程
度に改善され、また圧縮残留応力の最大値は一110k
g、雇以上に達する。
After performing shot peening from a medium temperature range as described above, shot peening is further performed at room temperature according to the present invention. The shot peening conditions in this case can basically be applied as they are for shot peening from the medium temperature range, but this 7-shot peening at room temperature reduces compressive residual stress, which greatly contributes to improving fatigue strength. In addition to further improving the surface roughness, it is preferable to use shot having a shot diameter that is the same as or smaller than that used in shot peening from a medium temperature range. By this second shot peening, the surface roughness was improved to about 3.9 to 5.9I, and the maximum value of compressive residual stress was -110K.
g. reach more than employment.

実施例 以下、実施例及び比較例を示して本発明について具体的
に説明するが、本発明が下記実施例に限定されるもので
ないことはもとよりである。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to the following Examples.

比較例1 低炭素低合金鋼SCM415に、常法に従って浸炭焼入
・焼戻し処理を施した。すなわち、930℃で6時間(
0,13%CO,含有浸炭性ガスで3.5時間、その後
0.2%CO7含有浸炭性ガスで2.5時間)浸炭を行
なった後さらに850℃で0.5時間(0,5%CO2
含有浸炭性ガス)行ない、油焼入れをした後、150〜
200℃に焼戻しだ。このようにして通常浸炭材C1を
得た。
Comparative Example 1 Low carbon, low alloy steel SCM415 was subjected to carburizing, quenching and tempering according to a conventional method. That is, at 930℃ for 6 hours (
Carburizing was performed for 3.5 hours with a carburizing gas containing 0.13% CO, then for 2.5 hours with a carburizing gas containing 0.2% CO7, and then at 850°C for an additional 0.5 hours (0.5% CO2
Carburizing gas) and oil quenching, 150 ~
It is tempered at 200℃. In this way, a normal carburized material C1 was obtained.

比  較  例  2 上記比較例1のように浸炭焼入れ、焼戻し処理を施した
通常浸炭材に、ショット径Q、8m@。
Comparative Example 2 A normal carburized material that had been carburized, quenched and tempered as in Comparative Example 1 above was shot with a shot diameter of Q and 8 m@.

遠心式装置の別車回転数250Orpm 、投射時間1
0分の条件でショットピーニングを行ない、通常ショッ
トピーニング材C2を得た。
Separate wheel rotation speed of centrifugal device 250 Orpm, projection time 1
Shot peening was performed under conditions of 0 minutes to obtain a normal shot peening material C2.

比  較  例  3 上記比較例1のように浸炭焼入れ、焼戻し処理を施した
通常浸炭材全、さらに800〜850 Cに再加熱し、
これを300 ℃の熱浴に急冷し、所定時間保持後、こ
の温度から上記比較例2と同一条件でショットピーニン
グを行ない、(オースフォーミング+ショットピーニン
グ)処理材C3を得た。
Comparative Example 3 All of the normal carburized materials that had been carburized and quenched and tempered as in Comparative Example 1 above were further reheated to 800 to 850 C,
This was rapidly cooled in a 300° C. heat bath, held for a predetermined time, and shot peened from this temperature under the same conditions as in Comparative Example 2 to obtain (ausforming + shot peening) treated material C3.

実施例 上記比較例3と同じ処理を行なった後、さらに室温で2
回目のショットピーニングを施し、本発明材Pを得た。
Example After carrying out the same treatment as in Comparative Example 3 above, further 2 treatments were carried out at room temperature.
The second shot peening was performed to obtain the material P of the present invention.

上記処理材p 、 c、 、 c、 、 c、の軸方向
圧縮残留応力分布を第1図に、また各種処理後の平均表
面粗さを第2図に示す。第1図及び第2図より、本発明
による処理法によれば、加工層及び圧縮残留応力層が充
分に深くできると共に、オースフォーミング+ショット
ピーニング処理に比へて、疲労強度と密接な関係にある
圧縮残留応力を一層高めることができると同時に表面の
面粗さも改善できることがわかる。
Fig. 1 shows the axial compressive residual stress distribution of the treated materials p, c, , c, , c, and Fig. 2 shows the average surface roughness after various treatments. From Figures 1 and 2, it can be seen that according to the treatment method of the present invention, the processed layer and the compressive residual stress layer can be sufficiently deep, and there is a closer relationship with fatigue strength than in ausforming + shot peening treatment. It can be seen that it is possible to further increase a certain compressive residual stress and at the same time improve the surface roughness.

発明の効果 以上のように、本発明の加工熱処理法によれば、浸炭焼
入れ、焼戻しを施した低炭素低合金蓋を800〜850
℃のオーステナイト域に再加熱した後300〜550℃
の熱浴に急冷し、あるいは低炭素低合金蓋を浸炭後ただ
ちに300〜550℃の熱浴に急冷し、この温度範囲か
らショットピ−ニングを施し、さらに室温にて2回目の
ショットピーニング処理を施すから、加工層及び圧縮残
留応力層が充分に深くまた圧縮残留応力も一層大きくで
き、顕著な疲労強度の向上が図れると同時に、表面粗さ
も充分に改善できる。また、従来のオースフォーミング
のように複雑な形状のものに加工し難いというような問
題もない。
Effects of the Invention As described above, according to the processing and heat treatment method of the present invention, a carburized, quenched and tempered low carbon low alloy lid can be heated to 800 to 850
300~550℃ after reheating to austenite range of ℃
Alternatively, immediately after carburizing the low-carbon low-alloy lid, quickly cool it in a heat bath of 300 to 550°C, perform shot peening from this temperature range, and then perform a second shot peening treatment at room temperature. Therefore, the processed layer and the compressive residual stress layer can be sufficiently deep and the compressive residual stress can be further increased, and the fatigue strength can be significantly improved, and at the same time, the surface roughness can be sufficiently improved. Furthermore, there is no problem with conventional ausforming that it is difficult to process into complex shapes.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は各種処理材の軸方向圧縮残留応力分布を示すグ
ラフ、第2図は各種処理後の平均表面粗さを示す分布図
である。
Figure 1 is a graph showing the axial compressive residual stress distribution of various treated materials, and Figure 2 is a distribution diagram showing the average surface roughness after various treatments.

Claims (2)

【特許請求の範囲】[Claims] (1)浸炭処理を施して表面炭素濃度を0.7〜0.9
%とした低炭素低合金鋼を、800〜850℃のオース
テナイト域に再加熱後、300〜550℃の熱浴に急冷
し、一定時間保持後、この温度範囲からショットピーニ
ングを施すことによって室温近傍まで冷却しながら加工
を施し、その後、上記ショットピーニングで用いたショ
ット径と同じかそれより小さなショット径を有するショ
ットを用いて室温でショットピーニングを施すことを特
徴とする加工熱処理法。
(1) Carburizing the surface carbon concentration to 0.7 to 0.9
% low carbon low alloy steel is reheated to the austenitic region at 800 to 850°C, then rapidly cooled in a 300 to 550°C heat bath, held for a certain period of time, and shot peened from this temperature range to near room temperature. A processing heat treatment method characterized in that processing is performed while cooling to a temperature of 100.degree. C., and then shot peening is performed at room temperature using shot having a shot diameter that is the same as or smaller than that used in the shot peening.
(2)低炭素低合金鋼を浸炭後ただちに300〜550
℃の熱浴に急冷し、一定時間保持後、この温度範囲から
ショットピーニングを施すことによって室温近傍まで冷
却しながら加工を施し、その後、上記ショットピーニン
グで用いたショット径と同じかそれより小さなショット
径を有するショットを用いて室温でショットピーニング
を施すことを特徴とする加工熱処理法。
(2) 300 to 550 immediately after carburizing low carbon low alloy steel
After cooling rapidly in a hot bath at ℃ and holding for a certain period of time, shot peening is performed from this temperature range while cooling to near room temperature. A processing heat treatment method characterized by performing shot peening at room temperature using shot having a diameter.
JP20050784A 1984-09-27 1984-09-27 Thermo-mechanical treatment Pending JPS6179719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20050784A JPS6179719A (en) 1984-09-27 1984-09-27 Thermo-mechanical treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20050784A JPS6179719A (en) 1984-09-27 1984-09-27 Thermo-mechanical treatment

Publications (1)

Publication Number Publication Date
JPS6179719A true JPS6179719A (en) 1986-04-23

Family

ID=16425459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20050784A Pending JPS6179719A (en) 1984-09-27 1984-09-27 Thermo-mechanical treatment

Country Status (1)

Country Link
JP (1) JPS6179719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156020A (en) * 1988-12-07 1990-06-15 Mazda Motor Corp Production of carburization-hardened steel member
EP0947589A1 (en) * 1998-03-31 1999-10-06 Volkswagen Aktiengesellschaft Process for treating a metallic workpiece
JP2011247276A (en) * 2010-05-21 2011-12-08 Nhk Spring Co Ltd Method for manufacturing coil spring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156020A (en) * 1988-12-07 1990-06-15 Mazda Motor Corp Production of carburization-hardened steel member
EP0947589A1 (en) * 1998-03-31 1999-10-06 Volkswagen Aktiengesellschaft Process for treating a metallic workpiece
JP2011247276A (en) * 2010-05-21 2011-12-08 Nhk Spring Co Ltd Method for manufacturing coil spring

Similar Documents

Publication Publication Date Title
WO2011122315A1 (en) Method for producing harmonic drive gear base material
US4415378A (en) Case hardening method for steel parts
US3216869A (en) Method of heat treating steel
JPS6179719A (en) Thermo-mechanical treatment
JP2741222B2 (en) Method for manufacturing a nitrided steel member
JPS60162726A (en) Method for surface-hardening toothed part of ring gear of flywheel
JPH08267167A (en) Production of cast iron gear
JPS60162727A (en) Mechanical heat treating method
JPH0853711A (en) Surface hardening treating method
JPS60218422A (en) Improvement of fatigue strength of structural parts for power transmission
JPS60218423A (en) Improvement of fatigue strength of structural parts for power transmission
JP2003055711A (en) Surface treatment method for steel member, and hardened component thereof
JP3283900B2 (en) Heat treatment method for strengthening steel
JPH02294462A (en) Carburizing quenching method for steel member
JPS63100130A (en) Manufacture of high strength cast iron crankshaft
WO2023162515A1 (en) Method for producing steel member
JPS6227516A (en) Method for strengthening surface of steel parts
JPS61124521A (en) Thermo-mechanical processing
JPH01240615A (en) Shot peening method
JPH0615687B2 (en) Surface strengthening method
JPH03229852A (en) Production of high strength parts
RU2060282C1 (en) Method for hot steel products working
JPH08104924A (en) Manufacture of power transmission part
JPH06104852B2 (en) Process for producing carburized steel and articles made therefrom
JPH0434207A (en) Power transmitting shaft for manual transmission