JPH03229852A - Production of high strength parts - Google Patents

Production of high strength parts

Info

Publication number
JPH03229852A
JPH03229852A JP2464890A JP2464890A JPH03229852A JP H03229852 A JPH03229852 A JP H03229852A JP 2464890 A JP2464890 A JP 2464890A JP 2464890 A JP2464890 A JP 2464890A JP H03229852 A JPH03229852 A JP H03229852A
Authority
JP
Japan
Prior art keywords
parts
carbon potential
shot peening
carburizing
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2464890A
Other languages
Japanese (ja)
Inventor
Hideo Aihara
秀雄 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2464890A priority Critical patent/JPH03229852A/en
Publication of JPH03229852A publication Critical patent/JPH03229852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To improve fatigue strength and to produce high strength parts by exerting carburizing treatment at specific carbon potential, performing specific hardening and tempering while reducing carbon potential, and further carrying out shot peening treatment. CONSTITUTION:Carburizing treatment is applied to parts composed of carburiz ing steel, such as Cr steel, by setting carbon potential at 1.0-1.2%, by which the amount of equilibrium carbon in the position at about 100mum depth from the parts surface is regulated to about 1.0%. Subsequently, carbon potential is lowered to 0.4-0.6%, and the above parts are held at 830-870 deg.C for 2-15min and hardening and tempering are carried out. By the above heat treatment, the structure in the outermost surface part at about 70mum depth from the surface part is formed into martensitic structure and the amount of retained austenite in the position at about 100mum depth from the surface part is regulated to >=about 30%. Then, shot peening treatment is applied to these parts to establish high residual compressive stress. By this method, the fatigue strength and tough ness of the carburized parts can be improved, and high strength parts can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は浸炭焼入れとショットピーニングにより高強度
の機械構造用部品を製造する方法に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing high-strength mechanical structural parts by carburizing and quenching and shot peening.

[従来の技術] 最近、機械装置の高性能化に伴い、機械構造用部品は高
速、高負荷の苛酷な条件で使用されるようになっており
、このため、部品強度を高めることが産業界で要求され
ている0例えば、自動車エンジンにおいては、ターボチ
ャージャ付きエンジンや4バルブエンジン等の高出力エ
ンジンの出現により、トランスミッション歯車等に作用
する負荷応力が益々増大化する傾向にあり、従来の浸炭
部品では歯曲げ疲労強度が不足することがある。
[Prior Art] Recently, as the performance of mechanical devices has improved, mechanical structural parts have come to be used under harsh conditions such as high speeds and high loads. For this reason, increasing the strength of parts has become an important issue in industry. For example, in automobile engines, with the advent of high-output engines such as turbocharged engines and 4-valve engines, the load stress acting on transmission gears, etc. tends to increase, and conventional carburizing Parts may lack tooth bending fatigue strength.

そこで、提案されたのか特開昭62−70512号公報
に開示された発明であって、カーホンポテンシャル(平
衡炭素濃度)を1.00〜1.20%として浸炭焼入れ
することにより最表面層に多量の残留オーステナイトを
生成させ、その後ショットピーニング加工を施して前記
残留オーステナイトをマルテンサイトに変態させること
を特徴とする浸炭品の表面硬化方法である。この発明に
おいては、ショットピーニングによる圧縮残留応力の発
生に加えて、ショットピーニングにより残留オーステナ
イトが加工誘起変態するととによりさらに圧縮残留応力
が付加され、圧縮残留応力が著しく高くなり、浸炭部品
の疲労強度および靭性の改善を達成するものである。
Therefore, the invention disclosed in JP-A No. 62-70512 has been proposed, in which the outermost layer is carburized and quenched at a carbon potential (equilibrium carbon concentration) of 1.00 to 1.20%. This method of surface hardening a carburized product is characterized by generating a large amount of retained austenite, and then subjecting the retained austenite to a shot peening process to transform the retained austenite into martensite. In this invention, in addition to the generation of compressive residual stress due to shot peening, further compressive residual stress is added due to deformation-induced transformation of retained austenite due to shot peening, which significantly increases the compressive residual stress and increases the fatigue strength of carburized parts. and improved toughness.

また、マツダ技報(No、5.1987年、P165〜
173)によれば、浸炭した後ごく短時間のガス窒化を
行う浸炭窒化により最表層部のみを窒化し、その間に炭
素ポテンシャルおよび9素ポテンシャルを制御すること
により、残留オーステナイト量を30〜35%の範囲に
制御した後、ハードショットピーニングを施して、歯車
の高疲労強度化に成功している。
Also, Mazda Technical Report (No. 5.1987, P165~
According to 173), by carbonitriding, which performs gas nitriding for a very short time after carburizing, only the outermost layer is nitrided, and during this time, by controlling the carbon potential and the 9-element potential, the amount of retained austenite can be reduced to 30 to 35%. After controlling the fatigue strength within this range, hard shot peening is applied to successfully increase the fatigue strength of gears.

[発明が解決しようとする課題] しかしながら、前記の従来技術においては、ショットピ
ーニングの効果を高めるために、表面部の残留オーステ
ナイト量を最適化することに主眼が置かれ、有効なカー
ボン濃度分布まで含めた深い検討までは至っていなかっ
た。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, in order to enhance the effect of shot peening, the main focus is placed on optimizing the amount of retained austenite in the surface area, and it is difficult to achieve an effective carbon concentration distribution. A deep review including this has not yet been carried out.

また、機械装置の高性能化を図るために、従来法と比較
して、さらに高い疲労強度が得られる部品の製造方法の
提供が望まれていた0本発明は浸炭処理とショットピー
ニングを用いて高強度部品を製造する方法の前記のごと
き問題点に鑑みてなされたもので、従来方法よりもさら
に高い疲労強度が得られる高強度部品の製造方法を提供
することを目的とする。
In addition, in order to improve the performance of mechanical equipment, it has been desired to provide a method for manufacturing parts that can obtain higher fatigue strength than conventional methods.The present invention uses carburizing treatment and shot peening. This was done in view of the above-mentioned problems in the method of manufacturing high-strength parts, and the object is to provide a method of manufacturing high-strength parts that can obtain even higher fatigue strength than conventional methods.

[課題を解決するための手段] 本発明の高強度部品の製造方法は、カーボンポテンシャ
ルを1.0〜1.2%に設定して浸炭処理を施し、その
後カーボンポテンシャルを0.4〜0.6%に低下させ
て830〜870℃で2〜15分保持して焼入れ焼もど
しを行い、さらにショットピーニング処理を施すことを
要旨とする。
[Means for Solving the Problems] In the method for manufacturing high-strength parts of the present invention, carbon potential is set at 1.0 to 1.2% and carburizing treatment is performed, and then the carbon potential is set at 0.4 to 0.0%. The gist is to reduce the temperature to 6% and hold it at 830 to 870°C for 2 to 15 minutes to perform quenching and tempering, and further to perform shot peening treatment.

本発明が適用される浸炭用鋼は、例えばはだ焼鋼に使用
される機械構造用合金鋼としてJISに規定されている
Cr鋼、Cr−Mo鋼、Ni−Cr鋼およびNi−Cr
−Mo鋼などの他、M n −Cr鋼およびN i −
M o鋼である。
Carburizing steels to which the present invention is applied include, for example, Cr steel, Cr-Mo steel, Ni-Cr steel, and Ni-Cr steel, which are specified in JIS as machine structural alloy steels used for case hardening steel.
-In addition to Mo steel, M n -Cr steel and Ni -
It is Mo steel.

本発明方法では、浸炭性雰囲気によるガス浸炭法が用い
られる。浸炭性雰囲気としては、例えば原料ガスに理論
量の空気を混合し、外熱レトルト中に充4填された木炭
まはたニッケル触媒により変成した吸熱型変成ガス、ま
たは液体原料を直接炉内に滴下してその分解生成ガスを
用いる滴下式分解ガスなどを用いることができる。
In the method of the present invention, a gas carburizing method using a carburizing atmosphere is used. The carburizing atmosphere can be, for example, an endothermic gas that has been modified by mixing a theoretical amount of air with the raw material gas and using charcoal or a nickel catalyst filled in an externally heated retort, or a liquid raw material that is directly introduced into the furnace. It is possible to use a drip-type decomposition gas that is dropped and uses the decomposed gas.

浸炭性雰囲気により浸炭あるいは脱炭が進行すると、や
がて鋼中の炭素量は増えもせず減りもしない平衡に達す
る。このときの炭素量を平衡炭素濃度(カーボンポテン
シャル)と称し、浸炭性雰囲気の浸炭能をこの形で表現
する。浸炭性ガスの露点とカーボンポテンシャルの間に
は一定の関係が存在するので、処理温度と所望の含炭量
が決まれば、この露点を持った浸炭性、ガスを得るため
に所定のエンリッチガスを添加してやれば良い。
As carburization or decarburization progresses in a carburizing atmosphere, an equilibrium is reached in which the amount of carbon in the steel neither increases nor decreases. The amount of carbon at this time is called the equilibrium carbon concentration (carbon potential), and the carburizing ability of the carburizing atmosphere is expressed in this form. There is a certain relationship between the dew point of the carburizing gas and the carbon potential, so once the treatment temperature and desired carbon content are determined, the specified enrichment gas can be used to obtain the carburizing gas with this dew point. Just add it.

本発明方法において、浸炭処理当初のカーボンポテンシ
ャルを1.0〜1.2%に設定したのは、カーボンポテ
ンシャルが1.0%未満であると、部品の表面より10
0μ−前後の位置の平衡炭素量が1.0%未満となり、
高い圧縮残留応力が得られるとされる残留オーステナイ
トの量が30%未満となるからであり、カーボンポテン
シャルが1.2%を越えると、逆に圧縮残留応力が低下
し、疲労強度が低くなるからである。
In the method of the present invention, the carbon potential at the beginning of carburizing treatment is set at 1.0 to 1.2%.
The equilibrium carbon content at the position around 0μ is less than 1.0%,
This is because the amount of retained austenite, which is said to provide high compressive residual stress, is less than 30%, and if the carbon potential exceeds 1.2%, compressive residual stress decreases and fatigue strength decreases. It is.

また、その後カーボンポテンシャルを0.4〜0.6%
に低下させて830〜870℃で2〜15分保持して焼
入れ焼もどしするという熱処理条件を規定した理由は次
の通りである。
In addition, after that, the carbon potential was increased to 0.4 to 0.6%.
The reason for specifying the heat treatment conditions of quenching and tempering by holding at 830-870°C for 2-15 minutes is as follows.

カーボンポテンシャル:0.4〜0.6カーボンポテン
シヤルが0.4未満になると表面の炭素濃度が低くなり
過ぎ、表面部の硬度が低下が著しくなるため、疲労強度
が逆に低下する。
Carbon potential: 0.4 to 0.6 When the carbon potential is less than 0.4, the carbon concentration on the surface becomes too low, and the hardness of the surface portion significantly decreases, so that the fatigue strength conversely decreases.

カーボンポテンシャルが0.6を越えると、表面の炭素
濃度を低下させるのに長時間(15分以上)を要し、表
面より100μ−前後の位置での炭素濃度が低下してし
まうため、ショットピーニングの効果か低下してしまう
When the carbon potential exceeds 0.6, it takes a long time (more than 15 minutes) to reduce the carbon concentration on the surface, and the carbon concentration at a position approximately 100μ from the surface decreases, so shot peening is The effectiveness of this will be reduced.

設定温度=830〜870℃ 設定温度が830℃未満であると、均一なオーステナイ
ト相領域でなくなり、焼入れ硬化が不完全となる。設定
温度が870℃を越えるとCの拡散速度が速くなり過ぎ
、目的とする炭素濃度を得ることが困難となる。なお、
この温度に設定するタイミングは必ずしもカーボンポテ
ンシャルを0゜4〜0.6%に低下させるのと同時であ
る必要はなく、最適の炭素濃度が得られるように、それ
以前の適宜の時期を選択することができる。本発明方法
による熱処理サイクルの例を第2UJ!Jに示した。
Set temperature = 830 to 870°C If the set temperature is less than 830°C, the austenite phase region will not be uniform, and quench hardening will be incomplete. If the set temperature exceeds 870° C., the diffusion rate of C becomes too fast, making it difficult to obtain the desired carbon concentration. In addition,
The timing to set this temperature does not necessarily have to be at the same time as reducing the carbon potential to 0°4-0.6%, but it should be selected at an appropriate time before that so that the optimum carbon concentration can be obtained. be able to. An example of a heat treatment cycle according to the method of the present invention is shown in the second UJ! Shown in J.

なお、第2図においてCPはカーボンボテンシャルを表
す。
In addition, in FIG. 2, CP represents carbon potential.

保持時間、2〜15分 保持時間か2分未満であると、最表面部の炭素濃度の低
下が十分てなく、本発明による効果が得t、れなくなる
。保持時間が15分を越えると、表面より]、 007
Jto前紙の位置での炭素濃度が低下してしまい、ショ
ットピーニングの効果が低下する。
If the holding time is 2 to 15 minutes or less than 2 minutes, the carbon concentration at the outermost surface portion will not be reduced sufficiently, and the effects of the present invention will not be obtained. If the holding time exceeds 15 minutes, the surface will deteriorate], 007
The carbon concentration at the position of the Jto front paper decreases, and the effect of shot peening decreases.

ショットピーニングを行う装置は従来のものを用いるこ
とができる。ショットの投射装置としては、回転する翼
車の羽根によって加速する遠心式投射装置、あるいは圧
縮空気がノスルがら噴出するときの空気速度を利用する
空気式吹は投射装置のいずれをも使用することができる
。ショットは、鋳鉄ショット、鋳鋼ショット、鋼線ショ
ット等のいずれを用いても良い。ショット径、ショッI
〜硬さ、投射速度、投射時間等のショットピーニングの
条件は、部品の材質、部品の大きさ等により適宜選択さ
れる。
Conventional equipment can be used for shot peening. As a shot projection device, either a centrifugal projection device that is accelerated by the blades of a rotating impeller, or a pneumatic shot projection device that utilizes the air velocity when compressed air is ejected from a nostle can be used. can. The shot may be cast iron shot, cast steel shot, steel wire shot, or the like. Shot diameter, shot I
- Shot peening conditions such as hardness, blasting speed, blasting time, etc. are appropriately selected depending on the material of the part, the size of the part, etc.

[作用] 本発明の高強度部品の製造方法では、カーボンポテンシ
ャルを1.0〜12%に設定して浸炭処理を施すことに
より、表面より100μ川前後の位置の炭素濃度を1.
0前後とすることができる。
[Function] In the method for manufacturing high-strength parts of the present invention, by performing carburizing treatment with the carbon potential set at 1.0 to 12%, the carbon concentration at a position approximately 100μ from the surface is reduced to 1.0%.
It can be around 0.

そのため、浸炭焼入れ焼もとし後の残留オーステナイト
を30%以上にすることができ、ショットピーニングに
より高い圧縮残留応力が得られる残留オーステナイト量
を確保することができる。
Therefore, the residual austenite after carburizing and quenching can be increased to 30% or more, and it is possible to secure the amount of residual austenite that allows high compressive residual stress to be obtained by shot peening.

また、その後カーボンボテンシャルを0.4〜06%に
低下させて830〜870°Cで2〜15分保持して焼
入れ焼もとしするという熱処理により、表面より約70
μ拍の最表面部は低炭素濃度となって、残留オーステナ
イトの生成を抑制すると同時に、靭性の高いマルテンサ
イト組織が得られる。
In addition, after that, the carbon potential was reduced to 0.4-06%, held at 830-870°C for 2-15 minutes, and quenched.
The outermost surface of the μ-cells has a low carbon concentration, suppressing the formation of retained austenite, and at the same time providing a martensitic structure with high toughness.

続いて、表面部より]00μm0前後の位置の残留オー
ステナイトが309.iIJ上である部品にショットピ
ーニングを施すと、ショットピーニングによる圧縮残留
応力の発生に加えて、ショットピーニングにより残留オ
ーステナイトが加工誘起変態するため、さらに圧縮残留
応力が付加される。その上最表面部は低炭素濃度で、靭
性の高いマルテンサイト組織であるので、?に未決ては
得られなかった高い疲労強度の部品を製造することがて
きる。
Subsequently, the retained austenite at a position around 00 μm from the surface is 309. When shot peening is applied to a part on iIJ, in addition to the generation of compressive residual stress due to shot peening, compressive residual stress is further added due to deformation-induced transformation of retained austenite due to shot peening. Moreover, the outermost surface has a low carbon concentration and a martensitic structure with high toughness. It is now possible to produce parts with high fatigue strength never before possible.

[実施例] 本発明の実施例を従来例と比較しつ−)説明し、本発明
の効果を明らかにする。
[Example] An example of the present invention will be explained in comparison with a conventional example, and the effects of the present invention will be clarified.

現在、自動車用駆動系部品に多く用いられている5Cr
420tI4を溶製し、鍛造、歯切り加工を行って、モ
ふニール2.55の平歯車(圧力角225°、基準ピッ
チ円径795丁+11o、基礎円径73033mm、歯
数31)を製作した。
5Cr, which is currently widely used in automotive drivetrain parts
420tI4 was melted, forged, and gear cut to produce a Mofunir 2.55 spur gear (pressure angle 225°, standard pitch circle diameter 795 teeth + 11o, base circle diameter 73033mm, number of teeth 31). .

製作した歯車を第3図に示す熱処理サイクルにより、オ
ールケース型浸炭焼入炉とマツフル炉を用いて、浸炭焼
入れ焼もどしを施した。
The manufactured gear was carburized, quenched and tempered using an all-case carburizing and quenching furnace and a Matsufuru furnace according to the heat treatment cycle shown in FIG.

また、従来例1として、製作した歯車を浸炭処理時のカ
ーボンポテンシャルを10として、第4図に示す熱処理
サイクルに従って浸炭焼入れ焼もどしを施した。さらに
、従来例2として、第4図に示すカーボンポテンシャル
および熱処理サイクルで浸炭した後の焼入れ温度(85
0℃)にて、アンモニアガ子を全流量の0.5%を15
分間添加して浸炭浸窒焼入れ焼もとじを行った。
Further, as Conventional Example 1, the manufactured gear was carburized, quenched, and tempered according to the heat treatment cycle shown in FIG. 4, with the carbon potential at the time of carburizing treatment set to 10. Furthermore, as Conventional Example 2, the carbon potential shown in Fig. 4 and the quenching temperature after carburizing in the heat treatment cycle (85
15% of the total flow rate of ammonia gas at 0°C).
Carburizing, nitriding, and quenching were carried out by adding carbon dioxide for a minute.

続いて、以上のように熱処理した本発明例、従来例1お
よび従来例2の歯車について、次の条件でショットピー
ニングを施した。
Subsequently, the gears of the present invention example, conventional example 1, and conventional example 2, which had been heat treated as described above, were subjected to shot peening under the following conditions.

ショツト粒  平均粒径0.8mm 平均硬度Hv750 設備     エアブラスト形 ショットピーニング機 エア圧    7 、0 kg/ cm2投射時間  
 4分 投射量    80kg/min その時のアークハイト値をアルメンストリップA片で測
定したところ0.52mmであった。
Shot grains Average particle diameter 0.8 mm Average hardness Hv750 Equipment Air blast type shot peening machine Air pressure 7,0 kg/cm2 Projection time
4-minute projection amount: 80 kg/min The arc height value at that time was measured with a piece of Almen strip A and was 0.52 mm.

ショットピーニングを施して完成品となった歯車につい
て、いわゆるパルセータ方式で歯車単品の疲労試験を行
い、その結果を第1図の縦軸に余圧の式より計算した歯
元すみ内実応力を、横軸に繰り遅し数を取って示した。
For gears that have undergone shot peening and become finished products, fatigue tests are conducted on individual gears using the so-called pulsator method. The number of retardations is shown on the axis.

第1図に示した結果から、カーボンポテンシャルを1.
0〜1.2%に制御して浸炭処理を行い、残留オーステ
ナイトを30%前後とした後、ショットピーニングを施
した歯車(従来例1)、および残留オーステナイトを浸
炭浸窒処理で特定範囲(30〜35%)に制御した後に
ショットピーニングを施した歯車(従来例2)に比較し
て、本発明例の歯車は10%程度の高い耐久限がが得ら
れており、本発明方法によれば従来例では得られなかっ
た高強度の歯車を製造することが出来ることが確認され
た。
From the results shown in Figure 1, the carbon potential is set to 1.
After carburizing the residual austenite to around 30% by controlling it to 0 to 1.2%, shot peening the gear (conventional example 1) and carburizing and nitriding the residual austenite to a specific range (30%). Compared to the gear (conventional example 2) which was subjected to shot peening after being controlled to 35%), the gear of the present invention has a higher durability limit of about 10%, and according to the method of the present invention, It was confirmed that it was possible to manufacture gears with high strength, which was not possible with conventional methods.

[発明の効果] 本発明の高強度部品の製造方法は、以上説明したように
、カーボンポテンシャルを1.0〜1.2%に設定して
浸炭処理を施し、その後カーボンポテンシャルを0.4
〜0.6%に低下させて830〜870℃で2〜15分
保持して焼入れ焼もどしを行い、さらにショットピーニ
ング処理を施すことを特徴とするものであって、最表面
部を低炭素濃度として残留オーステナイトの生成を抑制
し靭性の高いマルテンサイト組織を得ると共に1表面部
から100μI前後の位置の残留オーステナイトを高疲
労強度が得られる最適範囲に規制することにより、浸炭
焼入れ焼もどし後のショットピーニングによる圧縮残留
応力の発生に加えて、ショットピーニングにより残留オ
ーステナイトが加工誘起変態するためさらに圧縮残留応
力が付加され、その上最表面部は低炭素濃度で、靭性の
高いマルテンサイト組織であるので、従来法では得られ
なかった高い疲労強度の部品を製造することができる。
[Effects of the Invention] As explained above, in the method for manufacturing high-strength parts of the present invention, the carbon potential is set to 1.0 to 1.2% and carburizing treatment is performed, and then the carbon potential is set to 0.4%.
It is characterized by reducing the carbon content to ~0.6% and holding it at 830 to 870°C for 2 to 15 minutes to perform quenching and tempering, and then subjecting it to shot peening treatment, so that the outermost surface part has a low carbon concentration. By suppressing the formation of retained austenite and obtaining a martensitic structure with high toughness, and by controlling the retained austenite at a position around 100μI from one surface to an optimal range that provides high fatigue strength, the shot after carburizing and quenching and tempering is In addition to the generation of compressive residual stress due to peening, additional compressive residual stress is added due to the deformation-induced transformation of retained austenite due to shot peening.Furthermore, the outermost surface has a low carbon concentration and a martensitic structure with high toughness. , it is possible to manufacture parts with high fatigue strength that could not be obtained using conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明例および従来例の歯車の疲れ試験におけ
る応力と繰り返し数の関係を示す線図、第2図は本発明
例の浸炭焼入れ焼もどしの熱処理サイクルを示す図、第
3図は実施例の熱処理サイクルを示す図、第4図は従来
例の熱処理サイクルを示す図である。 特 許 出 願 人 トヨタ自動車株式会社 代 理 人
Fig. 1 is a diagram showing the relationship between stress and repetition rate in fatigue tests of gears of the present invention and conventional examples, Fig. 2 is a diagram showing the heat treatment cycle of carburizing, quenching, and tempering of the present invention. FIG. 4 is a diagram showing the heat treatment cycle of the embodiment, and FIG. 4 is a diagram showing the heat treatment cycle of the conventional example. Agent for patent applicant Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)カーボンポテンシャルを1.0〜1.2%に設定
して浸炭処理を施し、その後カーボンポテンシャルを0
.4〜0.6%に低下させて830〜870℃で2〜1
5分保持して焼入れ焼もどしを行い、さらにショットピ
ーニング処理を施すことを特徴とする高強度部品の製造
方法。
(1) Set the carbon potential to 1.0 to 1.2% and perform carburizing treatment, then reduce the carbon potential to 0.
.. 2 to 1 at 830 to 870°C by reducing it to 4 to 0.6%.
A method for manufacturing high-strength parts, characterized by performing quenching and tempering by holding for 5 minutes, and further performing shot peening treatment.
JP2464890A 1990-02-02 1990-02-02 Production of high strength parts Pending JPH03229852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2464890A JPH03229852A (en) 1990-02-02 1990-02-02 Production of high strength parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2464890A JPH03229852A (en) 1990-02-02 1990-02-02 Production of high strength parts

Publications (1)

Publication Number Publication Date
JPH03229852A true JPH03229852A (en) 1991-10-11

Family

ID=12143961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2464890A Pending JPH03229852A (en) 1990-02-02 1990-02-02 Production of high strength parts

Country Status (1)

Country Link
JP (1) JPH03229852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112451A (en) * 2017-01-11 2018-07-19 日立金属株式会社 Manufacturing method for shaft for magnetostrictive torque sensor
JP2020160088A (en) * 2020-07-03 2020-10-01 日立金属株式会社 Magnetostrictive torque sensor shaft and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112451A (en) * 2017-01-11 2018-07-19 日立金属株式会社 Manufacturing method for shaft for magnetostrictive torque sensor
CN108303203A (en) * 2017-01-11 2018-07-20 日立金属株式会社 The manufacturing method of magnetostrictive torque sensor axis
CN108303203B (en) * 2017-01-11 2022-03-01 日立金属株式会社 Method for manufacturing shaft for magnetostrictive torque sensor
US11866798B2 (en) 2017-01-11 2024-01-09 Proterial, Ltd. Method for manufacturing magnetostrictive torque sensor shaft
JP2020160088A (en) * 2020-07-03 2020-10-01 日立金属株式会社 Magnetostrictive torque sensor shaft and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3894635B2 (en) Carburized member, manufacturing method thereof, and carburizing system
JP2779170B2 (en) Carburizing and quenching method
JP3387427B2 (en) Heat treatment method for steel
CN106119495A (en) A kind of manufacture method of cold rolling medium high carbon structural steel
US4202710A (en) Carburization of ferrous alloys
JP3697725B2 (en) Carburized and hardened power transmission member
JP2000129347A (en) Production of high strength parts
JP4079139B2 (en) Carburizing and quenching method
JP2741222B2 (en) Method for manufacturing a nitrided steel member
JPH03229852A (en) Production of high strength parts
JP2000204464A (en) Surface treated gear, its production and producing device therefor
JP4219863B2 (en) High-strength bainite-type nitrided parts and manufacturing method thereof
JP5408465B2 (en) Method of carburizing steel
CN108060353A (en) A kind of shield engine disk type hobbing cutter ring alloy
JP3271659B2 (en) High strength gear and manufacturing method thereof
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH08267167A (en) Production of cast iron gear
CN109182696B (en) Nitriding surface modification method for third-generation carburized steel material
JPH0770646A (en) Production of gear
JPH1018020A (en) Heat treatment for steel
JPH05140726A (en) Manufacture of driving system machine parts having high fatigue strength
JP2915163B2 (en) Strength improvement surface treatment method
JPH02294462A (en) Carburizing quenching method for steel member
JPH03229851A (en) Production of high strength parts
JPH0559432A (en) Production of carburized gear excellent in fatigue strength