JPS6179228A - Projective optical device - Google Patents

Projective optical device

Info

Publication number
JPS6179228A
JPS6179228A JP59200998A JP20099884A JPS6179228A JP S6179228 A JPS6179228 A JP S6179228A JP 59200998 A JP59200998 A JP 59200998A JP 20099884 A JP20099884 A JP 20099884A JP S6179228 A JPS6179228 A JP S6179228A
Authority
JP
Japan
Prior art keywords
gas
refractive index
projection
atmospheric pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59200998A
Other languages
Japanese (ja)
Inventor
Koichi Ono
大野 康一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59200998A priority Critical patent/JPS6179228A/en
Publication of JPS6179228A publication Critical patent/JPS6179228A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable the correction of variation of the optical characteristics due to variation of temperature and atmospheric pressure by forming a hermetic space in the middle of an optical path from a mask to a projective substrate and supplying a gas which can change as refractive index into the space. CONSTITUTION:The selected gas is supplied from supply sources 13 and 23 into gas reservoirs 14 and 24. At this time, intervals 3c and 3f are filled with the gas and the air which has filled those intervals 3c and 3f is substituted for the gas. When the substituting operation is carried out sufficiently, the intervals 3c and 3f are insulated from the outside. At this time, capacities of the gas reservoirs 14 and 24 enhance so as to equal the internal pressures to the atmospheric pressure. As a result, pressure of the gas inside the intervals 3c and 3f also becomes equal to the atmospheric pressure. After that, the gas pressure inside the gas reservoirs 14 and 24 are modulated so as to be equal to the atmospheric pressure by expansion or contraction of the reservoirs and the variation of magnification or focus is corrected by the dependence on pressure of a refractive index of the gas by itself.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、投影光学系を用いて、マスクのパタ一ンを感
光体(ウェハ)に露光する装置に関し、特に投影光学系
の光学特性を所定の状態に安定させた投影光学装置に関
する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to an apparatus that uses a projection optical system to expose a pattern of a mask onto a photoreceptor (wafer), and in particular, relates to an apparatus that uses a projection optical system to expose a pattern of a mask onto a photoreceptor (wafer), and in particular, to The present invention relates to a projection optical device that is stabilized in the following state.

(発明の背景) 縮小投影型露光装置は近年超LSIの生産現場に多く導
入され、大きな成果をもたらしているが、その重要な性
能の一つに重ね合せマツチング精度があげられる。この
マツチング精度に影響を与える要素の中で重要なものに
投影光学系の倍率誤差がある。超LSIに用いられるパ
ターンの大きさは年々微細化の傾向を強め、それに伴っ
てマツチング精度の向上に対するニーズも強くなってき
ている。従って投影倍率を所定の値に保つ必要性はきわ
めて高くなってきている。現在投影光学系の倍率は装置
の設置時に調整することにより倍率誤差が一応無視でき
る程度になっている。しかしながら、装置の稼動時にお
ける僅かな温度変化やクリーンルーム内の僅かな気圧変
動等、環境条件が変化しても倍率誤差が生じないように
したいという要求が高まっている。
(Background of the Invention) In recent years, reduction projection exposure apparatuses have been widely introduced to VLSI production sites and have brought great results, and one of their important performances is overlay matching accuracy. Among the factors that affect this matching accuracy, an important one is the magnification error of the projection optical system. The size of patterns used in VLSIs is becoming increasingly smaller year by year, and the need for improved matching accuracy is also becoming stronger. Therefore, the need to maintain the projection magnification at a predetermined value has become extremely high. Currently, the magnification of the projection optical system is adjusted at the time of installation of the apparatus, so that the magnification error can be ignored. However, there is an increasing demand to prevent magnification errors from occurring even when environmental conditions change, such as slight temperature changes during operation of the device or slight pressure fluctuations in a clean room.

また、環境条件の変化により倍率の変動だけでなく、投
影光学系の結像面の位置が光軸方面に変動する、いわゆ
る焦点変動も生じる。このため、この焦点変動をそのま
\放置しておくと、投影されたマスクのパターン像が感
光体であるウェハ上で解1象不良となり、超LSIの不
良を招くことにもなる。
Furthermore, changes in environmental conditions cause not only a change in magnification but also a so-called focus change in which the position of the imaging plane of the projection optical system changes in the direction of the optical axis. Therefore, if this focus fluctuation is left as it is, the projected pattern image of the mask will become defective on the wafer, which is the photoreceptor, and this will lead to defects in the VLSI.

このような不良は投影光学系に露光用の光が通ることに
よっても引き起される。これは露光用の光エネルギーの
一部が投影光学系内の光学素子に吸収されて温度変化を
引き起すために生じる。そのためたとえ環境状態が安定
だとしても、装置の稼動中は倍率変動や焦点変動が生じ
る。その焦点変動は例えば投影光学系と被投影基板の間
隔を調整するこきで容易に補正可能である。しかしなが
ら倍率変動については投影光学系が所謂ズームレンズ(
変倍光学系)でないかぎり容易に補正することができな
かった。
Such defects are also caused by exposure light passing through the projection optical system. This occurs because a portion of the exposure light energy is absorbed by optical elements within the projection optical system, causing a temperature change. Therefore, even if the environmental conditions are stable, variations in magnification and focus will occur while the device is in operation. The focus fluctuation can be easily corrected, for example, by adjusting the distance between the projection optical system and the projection target substrate. However, regarding magnification changes, the projection optical system is a so-called zoom lens (
This could not be easily corrected unless a variable magnification optical system was used.

(発明の目的) 本発明は、上記問題点を解決すべく、温度及び気圧の変
動による倍率誤差や焦点変動を簡単に補正し得る投影光
学装置を提供することを目的とするO (発明の概要) 本発明は、マスクのパターンを投影光学系を介して被投
影基板に投影する装置において、マスクから被投影基板
までの光路中に外気から遮断された気密空間を形成する
手段と、その気密空間内に屈折率が変化し得る気体を供
給する気体供給手段とを設け、供給気体の屈折率を変化
させてマスクから被投影基板までの投影光学特性を調整
するように構成したことを技術的要点としている。
(Objective of the Invention) In order to solve the above-mentioned problems, the present invention aims to provide a projection optical device that can easily correct magnification errors and focus fluctuations caused by changes in temperature and atmospheric pressure. ) The present invention relates to a device for projecting a pattern on a mask onto a projection target substrate via a projection optical system, and the present invention provides means for forming an airtight space cut off from outside air in an optical path from the mask to the projection target substrate, and the airtight space. The technical point is that a gas supply means for supplying a gas whose refractive index can be changed is provided in the interior, and the projection optical characteristics from the mask to the projection target substrate are adjusted by changing the refractive index of the supplied gas. It is said that

(実施例) 第1図は本発明の第1の実施例による縮小投影型露光装
置の概略的な構成を示す図である。露光光を集光するコ
ンデンサーレンズ1は光源からの光を均一な照度分布に
してレチクルやマスク(以下マスクと総称する)2に照
射する。マスク2に描かれたパターンの光像は投影レン
ズ3によって115又は1/10に縮小されて、感光剤
を塗布したウェハ4上に結像する。ウェハ4はステップ
アンドリピート型の移動ステージ5に載置されている。
(Embodiment) FIG. 1 is a diagram showing a schematic configuration of a reduction projection type exposure apparatus according to a first embodiment of the present invention. A condenser lens 1 that condenses exposure light illuminates a reticle or a mask (hereinafter collectively referred to as a mask) 2 with light from a light source in a uniform illuminance distribution. The light image of the pattern drawn on the mask 2 is reduced by 115 or 1/10 by the projection lens 3, and is focused on the wafer 4 coated with a photosensitizer. The wafer 4 is placed on a step-and-repeat type moving stage 5.

投影レンズ3は複数のレンズ素子で構成されているが、
本実施例ではそのうち特定のレンズ素子3a 、3bに
挾まれた空気間隔3Cと、レンズ素子3d、3eに挾ま
れた空気間隔3fとに空気とは屈折率に関して圧力特性
の異なる気体を密封して、大気圧変化に伴った倍率変動
と焦点変動とを自己補正するように構成した。空気間隔
3c。
The projection lens 3 is composed of a plurality of lens elements,
In this embodiment, an air gap 3C between specific lens elements 3a and 3b and an air gap 3f between lens elements 3d and 3e are sealed with a gas having different pressure characteristics in terms of refractive index. , so as to self-correct magnification fluctuations and focus fluctuations due to changes in atmospheric pressure. Air spacing 3c.

3fは外気から遮断された気蓄構造にし、空気間隔3C
は鏡筒に設けられた孔からパイプ10と電磁弁11を介
してベローズ状のガス溜14に連通している。′このガ
ス溜14はさらに電磁弁12を介して第1の気体供給源
(以下単に第1供給源とする)13と連通ずるとともに
、電磁弁15を介して排気系にも連通している。第1供
給源13はアルゴン、二酸化炭素、チッ素、ヘリウム、
フロン、ベンゼン等の単組成の気体、あるいはそれらの
気体のいくつかを所定の割合で混合した混合気体をガス
溜14に供給するものである。一方、空tl:X 気間隔3fも鏡筒に設けられた孔からパイプ20と電磁
弁21を介してベローズ状のガス溜24に連通している
。このガス溜24はさらに電磁弁22を介して第2の気
体供給源(以下単に第2供給源とする)23と連通ずる
とともに、電磁弁25を介して排気系にも連通している
。第2供給源23も単組成の気体、あるいは混合気体を
ガス溜24に供給するものである。またガス溜14゜2
4はともに大気圧変化に対して内部の気体の圧力が追従
するように、すなわち気体の圧力と大気圧とが常に等し
くなるように内容積が変化し得るような構造になってい
る。
3F has an air storage structure that is isolated from the outside air, and the air gap is 3C.
A hole provided in the lens barrel communicates with a bellows-shaped gas reservoir 14 via a pipe 10 and a solenoid valve 11. 'This gas reservoir 14 further communicates with a first gas supply source (hereinafter referred to simply as the first supply source) 13 via a solenoid valve 12, and also communicates with an exhaust system via a solenoid valve 15. The first supply source 13 includes argon, carbon dioxide, nitrogen, helium,
A gas having a single composition such as chlorofluorocarbon or benzene, or a mixed gas obtained by mixing some of these gases at a predetermined ratio is supplied to the gas reservoir 14. On the other hand, the air gap 3f also communicates with a bellows-shaped gas reservoir 24 from a hole provided in the lens barrel via a pipe 20 and a solenoid valve 21. This gas reservoir 24 further communicates with a second gas supply source (hereinafter simply referred to as the second supply source) 23 via a solenoid valve 22, and also communicates with an exhaust system via a solenoid valve 25. The second supply source 23 also supplies a single composition gas or a mixed gas to the gas reservoir 24. Also, gas reservoir 14゜2
4 have a structure in which the internal volume can be changed so that the internal gas pressure follows changes in atmospheric pressure, that is, the gas pressure and atmospheric pressure are always equal.

さて本実施例では投影レンズ3内の2つの空気間隔3c
、3fを使って、大気圧変化による光学特性の変動を自
己補正するようにするが、ここでは空気間隔3C内の気
体の屈折率を変えることで例えば投影レンズ3の投影倍
率が調整でき、空気間隔3f内の気体の屈折率を変える
ことで焦点変動が調整できるものとする。換言するなら
、投影レンズ3中の複数の空気間隔を同一に一定圧力だ
け変化させたとき、それら空気間隔のうち、投影倍率の
変動に顕著に効く空気間隔と、焦点変動に顕著に効く空
気間隔とを光学計算上のシュミレーションから選んであ
る。才た空気間隔3c 、 3f内に供給される気体は
大気に対して屈折率が異なるばかりでなく、圧力依存特
性も異なる。すなわち、大気と気体の圧力がともに、J
Pだけ変化したとき、大気の屈折率変化量、ΔNと気体
の屈折率変化ik、、1.Ng々は異なった値になる。
Now, in this embodiment, the two air gaps 3c in the projection lens 3
, 3f are used to self-correct fluctuations in optical characteristics due to changes in atmospheric pressure. Here, for example, the projection magnification of the projection lens 3 can be adjusted by changing the refractive index of the gas within the air gap 3C. It is assumed that the focus fluctuation can be adjusted by changing the refractive index of the gas within the interval 3f. In other words, when a plurality of air intervals in the projection lens 3 are changed by the same constant pressure, among these air intervals, there are two air intervals that have a significant effect on changes in projection magnification and an air gap that has a significant effect on focus changes. and are selected from optical calculation simulations. The gas supplied within the wide air gaps 3c, 3f not only has a different refractive index with respect to the atmosphere, but also has different pressure-dependent properties. In other words, both the atmospheric and gas pressures are J
When P changes, the amount of change in the refractive index of the atmosphere, ΔN, and the change in the refractive index of the gas, ik, 1. Ng will have different values.

またi、Ngの値そのものも、気体の組成によって異な
る。圧力が、高くなると気体の屈折率が大きくなること
は周知のことなので、空気間隔3c、3fを所謂気体レ
ンズとしたとき、この気体レンズが元々負のパワーを有
するような間隔を選んである。(気体レンズの形状とし
ては凸であっても、レンズ両側がガラスのような屈折率
のかなり大きい媒質であるため、負のパワーを有するこ
とになる。)一般に投影レンズ3は収れん系であるため
、全体としては正のパワーをもつ単レンズと考えること
ができる。従って大気圧がi、Pだけ高くなると、投影
レンズ3の収れん性が弱くなり、本来の結像面位置は投
影レンズ3から離れる方向にΔ、Zだけシフト(焦点変
動)シ、本来の結1埃面位置における投影1象もiMだ
け拡大(倍率変動)したものになる。
Further, the values of i and Ng themselves also vary depending on the composition of the gas. It is well known that the refractive index of gas increases as the pressure increases, so when the air gaps 3c and 3f are used as so-called gas lenses, the gaps are selected such that the gas lenses originally have negative power. (Even if the gas lens is convex in shape, it will have negative power because both sides of the lens are made of a medium with a fairly high refractive index, such as glass.) In general, the projection lens 3 is a convergent system. As a whole, it can be thought of as a single lens with positive power. Therefore, when the atmospheric pressure increases by i, P, the convergence of the projection lens 3 becomes weaker, and the original image forming plane position shifts (focus variation) by Δ, Z in the direction away from the projection lens 3, resulting in the original focus 1. One projected image at the dust surface position is also magnified by iM (variation in magnification).

そこで焦点変動量ΔZ1倍率変動量ΔMを大気圧の変動
ΔPにかかわらず常に零に補正するためには、大気圧が
高くなるにつれて、投影レンズ3の収れん性を強くする
ように自己調整すればよい。
Therefore, in order to always correct the focus variation amount ΔZ1 and the magnification variation amount ΔM to zero regardless of the atmospheric pressure variation ΔP, it is necessary to self-adjust the projection lens 3 to strengthen its convergence as the atmospheric pressure increases. .

そのためには投影レンズ3内の空気間隔3c。For this purpose, an air gap 3c in the projection lens 3 is required.

3fによる気体レンズの負のパワーを弱くすればよい。It is sufficient to weaken the negative power of the gas lens due to 3f.

負のパワーを弱くする(ガラスと気体との屈折率の差を
小さくする。)には気体レンズを構成する気体圧力を高
くすればよい。従って大気圧が高くなったときに、空気
間隔3c、3f内の気体圧力もそれに順応させで高くす
れば、焦点変動や倍率変動を自己補正することが可能と
なる。本実施例では空気間隔3c、3f内の気体の圧力
は大気圧と常に等しくなるように定められているので、
自己補正を行なうためには気体の屈折率の圧力依存性を
予め調整しておく必要がある。第2図はそのような気体
の見つけ方を模式的に示した図である。第2図において
、横軸は大気圧の変動量ΔPを表わし、縦軸は投影レン
ズ3や間隔3c。
In order to weaken the negative power (reduce the difference in refractive index between glass and gas), it is sufficient to increase the pressure of the gas constituting the gas lens. Therefore, when the atmospheric pressure increases, if the gas pressure within the air gaps 3c and 3f is increased accordingly, it becomes possible to self-correct the focus fluctuations and magnification fluctuations. In this embodiment, the pressure of the gas within the air gaps 3c and 3f is set to always be equal to the atmospheric pressure, so
In order to perform self-correction, it is necessary to adjust the pressure dependence of the refractive index of the gas in advance. FIG. 2 is a diagram schematically showing how to find such a gas. In FIG. 2, the horizontal axis represents the atmospheric pressure fluctuation amount ΔP, and the vertical axis represents the projection lens 3 and the distance 3c.

3f等を単体のレンズ素子とみなしたときの収れん(正
パワー)、発散(負パワー)性の変化量を表わす。同縦
軸の基準値(零)に対する正方向の変化量は発散性がよ
り低くなることを辰わし、負方向の変化量は収れん性が
より低くなることを表わす。第2図では説明を簡単にす
るため、空気間隔3Cのみの大気圧変動lこよる収れん
、発散特性Aと、それ以外の光学エレメント(レンズや
他の空気間隔)による収れん、発散特性Bと、投影レン
ズ3全体の収れん発散特性Tとの3つの気圧特性を示し
た。特性Tは特性AとBの代数的な和で戎わされる。こ
れらの特性からも明ら′!J1なように、投影レンズ3
の倍率変動、焦点変動をほぼ零に保つためには、特性T
の傾きをなくせばよい。そのためには特性Aの傾きθa
をより大きくした特性へ°にするか、もしくは特性Bの
傾きθbをより小さくした特性B1にするかの2つの方
法がある。
It represents the amount of change in convergence (positive power) and divergence (negative power) when 3f etc. are considered as a single lens element. The amount of change in the positive direction with respect to the reference value (zero) on the same vertical axis indicates that the divergence becomes lower, and the amount of change in the negative direction indicates that the convergence becomes lower. In order to simplify the explanation, Fig. 2 shows convergence and divergence characteristics A due to atmospheric pressure fluctuations only due to the air gap 3C, and convergence and divergence characteristics B due to other optical elements (lenses and other air gaps). The convergence/divergence characteristic T and three atmospheric pressure characteristics of the entire projection lens 3 are shown. The property T is expressed by the algebraic sum of the properties A and B. It is clear from these characteristics! Like J1, projection lens 3
In order to keep the magnification fluctuation and focus fluctuation almost zero, the characteristic T
All you have to do is eliminate the slope. For that purpose, the slope θa of characteristic A
There are two methods: to change the characteristic to a larger value, or to change the slope θb of the characteristic B to a characteristic B1, which has a smaller slope.

本実施例の空気間隔3cは大気で充填された非補正状態
では特性Aのように、元々負のパワー(発散性)を有す
るように選んだので、特性AをA・にするように気体を
定める。特性AをAeにするためには、空気(大気)の
単位圧力変化に対する屈折率の変化量をiNoとし、密
封すべき気圧の単位圧力変化に対する屈折率の変化量を
ΔNgとしたとき、ΔNg>iNoの関係を満す気体を
選べばよい。また、本実施例とは逆に元々正のパワー(
収れん性)を有する空気間隔を選んだ場合は、特性Bを
特性B=に変えるように、ΔI’Jg<Δ、N。
The air gap 3c in this embodiment was selected so that it originally had negative power (divergence) as shown in characteristic A in the uncorrected state filled with air, so the gas was changed to change characteristic A to A. stipulate. In order to set characteristic A to Ae, let iNo be the amount of change in the refractive index with respect to a unit pressure change in air (atmosphere), and let ΔNg be the amount of change in refractive index with respect to a unit pressure change in the air pressure to be sealed, then ΔNg> It is sufficient to select a gas that satisfies the iNo relationship. Also, contrary to this embodiment, the originally positive power (
If we choose an air interval that has convergence), then ΔI'Jg<Δ,N, so that characteristic B changes to characteristic B=.

の関係を満す気体を選べばよいことになる。冑、ΔNg
とi、Noの差をどれぐらいにするかは投影レンズ3の
構成(レンズタイプやレンズ素子の配置)によって異な
るので、実験的に各種の気体を密封して倍率変動や焦点
変動をためし焼き等で計測しつつ、最適な気体(単組成
又は混合)を見つければよい。
All you have to do is choose a gas that satisfies the relationship. helmet, ΔNg
The difference between , i, and No depends on the configuration of the projection lens 3 (lens type and arrangement of lens elements). All you have to do is find the most suitable gas (single composition or mixture) while measuring with the above methods.

さて、第1図の装置の動作について説明する。Now, the operation of the apparatus shown in FIG. 1 will be explained.

上記のようにして選定された気体は第1供給源区 へ 沫 決定すれば、大気圧の変化による倍率変動、焦点変動も
同時に補正される。
When the gas selected as described above is sent to the first supply source area, magnification fluctuations and focus fluctuations due to changes in atmospheric pressure are simultaneously corrected.

さて、上記構成においでマスク2を使った露光が開始さ
れると、露光光の入射により倍率変動や焦点変動が生じ
る。その量は逐次、制御装置60に入力されるので、そ
の変動量を補正するように2つの気体G1.G、の混合
比が決定される。混合比と、混合気体の屈折率との関係
はあらかじめ実験等によりわかっているものとし、さら
に、混合気体の屈折率の変化(混合比の変化)と倍率や
、焦点位置の変化との関係も予め実験的に求めであるも
のとする。制御装置60はそれらの関係を表わす演算式
を記憶しており、その式に基づいて混合比を決定する。
Now, when exposure using the mask 2 is started in the above configuration, magnification variation and focus variation occur due to the incidence of exposure light. Since the amounts are sequentially input to the control device 60, the two gases G1. The mixing ratio of G is determined. It is assumed that the relationship between the mixture ratio and the refractive index of the gas mixture is known in advance through experiments, etc., and also the relationship between changes in the refractive index of the gas mixture (changes in the mixture ratio), magnification, and changes in the focal position. It is assumed that this is determined experimentally in advance. The control device 60 stores an arithmetic expression expressing these relationships, and determines the mixture ratio based on the expression.

その混合比は例えば単位時間あたりに混合室40.41
に流れ込む気体Glの量(体積)と気体G3の量(体積
)との比を流散計等で検出することによって計測される
The mixing ratio is, for example, 40.41 in the mixing chamber per unit time.
It is measured by detecting the ratio of the amount (volume) of the gas Gl flowing into the gas G1 and the amount (volume) of the gas G3 flowing into the air using a flowmeter or the like.

以上のように本実施例では屈折率の異なる少なくとも2
つの気体の混合比を変えることによって、気体レンズの
パワーを変化させるので、大気圧変動以外に露光光の入
射により生じる光学特性の変動を積極的に補正丈ること
かできるという利点がある。
As described above, in this embodiment, at least two
Since the power of the gas lens is changed by changing the mixing ratio of the two gases, there is an advantage that it is possible to actively compensate for fluctuations in optical characteristics caused by incidence of exposure light in addition to fluctuations in atmospheric pressure.

以上、本発明の2つの実施例では、投影レンズ3内の特
定の2つの空気間隔3c、3fを選んで屈折率が変化し
得るような、大気(空気)とは異なる気体を密封するよ
う(こしたが、空気間隔の数はいくつあってもよいし、
また倍率変動と焦点変動をともに同時に補正し得るよう
な1つの空気間隔、またはいくつかの空気間隔の組合せ
を作り出してもよい。また、マスク2と投影レンズ3と
のその空間内に第1図で説明したような自己補正用の気
体、あるいは第3図で説明したような混合気体を供給す
るようにしてもよい。この場合投影レンズ3の物体側(
マスク2側)が非テレセントリックな光学系であれば投
影倍率の調整が可能になる。
As described above, in the two embodiments of the present invention, two specific air gaps 3c and 3f in the projection lens 3 are selected to seal a gas different from the atmosphere (air) whose refractive index can change. However, there can be any number of air intervals,
It is also possible to create one air spacing, or a combination of several air spacings, such that both magnification variation and focus variation can be corrected simultaneously. Further, a self-correcting gas as described in FIG. 1 or a mixed gas as described in FIG. 3 may be supplied into the space between the mask 2 and the projection lens 3. In this case, the object side of the projection lens 3 (
If the mask 2 side) is a non-telecentric optical system, the projection magnification can be adjusted.

(発明の効果) 以上本発明によれば、マスクから被投影基板までの光路
中に気密空間を設け、その空間内に大気(空気)とは異
なる屈折率、又は屈折率変化を有する気体を密封するよ
うにしたので、マスクと投影光学系と被投影基板との三
者の光軸方向における相対的な位置を機械的に調整する
ことなく、光学特性を′にに一定の状態に保つことがで
きる。このため装置としての信頼性、長期安定性、が向
上するという効果が得られる。
(Effects of the Invention) According to the present invention, an airtight space is provided in the optical path from the mask to the projection target substrate, and a gas having a refractive index different from that of the atmosphere (air) or a gas having a change in refractive index is sealed in the space. As a result, the optical characteristics can be kept constant without mechanically adjusting the relative positions of the mask, the projection optical system, and the substrate to be projected in the optical axis direction. can. Therefore, the reliability and long-term stability of the device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例による投影型露光装置の
概略的な構成を示す図、第2図は投影レンズの発数性、
収斂性の圧力変動による変化特性を示す図、第3図は本
発明の第2の実施例による投影型露光装置の概略的な構
成を示す図である。 〔主要部分の符号の説明〕 2・・・・・・マスク、    3・・・−・・投影レ
ンズ、3c、3f・・・空気間隔、4・・・・・・ウェ
ハ、13.30・第1の気体供給源、 23.31・・・第2の気体供給の、 14.15・・・ガス溜、   40.41・・・混合
室、60・・・・・制御装置 出願人  日本光学工業株式会社 代理人  渡  辺  隆  男 区 へ 沫
FIG. 1 is a diagram showing a schematic configuration of a projection type exposure apparatus according to a first embodiment of the present invention, and FIG.
FIG. 3 is a diagram illustrating the change characteristics due to convergent pressure fluctuations, and is a diagram illustrating a schematic configuration of a projection exposure apparatus according to a second embodiment of the present invention. [Explanation of symbols of main parts] 2... Mask, 3... Projection lens, 3c, 3f... Air spacing, 4... Wafer, 13.30th. 1 gas supply source, 23.31...Second gas supply, 14.15...Gas reservoir, 40.41...Mixing chamber, 60...Control device applicant Nippon Kogaku Kogyo Agent Takashi Watanabe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)マスクのパターンを投影光学系を介して被投影基
板に投影する装置において、 前記マスクから被投影基板までの光路中に外気から遮断
された気密空間を形成する手段と;該気密空間内に屈折
率が変化し得る気体を供給する気体供給手段とを具備し
、該気体の屈折率を変化させて前記マスクから被投影基
板までの投影光学特性を調整することを特徴とする投影
光学装置。
(1) In an apparatus for projecting a pattern on a mask onto a projection target substrate via a projection optical system, means for forming an airtight space shielded from outside air in an optical path from the mask to the projection target substrate; in the airtight space; and a gas supply means for supplying a gas whose refractive index can be changed, and the projection optical characteristic is adjusted from the mask to the projection target substrate by changing the refractive index of the gas. .
(2)前記気体供給手段は、互いに屈折率の異なる複数
の気体を、任意の割合で混合して前記気密空間に供給す
るための混合器を有することを特徴とする特許請求の範
囲第1項記載の装置。
(2) The gas supply means includes a mixer for mixing a plurality of gases having different refractive indexes at an arbitrary ratio and supplying the mixture to the airtight space. The device described.
JP59200998A 1984-09-26 1984-09-26 Projective optical device Pending JPS6179228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200998A JPS6179228A (en) 1984-09-26 1984-09-26 Projective optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200998A JPS6179228A (en) 1984-09-26 1984-09-26 Projective optical device

Publications (1)

Publication Number Publication Date
JPS6179228A true JPS6179228A (en) 1986-04-22

Family

ID=16433804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200998A Pending JPS6179228A (en) 1984-09-26 1984-09-26 Projective optical device

Country Status (1)

Country Link
JP (1) JPS6179228A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060616A1 (en) * 1998-05-15 1999-11-25 Nikon Corporation Exposure method and apparatus
JP2001167997A (en) * 1999-12-14 2001-06-22 Canon Inc Aligner and device manufacturing method therefor
US6288769B1 (en) * 1997-06-10 2001-09-11 Nikon Corporation Optical device method of cleaning the same, projection aligner, and method of producing the same
US6646713B2 (en) * 1998-02-12 2003-11-11 Canon Kabushiki Kaisha Projection exposure apparatus and device manufacturing method
US6654095B1 (en) 1999-10-18 2003-11-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US6686989B2 (en) 1997-03-27 2004-02-03 Nikon Corporation Exposure apparatus
US6707529B1 (en) * 1999-02-12 2004-03-16 Nikon Corporation Exposure method and apparatus
US6870598B2 (en) 1996-03-04 2005-03-22 Nikon Corporation Projection exposure apparatus
US6873397B2 (en) 2000-03-30 2005-03-29 Canon Kabushiki Kaisha Exposure apparatus, gas replacing method, and method of manufacturing a semiconductor device
US7110090B2 (en) 2003-02-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and method to detect correct clamping of an object
CN102681353A (en) * 2011-03-14 2012-09-19 Asml荷兰有限公司 Projection system, lithographic apparatus and device manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870598B2 (en) 1996-03-04 2005-03-22 Nikon Corporation Projection exposure apparatus
US6686989B2 (en) 1997-03-27 2004-02-03 Nikon Corporation Exposure apparatus
US6671033B2 (en) 1997-06-10 2003-12-30 Nikon Corporation Optical device, method of cleaning the same, projection aligner, and method of producing the same
US6288769B1 (en) * 1997-06-10 2001-09-11 Nikon Corporation Optical device method of cleaning the same, projection aligner, and method of producing the same
US6646713B2 (en) * 1998-02-12 2003-11-11 Canon Kabushiki Kaisha Projection exposure apparatus and device manufacturing method
US6667796B1 (en) 1998-05-15 2003-12-23 Nikon Corporation Exposure method and apparatus
WO1999060616A1 (en) * 1998-05-15 1999-11-25 Nikon Corporation Exposure method and apparatus
US6707529B1 (en) * 1999-02-12 2004-03-16 Nikon Corporation Exposure method and apparatus
US6654095B1 (en) 1999-10-18 2003-11-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2001167997A (en) * 1999-12-14 2001-06-22 Canon Inc Aligner and device manufacturing method therefor
US6873397B2 (en) 2000-03-30 2005-03-29 Canon Kabushiki Kaisha Exposure apparatus, gas replacing method, and method of manufacturing a semiconductor device
US7110090B2 (en) 2003-02-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and method to detect correct clamping of an object
CN102681353A (en) * 2011-03-14 2012-09-19 Asml荷兰有限公司 Projection system, lithographic apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
US4699505A (en) Exposure method and exposure apparatus
US4871237A (en) Method and apparatus for adjusting imaging performance of projection optical apparatus
US5883704A (en) Projection exposure apparatus wherein focusing of the apparatus is changed by controlling the temperature of a lens element of the projection optical system
JP3500619B2 (en) Projection exposure equipment
US6970228B1 (en) Exposure method and system
CN101373323B (en) Optical mask and manufacturing method thereof
TW521321B (en) Projection optical system, projection exposure apparatus having projection optical system, and projection exposure method
JPS6179228A (en) Projective optical device
JP3278407B2 (en) Projection exposure apparatus and device manufacturing method
JPH0638388B2 (en) Microlithography device
WO2001023933A1 (en) Projection optical system
CN101910817A (en) Inspection device and inspecting method for spatial light modulator, illuminating optical system, method for adjusting the illuminating optical system, exposure device, and device manufacturing method
WO2001023935A1 (en) Projection exposure method and apparatus and projection optical system
JPH03198320A (en) Optical device for projection
JPH10142555A (en) Projection exposure device
JPS618922A (en) Projecting optical apparatus
JPH0697301B2 (en) Projection exposure device
JP2010257998A (en) Reflective projection optical system, exposure apparatus, and method of manufacturing device
JPH0430411A (en) Projection exposure device
JPS636553A (en) Method for preventing dust from adhering to reticle
JP2897346B2 (en) Projection exposure equipment
JPS6079358A (en) Projecting optical device
JPH06208056A (en) Method and device for production of lsi element
JPH0570124B2 (en)
JPS61168919A (en) Optical projection apparatus