JPS61168919A - Optical projection apparatus - Google Patents

Optical projection apparatus

Info

Publication number
JPS61168919A
JPS61168919A JP60009651A JP965185A JPS61168919A JP S61168919 A JPS61168919 A JP S61168919A JP 60009651 A JP60009651 A JP 60009651A JP 965185 A JP965185 A JP 965185A JP S61168919 A JPS61168919 A JP S61168919A
Authority
JP
Japan
Prior art keywords
mask
gas
projection
lens
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60009651A
Other languages
Japanese (ja)
Inventor
Koichi Ono
大野 康一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP60009651A priority Critical patent/JPS61168919A/en
Publication of JPS61168919A publication Critical patent/JPS61168919A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To correct magnification errors and fluctuation of a focal point due to the fluctuation of temperature and atmospheric pressure simply, by providing a gaseous lens, in which a gas having a refractive index different from outer air, in a light path from a mask to a substrate, on which light is projected. CONSTITUTION:An annular frame 4, in which two transparent thin films 3a and 3b are provided with a specified interval being provided in the direction of a light axis, is provided in a light path between a mask M and a projecting lens 5. In a space between the thin films 3a and 3b, a gas, which has a refractive index different from that of outer air and has specified pressure, is sent from a gas supplying and exhausting means 11 through a pipe 10. A controller 16 detects the difference between the inner pressure and atmospheric pressure and outputs a control signals S3 to the gas supplying and exhausting means 11 so that said pressure difference becomes a specified value. When the pressure difference is changed, the curving amounts of the thin films 3a and 3b are changed, and the power of the gaseous lens formed by an airtight space 3 is changed. Therefore, the substantial length of the light path between the mask M and the projection lens 5 is changed.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、投影光学系を用いて、マスクのパターンを感
光体(ウエノ))に露光する装置に関し。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an apparatus that uses a projection optical system to expose a pattern of a mask onto a photoreceptor.

特に投影光学系の光学特性が変動しても、マスクから感
光体までの全体的な光学特性を安定に維持し得る投影光
学装置に関する。
In particular, the present invention relates to a projection optical device that can stably maintain the overall optical characteristics from the mask to the photoreceptor even if the optical characteristics of the projection optical system change.

(発明の背景) 縮小投影型露光装置は近乍超LSIの生産現場に多く導
入され、大きな成果をもたらして−るが。
(Background of the Invention) Reduction projection type exposure apparatuses have recently been introduced into many VLSI production sites, and have brought great results.

その重要な性能の一つに重ね合せマツチング精度があげ
られる。このマツチング精度に影響を与える要素の中で
重要なものに投影光学系の倍率誤差がある。超LSIに
用いられるパターンの大きさけ年々微細化の傾向を強め
、それに伴ってマツチング精度の向上に対するニーズも
強くなってきている。従って投影倍率を所定の値に保つ
必要性はきわめて高くなってきて−る。現在投影光学系
の倍率は装置の設置時に調整することによシ倍率誤差が
一応無視できる程度になってbる。しかしながら、装置
の稼動時にあける僅かな温度変化やクリーンルーム内の
僅かな気圧変動等、*境条件が変化しても倍率誤差が生
じないようにした論と−う要求が高まっている・ また、環境条件の変化により倍率の変動だけでなく、投
影光学系の結像面の位置が光軸方面に変動する。−わゆ
る焦点変動も生じる。このため。
One of its important performances is overlay matching accuracy. Among the factors that affect this matching accuracy, an important one is the magnification error of the projection optical system. The size of patterns used in VLSIs is becoming increasingly smaller year by year, and along with this, the need for improved matching accuracy is also becoming stronger. Therefore, the need to maintain the projection magnification at a predetermined value has become extremely high. Currently, by adjusting the magnification of the projection optical system when installing the apparatus, the magnification error can be reduced to a negligible level. However, there is an increasing demand for solutions that do not cause magnification errors even when environmental conditions change, such as slight temperature changes during equipment operation or slight pressure fluctuations in a clean room. Due to changes in conditions, not only the magnification changes, but also the position of the imaging plane of the projection optical system changes in the direction of the optical axis. - So-called focus fluctuations also occur. For this reason.

この焦点変動をそのま\放置しておくと、投影されたマ
スクのパターン像が感光体であるウェハ上で解像不良と
なシ、超LSIの不良を招くことにもなる。
If this focus fluctuation is left as it is, the projected pattern image of the mask will have poor resolution on the wafer, which is a photoreceptor, and this will also lead to defects in the VLSI.

このような不良は投影光学系に露光用の光が通ることに
よっても引き起される。これは露光用の光エネルギーの
一部が投影光学系内の光学素子に吸収されて温度変化を
引き起すために生じる。そのためたとえ環境状態が安定
だとしても、装置の稼動中は倍率変動や焦点変動が生じ
る。その焦点変動は例えば投影光学系とウェハ等の被投
影基板の間隔を調整することで容易に補正可能である。
Such defects are also caused by exposure light passing through the projection optical system. This occurs because a portion of the exposure light energy is absorbed by optical elements within the projection optical system, causing a temperature change. Therefore, even if the environmental conditions are stable, variations in magnification and focus will occur while the device is in operation. The focal point fluctuation can be easily corrected by adjusting the distance between the projection optical system and the projection substrate such as a wafer, for example.

しかしながら倍率変動については投影光学系が所謂ズー
ムレンズ(変倍光学系)でないかぎシ容易に補正するこ
とができなかった。
However, variations in magnification cannot be easily corrected unless the projection optical system is a so-called zoom lens (variable magnification optical system).

(発明の目的) 本発明は、上記問題点を解決すべく、温度及び気圧の変
動による倍率誤差や焦点変動を簡皐に補正し得る投影光
学装置を提供することを目的とする。
(Object of the Invention) In order to solve the above-mentioned problems, it is an object of the present invention to provide a projection optical device that can easily correct magnification errors and focus fluctuations caused by changes in temperature and atmospheric pressure.

(発明の概要) 本発明は、マスクから被投影基板(ウェハ等)までの光
路中に、外気とは異なる屈折率の気体が密封された気体
レンズを形成するために、2枚の透明部材を投影光学系
の光軸方向に所定間隔で保持する気体レンズ容器を設け
、2枚の透明部材の少なくとも一方は、気体レンズ容器
の内部圧力と外気圧との差圧に応じて湾曲状態が変化し
得るように張設された透明薄膜とし、差圧の変化によっ
て気体レンズのパワーが変わることを利用してマスクか
ら被投影基板までの光学特性(倍率や焦点面位置)を調
整するように構成したことを技術的要点としている。
(Summary of the Invention) The present invention uses two transparent members to form a gas lens in which a gas having a refractive index different from that of the outside air is sealed in the optical path from the mask to the projection target substrate (wafer, etc.). A gas lens container is provided that is held at a predetermined interval in the optical axis direction of the projection optical system, and at least one of the two transparent members has a curved state that changes depending on the pressure difference between the internal pressure of the gas lens container and the external pressure. The optical characteristics (magnification and focal plane position) from the mask to the projection substrate can be adjusted using the fact that the power of the gas lens changes with changes in differential pressure. This is the technical point.

(実施例) 第1図は本発明の第1の実施例による投影光学装置、所
謂、縮小投影型露光装置の概略的な構成を示す図である
。不図示の照明用光源からの光はコンデンサーレンズ1
を介してマスクやレチクル(以下総称してマスクと呼ぶ
)Mを均一な照度で照明する。マスクMには被投影基板
に露光、転写すべき回路パターン等が形成されておシ、
そのマスクMは回路パターン領域が遮光されないように
(Embodiment) FIG. 1 is a diagram showing a schematic configuration of a projection optical apparatus, a so-called reduction projection type exposure apparatus, according to a first embodiment of the present invention. Light from an illumination light source (not shown) is transmitted through a condenser lens 1
A mask or reticle (hereinafter collectively referred to as a mask) M is illuminated with uniform illuminance through the illuminance. A circuit pattern to be exposed and transferred onto the projection substrate is formed on the mask M.
The mask M is designed so that the circuit pattern area is not blocked from light.

マスクホルダー2に真空吸着される。マスクMによって
作られた回路パターン像の光束(I!光先光路内光束)
lは外気と異なる屈折率を有する気体を密封した気密空
間3を介して縮小投影レンズ(以下単に投影レンズとす
る)5に入射する。投影レンズ5は回路パターン像を被
投影基板としての感光性のウェハW上に結像する。ウェ
ハW#i2次元移動する!7ステージ6上に2ステージ
7を介して載置される。2ステージ7はその上面にウェ
ハWを真空吸着するとともに、xyステージ6に対して
上下方向、すなわち投影レンズ50光軸方向に移動可能
に設けられている。そして、2ステージ7の上下動はx
yステージ6上に設けられたモータ8の駆動によって行
なわれる。この2ステージ7はウェハWの表面と投影レ
ンズ5の結像面とを一致させる焦点合わせのために上下
動する。
The mask holder 2 is vacuum-adsorbed. Luminous flux of circuit pattern image created by mask M (I! Luminous flux in optical path of light destination)
The light L enters a reduction projection lens (hereinafter simply referred to as a projection lens) 5 through an airtight space 3 that is sealed with a gas having a refractive index different from that of the outside air. The projection lens 5 forms a circuit pattern image onto a photosensitive wafer W serving as a projection target substrate. Wafer W#i moves in two dimensions! It is placed on the 7th stage 6 via the 2nd stage 7. The second stage 7 vacuum-chucks the wafer W on its upper surface and is provided so as to be movable in the vertical direction relative to the xy stage 6, that is, in the optical axis direction of the projection lens 50. And the vertical movement of stage 7 is x
This is performed by driving a motor 8 provided on the y stage 6. These two stages 7 move up and down for focusing so that the surface of the wafer W and the imaging plane of the projection lens 5 are aligned.

さて、気密空間3を形成するために1本実施例ではマス
クMと投影レンズ5との間の光路中に。
Now, in this embodiment, in order to form the airtight space 3, there is one in the optical path between the mask M and the projection lens 5.

2枚の透明な薄膜3a、3bを光軸方向に所定の間隔だ
け離して張設する環状のフレーム4を設ける。フレーム
4は光軸を中心とする円筒状に作られて$9、薄膜3a
、3bはフレーム4の各端面に所定の張力でビンと張る
ように、かつ外気との気密が保たれるように接着される
。このように円筒状のフレームにしたのは、薄膜3m、
3bが湾曲したときに、丁度レンズ表面と同等の球面を
得るためである。また薄膜3a、3bはマスクやレチク
ルの保護膜として市販されて込る高分子材料によるペリ
クルを用いるとよい。このペリクルは膜厚自体も力)な
り薄く、かり膜厚の均一性もよく。
An annular frame 4 is provided on which two transparent thin films 3a and 3b are stretched at a predetermined distance apart in the optical axis direction. Frame 4 is made into a cylindrical shape centered on the optical axis, $9, and thin film 3a.
, 3b are adhered to each end surface of the frame 4 so as to be stretched tightly with a predetermined tension and to maintain airtightness from the outside air. The cylindrical frame was made with a thin film of 3 m,
This is to obtain a spherical surface exactly equivalent to the lens surface when 3b is curved. Further, as the thin films 3a and 3b, it is preferable to use a pellicle made of a polymeric material that is commercially available as a protective film for masks and reticles. The film thickness of this pellicle is relatively thin, and the film thickness is very uniform.

適度の引張ル応力を有し1本実施例の薄膜としては、#
1は良好な光学的特性が得られる。その2枚の薄膜3a
、3bに狭まれた空間には、パイプ10を介して気体給
排気手段11から所定圧力の気体が送シ込まれる。この
気体は外気(空気)とは異なる屈折率を有する単成分、
又は複合成分の気体である。好適な気体成分の一例を掲
げれば。
The thin film of this example has an appropriate tensile stress of #
No. 1 provides good optical characteristics. The two thin films 3a
, 3b, gas at a predetermined pressure is fed from the gas supply/exhaust means 11 via the pipe 10. This gas is a single component with a refractive index different from that of the outside air (air).
Or it is a gas with multiple components. Here are some examples of suitable gas components:

ヘリウム、チッ素、フロン、アルゴン、ベンゼン。Helium, nitrogen, chlorofluorocarbons, argon, benzene.

二酸化炭素、またはこれら成分のいくつかを適宜混合し
たもの等がある。気体給排気手段11には。
Examples include carbon dioxide or a suitable mixture of some of these components. For the gas supply/exhaust means 11.

そのような気体がバイブ12を介して不図示の供給源か
ら供給される。
Such gas is supplied via the vibrator 12 from an unillustrated source.

一方、気密空閏3内に密封された気体の圧力(内部圧力
)t!、圧力センサー14によって検、出される。圧力
センサー14は内部圧力を絶対値で検出し、その値に広
じた信号S、を出力する。圧力センサー15は外気の圧
力(大気圧)を絶対値で検出し、その値に応じた信号S
、を出力する。
On the other hand, the pressure (internal pressure) of the gas sealed in the airtight air valve 3 is t! , detected and output by the pressure sensor 14. The pressure sensor 14 detects the internal pressure as an absolute value and outputs a signal S spread over that value. The pressure sensor 15 detects the pressure of outside air (atmospheric pressure) as an absolute value, and outputs a signal S according to that value.
, outputs.

制御装置16は信号SlとS2を入力して、内部圧力と
大気圧との差を検出して、その差圧が所定の値になるよ
うに気体給排気手段11へ制御信号S、を出力する。そ
の差圧を変化させると、薄膜3a、3bの湾曲量(曲高
)が変化して、気密空間3による気体レンズのパワーが
変化し、マスクMと投影レンズ5との間の実質的な光路
長が変化する。すなわち気体レンズのパワーを変化させ
ることによって、あたかもマスクMと投影レンズ5との
間隔が微小に変化したのと同等になり、タエハW上に投
影されるパターン偉の大きさが微小に伸縮することにな
る。ただし、気体レンズのパワーを変えると論うことは
、気体レンズと投影レンズ5とを含む全投影系による焦
点位置が変化することを意味する。そこで制御装置16
は気密空間3内の圧力調整と連動して、ウェハWの高さ
を補正すべくモータ8を駆動する信号S4も出力する。
The control device 16 inputs the signals Sl and S2, detects the difference between the internal pressure and the atmospheric pressure, and outputs a control signal S to the gas supply/exhaust means 11 so that the differential pressure becomes a predetermined value. . When the differential pressure is changed, the amount of curvature (curvature height) of the thin films 3a and 3b changes, the power of the gas lens by the airtight space 3 changes, and the substantial optical path between the mask M and the projection lens 5 changes. The length changes. In other words, by changing the power of the gas lens, it is equivalent to a minute change in the distance between the mask M and the projection lens 5, and the size of the pattern projected onto the mirror W is expanded or contracted minutely. become. However, changing the power of the gas lens means that the focal position of the entire projection system including the gas lens and the projection lens 5 changes. Therefore, the control device 16
In conjunction with the pressure adjustment in the airtight space 3, it also outputs a signal S4 for driving the motor 8 to correct the height of the wafer W.

これによって投影レンズ5の結儂面とウェハWの表面と
が常に一致するように制御される。さらに制御装置16
は、照明光がマスクM、気体レンズ。
This controls the projection lens 5 so that the converging surface of the projection lens 5 and the surface of the wafer W always coincide with each other. Furthermore, the control device 16
, the illumination light is mask M and a gas lens.

投影レンズ5を通過することによって引き起される倍率
変動の量に応じた信号S、を入力して、その倍率変動を
補正するのに必要な差圧(気体レンズの内部圧力と大気
圧の差)を求め、その差圧が得られるように制御信号S
、を出力する。倍率変動量を表わす信号S、は様々の方
法で得ることができる。例えば照明光学系の中に設けら
れたシャッターの開閉動作、光源の光強度及びマスクM
の透過率等に基づ込て、投影系に入射する積算的な光エ
ネルギーの量を求め、その量から倍率変動量を推定する
方法、投影レンズ5内の瞳付近の光学レンズに薄膜抵抗
体を蒸着し、薄膜抵抗体の温度特性による抵抗値の変化
を検出して、レンズ表面の温度分布の変化を調べること
によって倍率変動量を求める方法、照明光学系中の光学
素子の内で、投影系の倍高変動と相似の温度変動を示す
光学素子を選び、その素子の温度を検出して倍率変動量
を求める方法、あるいは照明光学系中のダイクロイック
ミラーの奥に、露光に使われない波長の元を受けるよう
な温度センサーを配置し、この温度センサーの熱的な時
定数を倍率変動の時定数と合わせることによって1等価
的に倍率変動量を求める方法等が考えられる。
A signal S corresponding to the amount of magnification variation caused by passing through the projection lens 5 is input, and the differential pressure (the difference between the internal pressure of the gas lens and the atmospheric pressure) necessary to correct the magnification variation is input. ), and the control signal S is set so that the differential pressure can be obtained.
, outputs. The signal S representing the amount of magnification variation can be obtained in various ways. For example, the opening/closing operation of the shutter provided in the illumination optical system, the light intensity of the light source, and the mask M
A method of determining the cumulative amount of light energy incident on the projection system based on the transmittance of A method of determining the amount of magnification variation by depositing a thin film resistor, detecting the change in resistance value due to the temperature characteristics of the thin film resistor, and examining the change in temperature distribution on the lens surface. Select an optical element that exhibits a temperature variation similar to the magnification variation of the system, and detect the temperature of that element to determine the amount of magnification variation. Alternatively, there is a method in which a wavelength that is not used for exposure is stored deep inside the dichroic mirror in the illumination optical system. A conceivable method is to arrange a temperature sensor that receives the source of , and to obtain the amount of change in magnification equivalently by combining the thermal time constant of this temperature sensor with the time constant of change in magnification.

尚、上記気体レンズ(気密空間3)Fi、2枚の薄膜3
a、3bがともに外側に湾曲するような凸レンズ形状に
なったとしても、内部に密封された気体が空気の屈折率
よりも小さい場合、必らずしも正のパワーを有するとは
限らず、逆に負のパワーになることもある。
In addition, the gas lens (airtight space 3) Fi, two thin films 3
Even if a convex lens shape is formed in which both a and 3b are curved outward, if the gas sealed inside is smaller than the refractive index of air, it will not necessarily have positive power. On the contrary, it can also become a negative power.

bずれにしろ、気体レンズのパワーは、内部の気体と外
気との相対屈折基と、薄膜3a、3bの曲率、及び間隔
に応じて一義的に定まシ1本実施例では薄膜3a、3b
の曲率を差圧で変化させて気体レンズのパワーを調整す
るようにした。
Regardless of the deviation of b, the power of the gas lens is uniquely determined depending on the relative refractive index between the internal gas and the outside air, and the curvature and spacing of the thin films 3a and 3b.
The power of the gas lens can be adjusted by changing the curvature of the lens using differential pressure.

さて、第2図は制御装置16内の概略的な回路構成を示
す回路プロ・ンク図である。装置全体はマイクロコンピ
ュータ、ミニコンピユータ等のプロセッサー(以下CP
Uとする)30によって統括制御される。記憶素子とし
てのリードオンリーメモリー(以下ROMとする)31
には投影光学系の倍高変動と焦点変動とを補正するのに
必要な各種パラメータ値や参照テーブル、及び演算のた
めのソフトウェアプログラム等□が記憶されてイル。
Now, FIG. 2 is a circuit diagram showing a schematic circuit configuration within the control device 16. As shown in FIG. The entire device is a processor such as a microcomputer or minicomputer (hereinafter referred to as CP).
It is centrally controlled by U) 30. Read-only memory (hereinafter referred to as ROM) 31 as a storage element
The file stores various parameter values and reference tables necessary to correct magnification fluctuations and focus fluctuations of the projection optical system, and software programs for calculations.

具体的には、マスクMからウエノ・Wまでの倍率を精密
に一定値(例えば115や1/1G)に調整したときの
大気圧P0と1倍率変動量ΔMを零に補正するのに必要
な、気密空間3と大気圧との差圧ΔDPを1例えば倍率
変動量ΔMをウニ/%W上の投影パターンの伸縮量で表
わしたとき、ΔMの0.05μm毎に実測して記、憶し
た参照テーブル(以下、第1テーブルと呼ぶ)と、大気
圧変動量ΔPに対する倍率変動量ΔMの係数にと1倍率
変動を補正したときに同時に補正すべき焦点補正量Δz
Cを実測によプ求め、ΔMと対応させて記憶した参照テ
ーブル(以下第2テーブルと呼ぶ)とが保持されている
。またROM31は、大気圧変動量ΔPと投影光学系の
焦点変動量Δ2との関係を表わす係数Cも記憶している
。尚、大気圧変動量ΔPと倍率変動量ΔM又は焦点変動
量Δ2とは実験の結果はtX比例関係にあることがわか
ったので、ΔPとΔMとの関係、又はΔPとΔ2との関
係については単にその比例係数に、Cを求めておくだけ
でよい。
Specifically, it is necessary to correct atmospheric pressure P0 and 1 magnification variation ΔM to zero when the magnification from Mask M to Ueno W is precisely adjusted to a constant value (for example, 115 or 1/1G). , the differential pressure ΔDP between the airtight space 3 and the atmospheric pressure is 1. For example, when the magnification variation ΔM is expressed as the amount of expansion and contraction of the projected pattern on the sea urchin/%W, it is actually measured and memorized every 0.05 μm of ΔM. The reference table (hereinafter referred to as the first table), the coefficient of the magnification variation amount ΔM with respect to the atmospheric pressure variation amount ΔP, and the focus correction amount Δz to be corrected at the same time when one magnification variation is corrected.
A reference table (hereinafter referred to as a second table) in which C is determined by actual measurement and stored in correspondence with ΔM is maintained. The ROM 31 also stores a coefficient C representing the relationship between the atmospheric pressure fluctuation amount ΔP and the focus fluctuation amount Δ2 of the projection optical system. It should be noted that the experimental results showed that the atmospheric pressure fluctuation amount ΔP and the magnification fluctuation amount ΔM or focus fluctuation amount Δ2 are proportional to tX, so regarding the relationship between ΔP and ΔM or the relationship between ΔP and Δ2, It is sufficient to simply calculate C as the proportionality coefficient.

一方、CPU30は圧力センサー14からの内部圧力に
応じた信号S、をアナログ・デジタル変換器(以下、A
DCとする)33を介して読み込み、圧力センサー15
からの大気圧に応じた信号S!をADC32を介して読
み込む、さらにCPU30は気体レンズの内部圧力を調
整するための信号S、と焦点変動補正の際にウェハWを
上下動させるための信号S4とを適宜出力する。セして
CPU3GはマスクMからウェハWまでの投影光学系(
気体レンズも含む)に照明光が通ることによって引き起
される倍高変動量を、前述のいくつかの方法のbずれ力
1によって検出する変動検出手段35からの信号S、も
入力する。この変動検出手段35#i投影光学系への光
入射によシ引き起される焦点変動量も検出する。その焦
点変動量と倍率変動量とは一義的な関係にあ九いずれか
一方の変動量がわかれば、他方の変動量はそれを定数倍
するだけで求められる。
On the other hand, the CPU 30 converts a signal S corresponding to the internal pressure from the pressure sensor 14 into an analog-to-digital converter (hereinafter referred to as A).
DC) 33, pressure sensor 15
Signal S according to the atmospheric pressure from! is read in via the ADC 32, and further, the CPU 30 appropriately outputs a signal S for adjusting the internal pressure of the gas lens and a signal S4 for moving the wafer W up and down during focus fluctuation correction. The CPU 3G then controls the projection optical system (from the mask M to the wafer W).
A signal S from a fluctuation detection means 35 that detects the amount of change in height caused by the illumination light passing through a gas lens (including a gas lens) using the b-shift force 1 of some of the methods described above is also input. This variation detection means 35#i also detects the amount of focus variation caused by light incident on the projection optical system. There is a unique relationship between the amount of variation in focus and the amount of variation in magnification.If the amount of variation in either one is known, the amount of variation in the other can be found by simply multiplying it by a constant.

ここで投影光学系の照明光の入射による倍高変動の一例
を第3図により説明する。第3図(a)は!7ステージ
6をステッピングさせて、ウェハW上にマスクMの回路
パターンの像を繰9返し露光する場合、投影光学系を通
る照明光の時間的な変化を示したものである。第3図(
a)において。
Here, an example of variation in magnification due to incidence of illumination light on the projection optical system will be explained with reference to FIG. Figure 3(a) is! 7 shows the temporal change in the illumination light passing through the projection optical system when the image of the circuit pattern of the mask M is exposed on the wafer W nine times by stepping the stage 6. Figure 3 (
In a).

横軸は時間を表わし、縦軸は投影光学系を通る照明光の
量、すなわちマスクMを照明する党の強度と、マスクM
の回路パターン中の照明部分の総面積(透過基)との積
に応じた入射エネルギーEJを表わす。第3図(b)は
投影光学系の倍率変動量の時間的な変化を、ステップア
ンドリピートの露光動作(83図(&))と対応させて
表わしたものである。今1時刻t0にて露光動作が開始
された本のとすると1倍高変動量ΔMは各ステップ毎の
入射エネルギーElの積算に伴なって対数的な変化で増
加し1時刻t、でほぼ一定の飽和値ΔMSに達する。飽
和値ΔM8の大きさは入射エネルギーE7の大きさに比
例して変化する。このような倍率変動特性におりで時刻
1oから1.までの対数的な変化は、投影光学系の構成
に4よるが。
The horizontal axis represents time, and the vertical axis represents the amount of illumination light passing through the projection optical system, that is, the intensity of the light illuminating the mask M, and the intensity of the illumination light passing through the projection optical system.
represents the incident energy EJ according to the product of the total area (transmission base) of the illumination portion in the circuit pattern. FIG. 3(b) shows the temporal change in the amount of variation in magnification of the projection optical system in correspondence with the step-and-repeat exposure operation (FIG. 83(&)). Assuming that the exposure operation is started at time t0, the 1x high fluctuation amount ΔM increases logarithmically as the incident energy El is integrated at each step, and remains almost constant at time t. reaches the saturation value ΔMS. The magnitude of the saturation value ΔM8 changes in proportion to the magnitude of the incident energy E7. Due to this magnification variation characteristic, from time 1o to 1. The logarithmic change up to 4 depends on the configuration of the projection optical system.

皐−の時定数をもつ式で近似することは難しく。It is difficult to approximate using a formula with a time constant of 1.

一般に2つ〜4つの時定数を組み合わせた式で近似的に
表わされる。さて時刻t、で飽和値ΔMSに達した後、
ステップアンドリピートの露光デユーティと入射エネル
ギーRJとが変化しなh限シ。
Generally, it is approximately expressed by a formula that combines two to four time constants. Now, after reaching the saturation value ΔMS at time t,
The step-and-repeat exposure duty and the incident energy RJ remain unchanged for a limited time.

飽和値ΔMSは変わることがない。そして時刻t!で露
光動作が終了すると1倍率変動量ΔMは指数関数的に減
少し1次のウニノーの露光動作が開始されないと1倍高
変動量ΔMFi初期値の零に戻る。
The saturation value ΔMS does not change. And time t! When the exposure operation is completed, the 1-times high variation amount ΔM decreases exponentially, and returns to zero, which is the initial value of the 1-times high variation amount ΔMFi, unless the exposure operation of the first-order Uni-No is started.

実験の結果焦点変動の特性も、第3図(b)の倍高変動
特性と相似であることが確認された。このため、実際の
焦点変動量Δ2は倍高変動量ΔMと変換定数りとの積で
簡皐に求められる。変動検出手段35は1以上のような
倍率変動量ΔMと焦点変動量Δ2とを表わす信号S、を
逐次CPU30に出力する。
As a result of the experiment, it was confirmed that the characteristics of focus fluctuation are similar to the characteristics of height fluctuation shown in FIG. 3(b). Therefore, the actual focus variation amount Δ2 can be easily determined by multiplying the double height variation amount ΔM by the conversion constant. The fluctuation detecting means 35 sequentially outputs a signal S representing the magnification fluctuation amount ΔM and the focus fluctuation amount Δ2, which are 1 or more, to the CPU 30.

次に本実施例の動作を第4図のフローチャートを参照し
て説明する。このフローチャートは倍高や焦点の変動を
補正するためにCP03Gが実行するプログラムを表わ
す。
Next, the operation of this embodiment will be explained with reference to the flowchart shown in FIG. This flowchart represents a program executed by the CP03G to correct variations in magnification and focus.

ステップ10GでCPU30i1i圧カセンサー14.
15からの信号Sr−agを読み込み、ステップ101
で大気圧変動量ΔPと差圧ΔDPを算出する。大気圧変
動量ΔPは信号S、の値と製造時に記憶した初期大気圧
Poとの差であプ、差圧ΔDlt信号S、とS!の値の
差である。次にCPU30はステップ103で変動検出
手段35からの信号S、を読み込み、その時点における
投影光学系の入射エネルギーによる倍率変動量ΔMと焦
点変動量Δ2とを検出する。そしてCPU30はステッ
プIC)4で大気圧変動量ΔPのみに応じた倍高変動量
ΔMPと焦点変動量ΔzPとを算出する。ΔMPとΔz
Pは大気圧変動量ΔPと係数にの積で算出できる0次に
CPU30は、ステップ105で大気圧変動と入射エネ
ルギーとの両者によって生じた総合的な倍率変動量ΔM
Tと焦点変動量ΔZTとを算出する。一般に倍高変動量
ΔMTけΔMPとΔMの正負を考慮した和であり、焦点
変動量ΔZTはΔzPとΔ2の正負を考慮した和である
At step 10G, CPU 30i1i pressure sensor 14.
Read the signal Sr-ag from 15, step 101
The atmospheric pressure fluctuation amount ΔP and the differential pressure ΔDP are calculated. The atmospheric pressure fluctuation amount ΔP is the difference between the value of the signal S, and the initial atmospheric pressure Po stored at the time of manufacture, and the differential pressure ΔDlt signal S, and S! is the difference between the values of Next, in step 103, the CPU 30 reads the signal S from the fluctuation detection means 35, and detects the magnification fluctuation amount ΔM and the focus fluctuation amount Δ2 due to the incident energy of the projection optical system at that time. Then, in step IC)4, the CPU 30 calculates a double height fluctuation amount ΔMP and a focus fluctuation amount ΔzP that correspond only to the atmospheric pressure fluctuation amount ΔP. ΔMP and Δz
P can be calculated by multiplying the atmospheric pressure fluctuation amount ΔP by the coefficient. In step 105, the CPU 30 calculates the overall magnification fluctuation amount ΔM caused by both the atmospheric pressure fluctuation and the incident energy.
T and the focus variation amount ΔZT are calculated. In general, the amount of height variation ΔMT is the sum of ΔMP and ΔM, taking into account the positive and negative, and the focus variation ΔZT is the sum of ΔzP and Δ2, taking into account the positive and negative.

次にCPU30Fi、ステップ106で、ROM31内
の第1テーブルをサーチして1倍高変動量ΔMTに対応
した差圧ΔDP’を目標値として選び出す。そして次の
ステップ107でCPU30は、ROM31内の第2テ
ーブルをサーチして。
Next, in step 106, the CPU 30Fi searches the first table in the ROM 31 and selects the differential pressure ΔDP' corresponding to the one-time high fluctuation amount ΔMT as the target value. Then, in the next step 107, the CPU 30 searches the second table in the ROM 31.

倍高変動量ΔMTに対応した無点補正量ΔzCを選び出
す。さらにここでCPU30#i先に求めた焦点変動量
ΔZTを補正量ΔzCだけさらに補正する。すなわちΔ
ZTとΔzCの正負を含む加算値を新たに焦点変動量Δ
ZTとする。こうして得られた焦点変動量ΔZTには、
大気圧変動と入射エネルギーとによって生じた焦点変動
と、そのときの倍高変動を零に補正したときに付随して
生じる焦点変動との両者が含まれることになる。
A pointless correction amount ΔzC corresponding to the double height variation amount ΔMT is selected. Furthermore, the CPU 30#i further corrects the previously determined focus variation amount ΔZT by the correction amount ΔzC. That is, Δ
The added value including the positive and negative values of ZT and ΔzC is newly calculated as the focus variation amount Δ
Let's call it ZT. The focus variation amount ΔZT obtained in this way is
This includes both focus fluctuations caused by atmospheric pressure fluctuations and incident energy, and focus fluctuations that occur incidentally when the magnification fluctuations at that time are corrected to zero.

次にCPU30はステップ108で、その焦点変動量Δ
ZTが零になるような駆動信号S4をモータ8に出力し
、2ステージ7の高さを補正する。
Next, in step 108, the CPU 30 determines the focus variation amount Δ
A drive signal S4 that makes ZT zero is output to the motor 8, and the height of the second stage 7 is corrected.

引き続きCPU30はステップ110で目標差圧ΔDP
’に対応した制御信号S1を出力して、変動補正のルー
チンを終了する。その制御信号S。
Subsequently, the CPU 30 determines the target differential pressure ΔDP in step 110.
A control signal S1 corresponding to ' is outputted, and the fluctuation correction routine is ended. Its control signal S.

を出力した後、CPU30は信号83.amを読み込み
、実際の差圧ΔDPが目標差圧ΔDP’  と一致した
か否かを検出し、一致した場合は、給排気手段11が加
圧、動作又は減圧動作を停止するような制御信号S、を
出力する。
After outputting the signal 83., the CPU 30 outputs the signal 83. am is read, it is detected whether or not the actual differential pressure ΔDP matches the target differential pressure ΔDP', and if they match, the control signal S is generated so that the supply/exhaust means 11 stops pressurizing, operating, or depressurizing operation. , outputs.

以上の一連の動作は、露光装置の稼動中に短い時間間隔
(例えば5〜10秒)で常時繰り返されている。その時
間間隔は大気圧変動のみによる光学特性の変動を補正す
る場合、長くすることもできる。逆に露光装置が露光動
作を行なっているときは、なるべく短い時間間隔を設定
する必要がある。
The series of operations described above are constantly repeated at short time intervals (for example, 5 to 10 seconds) while the exposure apparatus is in operation. The time interval can also be made longer if variations in optical properties due only to atmospheric pressure variations are to be corrected. Conversely, when the exposure device is performing an exposure operation, it is necessary to set the time interval as short as possible.

以上本実施例によれば、マスクMと投影レンズ5との間
の光路中に、圧力によってパワーが変化する気体レンズ
を設けたので1機械的な可動部分を設けることなく、投
影倍高の微調が可能となり。
As described above, according to this embodiment, since a gas lens whose power changes depending on pressure is provided in the optical path between the mask M and the projection lens 5, the projection magnification can be finely adjusted without providing any mechanically movable parts. becomes possible.

安定な倍高コントロールが達成される。尚1本実施例は
倍高や焦点の変動を自動補正するような構成としたが、
気体レンズの内部圧力を手動で制御するようにしてもよ
−、また気体レンズ内に供給する気体の温度は装置の製
造、調整から稼動時に渡って一定である必要がある。従
って気体レンズヲ保持するフレーム4の内壁に露光光束
を遮断しないように半導体加熱冷却素子(例えばペルチ
ェ素子等)を設け、気体レンズ内の気体の温度をセンサ
ーで検出して恒温制御することが望まし10次に本発明
の第2の実施例を第5図に基づbで説明する。基本的な
構成は第1図に示した装置と同等であり、第1図中のも
のと同一のものには同じ符号を与えである。本実施例が
第1の実施例と異なる点は気体レンズを投影レンズ5の
第ルンズg、と密接して設けた点である。このため、投
影レンズ5の鏡筒の一部を上方に延ばして1円筒状の保
持枠部5aを形成し、この保持枠部5aの上端面に透明
薄膜3ai張設する。このように気体レンズ(気密空間
3)を構成すると、気体レンズのパワーを可変にする要
素が1枚の薄膜3aだけになるため1倍率補正時の再現
性が2枚の薄膜3a、3bを使った場合よりも向上する
とbう利点がある。
Stable fold height control is achieved. Note that this embodiment has a configuration that automatically corrects variations in magnification and focus.
The internal pressure of the gas lens may be manually controlled, and the temperature of the gas supplied into the gas lens must be constant throughout the manufacturing, adjustment, and operation of the device. Therefore, it is desirable to provide a semiconductor heating and cooling element (such as a Peltier element) on the inner wall of the frame 4 that holds the gas lens so as not to block the exposure light beam, and to detect the temperature of the gas in the gas lens with a sensor to control the constant temperature. 10 Next, a second embodiment of the present invention will be described with reference to FIG. 5. The basic configuration is the same as the device shown in FIG. 1, and the same components as in FIG. 1 are given the same symbols. This embodiment differs from the first embodiment in that the gas lens is provided in close contact with the lens g of the projection lens 5. For this purpose, a part of the lens barrel of the projection lens 5 is extended upward to form a cylindrical holding frame 5a, and a transparent thin film 3ai is stretched over the upper end surface of this holding frame 5a. When the gas lens (airtight space 3) is configured in this way, the element that changes the power of the gas lens is only one thin film 3a, so the reproducibility during 1 magnification correction is improved by using the two thin films 3a and 3b. There is an advantage that it is improved over the previous case.

次に本発明の第3の実施例を第6図を参照して説明する
。本実施例は気体レンズを露光装置側には設けずに、マ
スクM側に設けるようにした点で上述の各実施例と異な
る。本実施例ではマスクMのパターン面側に一定の間隔
をあけて貼り付けられた保護用のペリクル3bを気体レ
ンズのパワー可変要素とするように構成した。ペリクル
3bはフレームPFに張設され、フレームPF’はマス
クMの回路パターン領域を遮光しないように接着される
。このフレームPFの側辺にはペリクル3bの内部空間
3と外気とを連通ずるための通気孔22が形成されてい
る。このようなペリクル保護装置付のマスクMは、マス
クMのパターン面側の周辺を支えるマスクホルダー20
の上に載置され。
Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment differs from the above-mentioned embodiments in that the gas lens is not provided on the exposure apparatus side but on the mask M side. In this embodiment, a protective pellicle 3b attached to the pattern surface side of the mask M at regular intervals is configured to serve as a power variable element of the gas lens. The pellicle 3b is stretched over the frame PF, and the frame PF' is bonded so as not to block the circuit pattern area of the mask M from light. A ventilation hole 22 for communicating the internal space 3 of the pellicle 3b with outside air is formed on the side of the frame PF. Such a mask M with a pellicle protection device is equipped with a mask holder 20 that supports the periphery of the pattern side of the mask M.
placed on top of.

真空吸着される。マスクホルダー20の側壁には通気孔
22と対向するように、気体の送排気孔20aが形成さ
れてbる。送排気孔201Lには給排気手段11と連通
したパイプ10がつながれる。
vacuum adsorbed. A gas supply/exhaust hole 20a is formed in the side wall of the mask holder 20 so as to face the ventilation hole 22. A pipe 10 communicating with the supply/exhaust means 11 is connected to the supply/exhaust hole 201L.

また送排気孔2(laのフレームPFと対向する側には
1通気孔22との気密を保つための気密性のジヨイント
24が設けられている。このためマスクMをマスクホル
ダー20の所定位置に載置すると、送排気孔20aと通
気孔22とが連通し、内部空間3に大気とは異なる屈折
率の気体が所定の圧力で密封される。
In addition, an airtight joint 24 is provided on the side of the ventilation hole 2 (la) facing the frame PF to maintain airtightness with the ventilation hole 22. For this reason, the mask M is placed in a predetermined position of the mask holder 20. When placed, the air supply/exhaust hole 20a and the ventilation hole 22 communicate with each other, and the internal space 3 is sealed with a gas having a refractive index different from that of the atmosphere at a predetermined pressure.

実際に、このような構成で気体レンズを形成するために
は、マスクMを装着した後、内部空間3に存在する外気
(空気)を追い出し1代りにパイプlOからの気体を密
封するような置換操作が必要になる。そして気体が密封
された後の操作は前述の第1の実施例の場合と同様であ
る。ただし。
Actually, in order to form a gas lens with such a configuration, after putting on the mask M, the outside air (air) existing in the internal space 3 is expelled, and the gas from the pipe IO is sealed instead. operation is required. The operation after the gas is sealed is the same as in the first embodiment described above. however.

本実施例の場合、マスクM毎にフレームPFの高さやペ
リクル3bの面積が微妙に異なることも考えられるので
、ROM31に記憶された各種データ(係数やテーブル
)の値を、マスクMを交換するたびに微小量だけ補正し
て使う必要がある。
In the case of this embodiment, since the height of the frame PF and the area of the pellicle 3b may be slightly different for each mask M, the values of various data (coefficients and tables) stored in the ROM 31 are replaced with the mask M. It is necessary to correct only a small amount each time you use it.

以上本実施例では、マスクMの投影レンズと対向する面
に設けられたマスク保護装置そのものを気体レンズとし
て使うようにしたので、露光装置の本体側には大きな改
造を加える必要がなくなシ。
As described above, in this embodiment, since the mask protection device itself provided on the surface of the mask M facing the projection lens is used as a gas lens, there is no need to make any major modifications to the main body of the exposure apparatus.

極めて筒型である。本実施例においてもペリクル3bの
湾曲により、マスクMから投影レンズまでの実質的な光
路長を可変することができ1倍高変動や焦点変動の補正
が同様に実施できる。
It is extremely cylindrical. In this embodiment as well, the curvature of the pellicle 3b allows the substantial optical path length from the mask M to the projection lens to be varied, and correction of 1x height variation and focus variation can be similarly implemented.

本発明は上記各実施例以外にも多くの変形例が考えられ
る。例えば気体レンズを設ける位置は投影レンズ5から
ウェハW−1での空間でもよく、マた投影レンズ5内の
レンズとレンズとの間の空気間隔内に1枚の透明薄膜を
張設し、その薄膜とレンズとの間の気密空間6乙大気と
異なる屈折率の気体を所定圧力で密封するようにしても
よい。さらに本発明の第1から第3の実施例はいずれも
気体レンズのパワーを強制的に可変するような構成であ
ったが、大気圧変動のみを補正するだけでよければ、ス
タティックな制御方式も考えられる。
In addition to the above-mentioned embodiments, the present invention may have many modifications. For example, the position where the gas lens is provided may be the space from the projection lens 5 to the wafer W-1, or a transparent thin film may be stretched in the air gap between the lenses in the projection lens 5. The airtight space 6 between the thin film and the lens may be sealed with a gas having a refractive index different from that of the atmosphere at a predetermined pressure. Furthermore, in the first to third embodiments of the present invention, the power of the gas lens was forcibly varied, but if only atmospheric pressure fluctuations were to be corrected, a static control method could be used. Conceivable.

例えば気体レンズの気密空間3の容積が、大気圧の変動
による薄膜の湾曲に応じて変化するように密封し、気体
レンズのパワーが大気圧変動に比例して変わるようにす
る。そしてこのときのパワー変化が、大気圧変動による
倍率や焦点の変動を自己補正するように、透明薄膜の張
力、気体の屈折高、気体レンズの厚さ等を適宜定めるよ
うにする。
For example, the volume of the airtight space 3 of the gas lens is sealed so as to change in accordance with the curvature of the thin film due to fluctuations in atmospheric pressure, so that the power of the gas lens changes in proportion to fluctuations in atmospheric pressure. Then, the tension of the transparent thin film, the refraction height of the gas, the thickness of the gas lens, etc. are appropriately determined so that the power change at this time self-corrects the magnification and focus change due to changes in atmospheric pressure.

また、上記各実施例のいずれにお−でも、気体レンズを
構成する気体の屈折率は圧力によらず一定としたが、気
体の種類によっては気密空間内の絶対的な圧力値に応じ
て屈折率も多少変化するので、大気圧と内部圧力との差
が一定であったとしても内部圧力の絶対値が異なると、
気体レンズのパワーは必らずしも同一にはならない。そ
のため気体の圧力変化量に対する屈折率変化量のデータ
を予め実測しておき1倍率変動や焦点変動の補正の際の
パラメータとすれば、さらに精密な制御が可能となる。
In addition, in each of the above embodiments, the refractive index of the gas constituting the gas lens was constant regardless of the pressure, but depending on the type of gas, the refraction may vary depending on the absolute pressure value in the airtight space. The rate also changes somewhat, so even if the difference between atmospheric pressure and internal pressure is constant, if the absolute value of internal pressure differs,
The power of gas lenses is not necessarily the same. Therefore, even more precise control becomes possible if data on the amount of change in refractive index with respect to the amount of change in gas pressure is actually measured in advance and used as a parameter when correcting fluctuations in magnification and focus.

(発明の効果) 以上本発明によれば、マスクと被投影基板との間に設け
られた投影光学系の特性が、大気圧の変化や照明光の入
射エネルギーの変化等によって変動したとしても1機械
的な可動部を設けることなく、それら変動を気体レンズ
のパワー調整で簡単に補正することができるので、極め
て微小な量の補正制御の再現性が格段に向上するという
効果が得られる。さらに既存の露光装置にも簡単にレト
ロフィツトできるので、既存の露光装置がもつ倍率変動
や焦点変動を、さらに小さくすることができ、既存の露
光装置では限界とされてbたよりな微細パターンの重ね
合わせ露光工程でも、その装置が十分に実用になるとい
った利点もある。また本発明はマスクと被投影基板との
間lこ投影光学系を有するものであれば、1:1の等倍
露光装置。
(Effects of the Invention) According to the present invention, even if the characteristics of the projection optical system provided between the mask and the projection substrate vary due to changes in atmospheric pressure, changes in incident energy of illumination light, etc. Since these fluctuations can be easily corrected by adjusting the power of the gas lens without providing any mechanical movable parts, it is possible to obtain the effect that the reproducibility of extremely minute correction control is greatly improved. Furthermore, since it can be easily retrofitted into existing exposure equipment, it is possible to further reduce magnification fluctuations and focus fluctuations that existing exposure equipment has, and it is possible to overlap fine patterns that are considered to be at the limit with existing exposure equipment. Another advantage is that the device is fully practical even in the alignment exposure process. Further, the present invention is applicable to a 1:1 equal-magnification exposure apparatus as long as it has a projection optical system between the mask and the projection target substrate.

反射投影式露光装置等に応用しても全く同様の効果が得
られる。
Exactly the same effect can be obtained even when applied to a reflection projection type exposure apparatus or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例による投影型露光装置の
概略的な構成を示す図、第2図は制御装置の概略的な構
成を示す回路ブロック図、第3図は露光動作と倍率変動
の関係を示すタイムチャート図、第4図は光学特性の変
動補正を行なうためのフローチャート図、第5図は本発
明の第2の実施例による投影露光装置の概略を示す図、
第6図は本発明の第3の実施例による気体レンズの構成
を示す図である。 (主要部分の符号の説明) M・・・・・・マスク、     W・・・・・・クエ
ハ。 2・・・・・・マスクホルダ、   3・・・・・・気
密空間。 3&、3b・・・・・・透明薄膜、   4・・・・・
・フレーム。 5・・・・・・投影レンズ。 11・・・・・・気体給排気手段。 14.15・・・・・・圧力センサー。 16・・・・・・制御装置。
FIG. 1 is a diagram showing a schematic configuration of a projection exposure apparatus according to a first embodiment of the present invention, FIG. 2 is a circuit block diagram showing a schematic configuration of a control device, and FIG. 3 is a diagram showing an exposure operation. FIG. 4 is a flowchart for correcting fluctuations in optical characteristics; FIG. 5 is a diagram schematically showing a projection exposure apparatus according to a second embodiment of the present invention;
FIG. 6 is a diagram showing the configuration of a gas lens according to a third embodiment of the present invention. (Explanation of symbols of main parts) M: Mask, W: Queha. 2...Mask holder, 3...Airtight space. 3&, 3b...Transparent thin film, 4...
·flame. 5... Projection lens. 11... Gas supply and exhaust means. 14.15...Pressure sensor. 16...Control device.

Claims (4)

【特許請求の範囲】[Claims] (1)マスクに形成されたパターンを投影光学系を介し
て被投影基板に投影する装置において、前記マスクから
被投影基板までの光路中に、外気とは異なる屈折率の気
体が密封された気体レンズを形成するために、2枚の透
明部材を前記投影光学系の光軸方向に所定間隔で保持す
る気体レンズ容器を有し、前記2枚の透明部材の少なく
とも一方は、前記気体レンズ容器の内部圧力と外気圧と
の差圧に応じて湾曲状態が変化し得るように張設された
透明薄膜であり、前記差圧の変化によって前記気体レン
ズのパワーが変わることを利用して、前記マスクから被
投影基板までの光学特性を調整することを特徴とする投
影光学装置。
(1) In a device that projects a pattern formed on a mask onto a projection substrate via a projection optical system, a gas having a refractive index different from that of the outside air is sealed in the optical path from the mask to the projection substrate. In order to form a lens, a gas lens container is provided that holds two transparent members at a predetermined interval in the optical axis direction of the projection optical system, and at least one of the two transparent members is attached to the gas lens container. The mask is a transparent thin film stretched so that its curved state can change depending on the pressure difference between internal pressure and external pressure, and the power of the gas lens changes depending on the change in the pressure difference. A projection optical device characterized by adjusting optical characteristics from to a projection target substrate.
(2)前記気体レンズ容器は、前記マスクと投影光学系
との間に配置されて、前記光軸方向に所定の高さを有す
る円筒状のフレームから成り、該フレームの両端面の各
々に高分子材料による透明薄膜を張設したことを特徴と
する特許請求の範囲第1項記載の装置。
(2) The gas lens container is arranged between the mask and the projection optical system, and consists of a cylindrical frame having a predetermined height in the optical axis direction, and has a height on each end surface of the frame. 2. The device according to claim 1, further comprising a transparent thin film made of a molecular material.
(3)前記気体レンズ容器は、前記投影光学系の鏡筒の
一部であり、前記2つの透明部材の他方を前記投影光学
系内の1つの光学ガラス素子としたことを特徴とする特
許請求の範囲第1項記載の装置。
(3) The gas lens container is a part of the lens barrel of the projection optical system, and the other of the two transparent members is one optical glass element in the projection optical system. The device according to item 1.
(4)前記2枚の透明部材の他方は前記マスクであり、
前記気体レンズ容器は前記マスクにパターン領域を遮光
しないように固着されたフレームであり、前記透明薄膜
は該フレームに張設されたマスク保護用のペリクルであ
ることを特徴とする特許請求の範囲第1項記載の装置。
(4) the other of the two transparent members is the mask;
The gas lens container is a frame fixed to the mask so as not to block light from the pattern area, and the transparent thin film is a pellicle for protecting the mask stretched over the frame. The device according to item 1.
JP60009651A 1985-01-22 1985-01-22 Optical projection apparatus Pending JPS61168919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009651A JPS61168919A (en) 1985-01-22 1985-01-22 Optical projection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009651A JPS61168919A (en) 1985-01-22 1985-01-22 Optical projection apparatus

Publications (1)

Publication Number Publication Date
JPS61168919A true JPS61168919A (en) 1986-07-30

Family

ID=11726114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009651A Pending JPS61168919A (en) 1985-01-22 1985-01-22 Optical projection apparatus

Country Status (1)

Country Link
JP (1) JPS61168919A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354721A (en) * 1986-08-25 1988-03-09 Nikon Corp Alignment system
EP1473598A2 (en) * 2003-04-30 2004-11-03 ASML Netherlands B.V. Lithographic apparatus, device manufacturing methods, mask and method of characterising a mask and/or pellicle
US7082003B2 (en) * 2001-04-06 2006-07-25 Car Zeiss Jena Gmbh Pressure compensating device for optical apparatus
JP2014007262A (en) * 2012-06-22 2014-01-16 Canon Inc Exposure device, exposure method and manufacturing method of goods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354721A (en) * 1986-08-25 1988-03-09 Nikon Corp Alignment system
US7082003B2 (en) * 2001-04-06 2006-07-25 Car Zeiss Jena Gmbh Pressure compensating device for optical apparatus
EP1473598A2 (en) * 2003-04-30 2004-11-03 ASML Netherlands B.V. Lithographic apparatus, device manufacturing methods, mask and method of characterising a mask and/or pellicle
EP1473598A3 (en) * 2003-04-30 2005-03-09 ASML Netherlands B.V. Lithographic apparatus, device manufacturing methods, mask and method of characterising a mask and/or pellicle
US7379154B2 (en) 2003-04-30 2008-05-27 Asml Netherlands, B.V. Lithographic apparatus, device manufacturing methods, mask and method of characterizing a mask and/or pellicle
JP2014007262A (en) * 2012-06-22 2014-01-16 Canon Inc Exposure device, exposure method and manufacturing method of goods

Similar Documents

Publication Publication Date Title
US4687322A (en) Projection optical apparatus
US5025284A (en) Exposure method and exposure apparatus
KR100200384B1 (en) Projection exposure apparatus and device manufacturing method using the same
WO1998048452A1 (en) Method and device for exposure control, method and device for exposure, and method of manufacture of device
JPH03198320A (en) Optical device for projection
US9465303B2 (en) Exposure apparatus and device manufacturing method
JPS60163046A (en) Projection exposing optical device
WO2002043123A1 (en) Aligner, aligning method and method for fabricating device
WO2000017916A1 (en) Method of adjusting optical projection system
WO2002054460A1 (en) Exposure device
WO2017206755A1 (en) Focusing and leveling measurement device and method
JPS618922A (en) Projecting optical apparatus
JPH10142555A (en) Projection exposure device
JPH08279458A (en) Projecting aligner
JPS61168919A (en) Optical projection apparatus
JPH06349703A (en) Projection exposure device
JPH04130711A (en) Projection optical apparatus
JP2897346B2 (en) Projection exposure equipment
JPH09162107A (en) Projection exposur method
JP2661082B2 (en) Laser wavelength control apparatus and exposure apparatus using the same
JPH0950952A (en) Projection aligner
JP2590891B2 (en) Projection optical device
JPS61213814A (en) Projection exposure device
JP2020204739A5 (en)
JPH0274024A (en) Projection optical system