JPS61213814A - Projection exposure device - Google Patents

Projection exposure device

Info

Publication number
JPS61213814A
JPS61213814A JP60054565A JP5456585A JPS61213814A JP S61213814 A JPS61213814 A JP S61213814A JP 60054565 A JP60054565 A JP 60054565A JP 5456585 A JP5456585 A JP 5456585A JP S61213814 A JPS61213814 A JP S61213814A
Authority
JP
Japan
Prior art keywords
refractive index
gas
refractometer
projection exposure
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60054565A
Other languages
Japanese (ja)
Inventor
Toshihiko Honda
俊彦 本田
Hiroshi Nishizuka
西塚 弘
Susumu Komoriya
進 小森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60054565A priority Critical patent/JPS61213814A/en
Publication of JPS61213814A publication Critical patent/JPS61213814A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To compensate the reduction rate and a focus position with a high precision by providing a refractometer which measures the refractive index of an environmental gas on or near a projection exposure device and providing a control system which compensates the projection magnification and the focus position on the basis of the measured value of this refractometer. CONSTITUTION:In a refractometer 24, and laser light projected to a beam splitter 27 through a transparent window 30 is separated by the beam splitter 27, and separated rays of light are interfered with each other after passing a reference optical path 31 and a measuring optical path 32 respectively. The intensity of light at this time is detected by a photodetector 29 to measure the refractive index of the air in a barrel 5; and if the measured refractive index is different from a preliminarily set value, a control part 40 controls a flow rate control valve on the basis of the measured value of the refractive index to supply each gas to the barrel 5. A variation of the refractive index to be compensated is obtained because the variation of the reduction rate and that of the focus position are related to the variation of the refractive index, and a gas composition is calculated, and the inside of the barrel 5 is adjusted to its gas environment to set the refractive index to a required value. Thus, the practical refractive index of a focusing lens 6 is compensated to a fixed value.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は投影露光装置が設置される環境気体の屈折率の
変化を検出して投影光学系の補正を行ない、適切な投影
倍率や焦点位置の設定を可能にした投影露光装置に関す
るものである。
[Detailed Description of the Invention] [Technical Field] The present invention detects changes in the refractive index of the environmental gas in which a projection exposure apparatus is installed, corrects the projection optical system, and sets an appropriate projection magnification and focal position. This invention relates to a projection exposure apparatus that makes it possible.

〔背景技術〕[Background technology]

半導体装置の製造工程の一つであるフォトリソグラフィ
工程に用いられる投影露光装置では、転写されるパター
ンの微小化に伴って投影光学系の縮小率も益々大きくな
り、縮小率の僅かな変動が素子パターンに大きな影響を
与えることになる。
In projection exposure equipment used in the photolithography process, which is one of the manufacturing processes for semiconductor devices, the reduction ratio of the projection optical system becomes larger and larger as the pattern to be transferred becomes smaller. This will have a big impact on the pattern.

この縮小率の変動の一つに空気で代表される大気の屈折
率の影響があり、空気の温度、湿度、気圧の変動によっ
て空気の屈折率が変化され、投影光学系における縮小率
の変動が生ずることになる。
One of the fluctuations in the reduction ratio is the influence of the refractive index of the atmosphere, represented by air, and the refractive index of the air changes due to changes in the temperature, humidity, and atmospheric pressure of the air, which causes fluctuations in the reduction ratio in the projection optical system. will occur.

このようなことから、本出願人は先に空気の温度、湿度
、気圧を検出することにより、投影光学系の一部、たと
えばレチクルとレンズ間の距離を補正するなどして縮小
率の変動を補正し、あるいは投影光学系の鏡筒内に種々
のガスを供給して鏡筒内のガス屈折率を一定に保持する
などの対策を提案している(特願昭59−11831号
)。
For this reason, the applicant first detected the temperature, humidity, and atmospheric pressure of the air, and corrected the distance between a part of the projection optical system, for example, the reticle and the lens, in order to correct the fluctuations in the reduction ratio. They have proposed countermeasures such as correction or supplying various gases into the lens barrel of the projection optical system to maintain a constant gas refractive index within the lens barrel (Japanese Patent Application No. 11831/1983).

しかし、この方法は前述のように空気の温度、湿度、気
圧の測定値からその時の空気の屈折率を、  計算し、
この計算値に基づいて投影光学系の制御を行なうもので
あるため、いずれか一つの測定値に誤差が生じていても
これがそのまま屈折率の誤差となる。また各測定値に夫
々誤差が生じていれば重畳的に誤差が大きくなるなどの
懸念もあり、投影光学系を高精度に補正する上での問題
となる。
However, as mentioned above, this method calculates the refractive index of the air at that time from the measured values of the air's temperature, humidity, and atmospheric pressure.
Since the projection optical system is controlled based on this calculated value, even if an error occurs in any one of the measured values, this will directly become an error in the refractive index. Furthermore, if errors occur in each measurement value, there is a concern that the errors will increase in a superimposed manner, which poses a problem in correcting the projection optical system with high precision.

〔発明の目的〕[Purpose of the invention]

本発明の目的は空気等の環境気体の屈折率を直接検出し
、これに基づいて投影光学系の縮小率や焦点位置を補正
することにより、温度、湿度、気圧を測定する方式に比
較して誤差のない高精度の補正を行なうことができ、適
切な縮小率および焦点位置での投影露光を可能にした投
影露光装置を提供することにある。
The purpose of the present invention is to directly detect the refractive index of environmental gases such as air and correct the reduction ratio and focal position of the projection optical system based on this, thereby improving the It is an object of the present invention to provide a projection exposure apparatus that can perform highly accurate correction without errors and that can perform projection exposure at an appropriate reduction ratio and focal position.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、投影露光装置内又はその近傍に環境気体の屈
折率を測定する屈折率計を設けると共に、この屈折率計
の測定値に基づいて前記投影露光装置の投影光学系の実
質的な投影倍率や焦点位置の補正を行なう制御系を設け
ることにより、環境気体の屈折率の測定誤差を極力低減
でき、これにより縮小率および焦点位置の補正を高精度
に行うことができる。
That is, a refractometer is provided in or near the projection exposure apparatus to measure the refractive index of the environmental gas, and the actual projection magnification of the projection optical system of the projection exposure apparatus is determined based on the measured value of this refractometer. By providing a control system that corrects the focal position, errors in measuring the refractive index of the environmental gas can be reduced as much as possible, and thereby the reduction ratio and the focal position can be corrected with high precision.

屈折率計は、既知の屈折率の条件下に置かれた基準光路
と、環境気体の条件下に置かれた測定光路と、これら両
光路を通った光の干渉による光強度を検出する光検出素
子とを有し、その時の環境気体の屈折率を直接に測定す
ることができる。
A refractometer consists of a reference optical path placed under conditions of a known refractive index, a measurement optical path placed under conditions of ambient gas, and a photodetector that detects the light intensity due to the interference of light passing through both optical paths. The refractive index of the environmental gas at that time can be directly measured.

〔実施例〕〔Example〕

第1図は本発明を縮小型投影露光装置に適用した実施例
であり、水銀ランプ1の光を反射鏡2で反射した後、コ
ンデンサレンズ3で集光してし゛チクル4を照明する。
FIG. 1 shows an embodiment in which the present invention is applied to a reduction type projection exposure apparatus, in which light from a mercury lamp 1 is reflected by a reflecting mirror 2 and then condensed by a condenser lens 3 to illuminate a particle 4.

レチクル4はその下側の鏡筒5内に配設した結像レンズ
6によりウェハ7の表面に結像され、レチクルパターン
がウェハ7に転写される。ウェハ7はXYテーブル8.
2テーブル9上に載置される。
An image of the reticle 4 is formed on the surface of the wafer 7 by an imaging lens 6 disposed in a lens barrel 5 below the reticle 4, and the reticle pattern is transferred onto the wafer 7. Wafer 7 is placed on XY table 8.
2 is placed on the table 9.

前記鏡筒5は、大略逆円錐台形をした上筒5aと結像レ
ンズ6の下側の円筒状の上筒5bとで構成し、上筒5a
はその上端をレチクル4を支持するホルダ10の下面に
一体化させ、かつ下端は結像レンズ6の上周縁に一体化
させて内部を外気と隔絶している。また、上筒5bは上
端を結像レンズ6の下端に一体化させ、下端は投影光の
透過用に開口させている。そして、前記上筒5aには2
個の孔11.12を開設し、上筒5bには1個の孔13
を開設しており、孔11と孔13にはチューブ14を接
続する一方、孔12は開放させている。このチューブ1
4には枝チューブ15.16゜17を接続し、夫々には
流量制御バルブ18゜19.20を介して二酸化炭素ガ
ス源21、窒素ガス源22および酸素ガス源23を接続
している。
The lens barrel 5 is composed of an upper barrel 5a that is approximately in the shape of an inverted truncated cone and a cylindrical upper barrel 5b below the imaging lens 6.
Its upper end is integrated with the lower surface of the holder 10 that supports the reticle 4, and its lower end is integrated with the upper peripheral edge of the imaging lens 6, thereby isolating the inside from the outside air. Further, the upper end of the upper cylinder 5b is integrated with the lower end of the imaging lens 6, and the lower end is opened for transmission of projection light. The upper cylinder 5a has two
holes 11 and 12 are opened, and one hole 13 is formed in the upper cylinder 5b.
A tube 14 is connected to holes 11 and 13, while hole 12 is left open. This tube 1
Branch tubes 15, 16, 17 are connected to 4, and a carbon dioxide gas source 21, a nitrogen gas source 22, and an oxygen gas source 23 are connected to each via flow rate control valves 18, 19, and 20.

前記流量制御バルブ18.19.20には制御部40を
接続し、後述する屈折率計の信号に基づいて各ガスの流
量が制御され、これらの混合ガスを鏡筒6内に供給する
ことができる。なお、これら制御部40.各ガス源21
.22,23.流量制御パルプ18. 19. 20.
チューブ14等、更に前記鏡筒5の孔11.12.13
等により制御系を構成している。
A control unit 40 is connected to the flow rate control valves 18, 19, and 20, and the flow rate of each gas is controlled based on a signal from a refractometer, which will be described later, and a mixed gas of these can be supplied into the lens barrel 6. can. Note that these control units 40. Each gas source 21
.. 22, 23. Flow control pulp 18. 19. 20.
The tube 14 etc., and the holes 11, 12, 13 of the lens barrel 5
The control system is constructed by the following.

一方、前記上筒5a内には屈折率計24を筒内壁に取着
している。この屈折率計24は、第2図に詳細を示すよ
うに、互いに直角に配置した基準光路31および測定光
路32と、光検出素子29とを備えている。基準光路3
1は、一端に反射鏡26を有し他端にビームスプリッタ
27を有して内部を真空状態に保った透明ガラス筒25
にて構成している。また、測定光路32は、前記ビーム
スプリッタ27に対して前記透明ガラス筒25と同一距
離だけ離して配置した反射鏡28を存している。そして
、このビームスプリッタ27には前記光検出素子29を
対向配置すると共に、前記上筒5aの一部に形成した透
明窓30を通して図外のレーザ光源からのレーザ光が投
射されるように構成している。
On the other hand, inside the upper cylinder 5a, a refractometer 24 is attached to the inner wall of the cylinder. As shown in detail in FIG. 2, this refractometer 24 includes a reference optical path 31 and a measurement optical path 32 arranged at right angles to each other, and a photodetector element 29. Reference optical path 3
1 is a transparent glass tube 25 having a reflecting mirror 26 at one end and a beam splitter 27 at the other end to keep the inside in a vacuum state.
It is made up of. Furthermore, the measurement optical path 32 includes a reflecting mirror 28 arranged at the same distance from the beam splitter 27 as the transparent glass tube 25 . The beam splitter 27 is arranged to face the photodetecting element 29, and is configured so that a laser beam from a laser light source (not shown) is projected through a transparent window 30 formed in a part of the upper tube 5a. ing.

この構成により、ビームスプリンタ27に投射されたレ
ーザ光は一部はビームスプリッタ27で反射され、透明
ガラス筒25を通って反射鏡26で反射された後再び透
明ガラス筒25を通ってビームスプリッタ27に到る。
With this configuration, a portion of the laser light projected onto the beam splitter 27 is reflected by the beam splitter 27, passes through the transparent glass cylinder 25, is reflected by the reflecting mirror 26, and then passes through the transparent glass cylinder 25 again and returns to the beam splitter 27. reach.

また他の一部はビームスプリッタ27を透過したのち反
射鏡28で反射されビームスプリッタ27にまで戻され
る。そして、ここで両反射光が干渉され、その光強度が
光検出素子29によって検出されることになる。
The other part passes through the beam splitter 27, is reflected by the reflecting mirror 28, and is returned to the beam splitter 27. Here, both reflected lights interfere, and the light intensity is detected by the photodetector element 29.

したがって、この光強度のレーザ光波長に対する特性や
各光路31.32の距離に基づいて、基準光路31に対
する測定光路32の相対的な光路長を求めることができ
、これから測定光路32における屈折率、即ち鏡筒5内
の空気ないしガス環境の屈折率を測定できる。
Therefore, the relative optical path length of the measurement optical path 32 with respect to the reference optical path 31 can be determined based on the characteristics of the light intensity with respect to the laser beam wavelength and the distance of each optical path 31, 32, and from this, the refractive index in the measurement optical path 32, That is, the refractive index of the air or gas environment inside the lens barrel 5 can be measured.

以上の構成の投影露光装置によれば、水銀ランプ1の光
でレチクル4を照明すると共に、結像レンズ6によって
レチクルパターンをウェハ7上に投影露光し得ることは
これまでと同じであり、その詳細な説明は省略する。
According to the projection exposure apparatus having the above configuration, the reticle 4 can be illuminated with light from the mercury lamp 1, and the reticle pattern can be projected onto the wafer 7 using the imaging lens 6, which is the same as before. Detailed explanation will be omitted.

一方、屈折率計24では、透明窓30を通してビームス
プリッタ27に投射されたレーザ光が、ビームスプリッ
タ27により分離され夫々基準光路31および測定光路
32を通った後に干渉されるが、この時の光強度を光検
出素子29によって検出することにより、鏡筒5内の空
気の屈折率を測定することができる。そして、この測定
した屈折率が予め設定している値と異なるときには、鏡
筒5内部における結像レンズ6の相対的な屈折率が変化
され、その縮小倍率や焦点位置にずれが生ずることを意
味している。
On the other hand, in the refractometer 24, the laser light projected onto the beam splitter 27 through the transparent window 30 is separated by the beam splitter 27 and interfered after passing through the reference optical path 31 and the measurement optical path 32, respectively. By detecting the intensity with the photodetector element 29, the refractive index of the air within the lens barrel 5 can be measured. When this measured refractive index differs from a preset value, it means that the relative refractive index of the imaging lens 6 inside the lens barrel 5 changes, causing a shift in the reduction magnification and focal position. are doing.

したがって、この屈折率の測定値に基づいて、制御部4
0では流量制御バルブ18,19.20を制御して各ガ
スを夫々の枝チューブ15,16゜17からチューブ1
4を通して鏡筒5内に供給する。鏡筒5では上筒5aお
よび上筒5bに夫々孔11.13を通して各ガスが供給
される。
Therefore, based on the measured value of this refractive index, the controller 4
0, the flow rate control valves 18, 19, 20 are controlled to flow each gas from the respective branch tubes 15, 16, 17 to tube 1.
4 into the lens barrel 5. In the lens barrel 5, each gas is supplied to the upper barrel 5a and the upper barrel 5b through holes 11 and 13, respectively.

ここで、空気の屈折率変化は1気圧、標準大気組成、2
0℃近傍において、 屈折率変化量(ppm)=0゜93δT−0゜36δ2
+0001δ8+δ の関係が成り立つ。
Here, the refractive index change of air is 1 atm, standard atmospheric composition, 2
Near 0°C, refractive index change (ppm) = 0°93δT - 0°36δ2
+0001δ8+δ holds true.

但し、δ7=気温変化(℃)。However, δ7 = temperature change (°C).

δ2=気圧変化(mmHg) δえ=相対湿度(%) δ =空気組成による屈折率変化量(ppm)であり、 このδは、二酸化炭素ガス(100%) =158pp
m。
δ2 = atmospheric pressure change (mmHg) δ = relative humidity (%) δ = refractive index change due to air composition (ppm), and this δ is carbon dioxide gas (100%) = 158 pp
m.

窒素ガス(100%) =5ppm。Nitrogen gas (100%) = 5ppm.

酸素ガス(100%) −−20ppmである。Oxygen gas (100%) --20 ppm.

更に、縮小率変化量は、 縮小率変化量(PP阿) =2.5 X屈折率変化it
 (PPM)の関係がある。また、 焦点位置変化量(μm) #0.5 X屈折率変化量(
PPM) の関係がある。
Furthermore, the amount of change in reduction rate is: amount of change in reduction rate (PPa) = 2.5 X refractive index change it
(PPM) relationship. Also, focal position change amount (μm) #0.5 X refractive index change amount (
PPM).

したがって、測定したその時の屈折率から補正すべき屈
折率変化量を求め、かつこの量と前記した関係式から補
正に適したガス組成を計算し、これに基づいて制御部4
0が流量制御バルブ18゜19.20を制御して混合ガ
スを形成し、これを鏡筒5内に供給することにより、鏡
筒5内をそのガス環境に調整しその屈折率を所要の値に
設定することができる。これから結像レンズ6の実質的
な屈折率を一定の値に補正でき、さらにこの屈折率の一
定化によりその縮小率および焦点位置をも一定に保持す
ることができ、高精度のパターン投影を達成できる。
Therefore, the amount of refractive index change to be corrected is determined from the measured refractive index at that time, and the gas composition suitable for correction is calculated from this amount and the above-mentioned relational expression, and based on this, the control unit 4
0 controls the flow rate control valve 18° 19.20 to form a mixed gas, and supplies this into the lens barrel 5, thereby adjusting the interior of the lens barrel 5 to the gas environment and adjusting the refractive index to the required value. Can be set to . From this, the effective refractive index of the imaging lens 6 can be corrected to a constant value, and by making this refractive index constant, the reduction ratio and focal position can also be kept constant, achieving highly accurate pattern projection. can.

なお、鏡筒5の上筒5aに供給されたガスは孔12を通
して排出され、上筒5bに供給されたガスは下方の開口
から排出され、各筒内は一定の圧力に保たれる。
Note that the gas supplied to the upper tube 5a of the lens barrel 5 is discharged through the hole 12, and the gas supplied to the upper tube 5b is discharged from the lower opening, so that the inside of each tube is maintained at a constant pressure.

〔効果〕〔effect〕

(1)投影光学系内またはその近傍に環境気体の屈折率
を測定する屈折率計を配置しているので、この環境気体
の屈折率を直接測定してその測定値の精度を高めること
ができ、これにより光学系の実質的な屈折率を一定に保
つと共に光学系の縮小率や焦点位置を一定に制御し、高
精度の投影露光を達成することができる。
(1) Since a refractometer that measures the refractive index of the environmental gas is placed within or near the projection optical system, it is possible to directly measure the refractive index of this environmental gas and improve the accuracy of the measured value. This makes it possible to maintain the substantial refractive index of the optical system constant, control the reduction ratio and focal position of the optical system constant, and achieve highly accurate projection exposure.

(2)屈折率計は、基準光路と、測定光路とを有し、こ
れらを夫々通過した光の干渉を利用してその時の屈折率
を測定する構成であるので、光学系内に容易に設置でき
、光学系直近の屈折率を正確に測定できる。
(2) The refractometer has a reference optical path and a measurement optical path, and is configured to measure the refractive index by utilizing the interference of the light that passes through each of these, so it can be easily installed in an optical system. It is possible to accurately measure the refractive index in the vicinity of the optical system.

(3)測定した屈折率に基づいて、制御系では光学系内
に種々のガスを混合して供給し、光学系内の環境気体が
所定の屈折率となるように制御することができるので、
前記した縮小率や焦点位置の一定化を応答性よく制御す
ることができ、特に高速の投影露光に追随できる。
(3) Based on the measured refractive index, the control system can mix and supply various gases into the optical system and control the environmental gas within the optical system to have a predetermined refractive index.
The above-mentioned reduction ratio and constant focal position can be controlled with good responsiveness, and particularly high-speed projection exposure can be followed.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいデまでもない。
Although the invention made by the present inventor has been specifically explained above based on examples, it is understood that the present invention is not limited to the above-mentioned examples and can be modified in various ways without departing from the gist thereof. Nor.

たとえば、屈折率計は基準光路又は測定光路の一方の反
射鏡を光路に沿って移動可能とし、この反射鏡を移動し
たときの干渉の変化によって屈折率を求めることもでき
る。また各光路は平行に配置してもよく、更に基準光路
は屈折率が既知であればガラス、透明液体等の光透過部
材を用いて構成してもよい。また、使用するガスは窒素
ガスや酸素ガスに代えて、空気やヘリウム等を用いても
よい。この場合には、前述の関係式における数値が相違
することは言うまでもない。
For example, in a refractometer, a reflecting mirror on either the reference optical path or the measuring optical path can be moved along the optical path, and the refractive index can be determined by the change in interference when the reflecting mirror is moved. Further, the optical paths may be arranged in parallel, and the reference optical path may be constructed using a light-transmitting member such as glass or transparent liquid if the refractive index is known. Furthermore, the gas used may be air, helium, or the like instead of nitrogen gas or oxygen gas. In this case, it goes without saying that the numerical values in the above-mentioned relational expression will be different.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である縮小型投影露光装置
に適用した場合について説明したが、それに限定される
ものではなく、結像光学系を用いてパターンを投影露光
する装置の全てに適用できる。
In the above explanation, the invention made by the present inventor was mainly applied to a reduction type projection exposure apparatus, which is the field of application that formed the background of the invention, but the invention is not limited to this, and the invention is not limited to this. It can be applied to all devices that project and expose patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成図、第2図は屈折
率計の構成図である。 1・・・水銀ランプ、4・・・レチクル、5・・・鏡筒
、5a・・・上筒、5b・・・上筒、6・・・結像レン
ズ、7・・・ウェハ、11,12.13・・・孔、14
・・・チューブ、1B、19.20・・・流量制御バル
ブ、21・・・二酸化炭素ガス源、22・・・窒素ガス
源、23・・・酸素ガス源、24・・・屈折率計、26
.28・・・反射鏡、29・・・光検出素子、31・・
・基準光路、32・・・測定光路、40・・・制御部。 第  1  図
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, and FIG. 2 is a configuration diagram of a refractometer. DESCRIPTION OF SYMBOLS 1... Mercury lamp, 4... Reticle, 5... Lens barrel, 5a... Upper tube, 5b... Upper tube, 6... Imaging lens, 7... Wafer, 11, 12.13...hole, 14
...Tube, 1B, 19.20...Flow rate control valve, 21...Carbon dioxide gas source, 22...Nitrogen gas source, 23...Oxygen gas source, 24...Refractometer, 26
.. 28...Reflecting mirror, 29...Photodetection element, 31...
- Reference optical path, 32... Measurement optical path, 40... Control unit. Figure 1

Claims (1)

【特許請求の範囲】 1、投影露光装置内又はその近傍に環境気体の屈折率を
測定する屈折率計を設けると共に、この屈折率計の測定
値に基づいて前記投影露光装置の投影光学系の実質的な
投影倍率や焦点位置の補正を行なう制御系を設けたこと
を特徴とする投影露光装置。 2、制御系は投影光学系の鏡筒内にガスを供給し得るよ
うに構成し、前記環境気体の屈折率測定値に基づいて前
記ガスの組成成分を調整し、鏡筒内を一定の屈折率に保
持し得る特許請求の範囲第1項記載の投影露光装置。 3、屈折率計は既知の屈折率の条件下に置かれた基準光
路と、環境気体の条件下に置かれた測定光路と、これら
両光路を通った光の干渉による光強度を検出する光検出
素子とを有し、前記両光路の光強度の特性から環境気体
の屈折率を算出する特許請求の範囲第1項又は第2光記
載の投影露光装置。
[Claims] 1. A refractometer for measuring the refractive index of an environmental gas is provided in or near the projection exposure apparatus, and the projection optical system of the projection exposure apparatus is adjusted based on the measured value of the refractometer. A projection exposure apparatus characterized by being provided with a control system for correcting the actual projection magnification and focal position. 2. The control system is configured to supply gas into the lens barrel of the projection optical system, adjusts the composition of the gas based on the measured refractive index of the environmental gas, and maintains a constant refraction within the lens barrel. 2. A projection exposure apparatus according to claim 1, wherein the projection exposure apparatus can be maintained at a constant speed. 3. A refractometer has a reference optical path placed under conditions of a known refractive index, a measurement optical path placed under conditions of environmental gas, and a light beam that detects the light intensity due to the interference of the light passing through both optical paths. 2. A projection exposure apparatus according to claim 1, further comprising a detection element, and calculating the refractive index of an environmental gas from the characteristics of the light intensity of both optical paths.
JP60054565A 1985-03-20 1985-03-20 Projection exposure device Pending JPS61213814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054565A JPS61213814A (en) 1985-03-20 1985-03-20 Projection exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054565A JPS61213814A (en) 1985-03-20 1985-03-20 Projection exposure device

Publications (1)

Publication Number Publication Date
JPS61213814A true JPS61213814A (en) 1986-09-22

Family

ID=12974209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054565A Pending JPS61213814A (en) 1985-03-20 1985-03-20 Projection exposure device

Country Status (1)

Country Link
JP (1) JPS61213814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193231B2 (en) 2002-08-29 2007-03-20 Asml Netherlands B.V. Alignment tool, a lithographic apparatus, an alignment method, a device manufacturing method and device manufactured thereby
JP2014126748A (en) * 2012-12-27 2014-07-07 Canon Inc Exposure apparatus and device manufacturing method
JP2014127620A (en) * 2012-12-27 2014-07-07 Canon Inc Exposure device and manufacturing method for device
JP2020204739A (en) * 2019-06-18 2020-12-24 キヤノン株式会社 Exposure apparatus and method for manufacturing article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193231B2 (en) 2002-08-29 2007-03-20 Asml Netherlands B.V. Alignment tool, a lithographic apparatus, an alignment method, a device manufacturing method and device manufactured thereby
JP2014126748A (en) * 2012-12-27 2014-07-07 Canon Inc Exposure apparatus and device manufacturing method
JP2014127620A (en) * 2012-12-27 2014-07-07 Canon Inc Exposure device and manufacturing method for device
JP2020204739A (en) * 2019-06-18 2020-12-24 キヤノン株式会社 Exposure apparatus and method for manufacturing article

Similar Documents

Publication Publication Date Title
KR100463562B1 (en) Projection exposure apparatus and method
US6563565B2 (en) Apparatus and method for projection exposure
US4870452A (en) Projection exposure apparatus
KR20010089453A (en) Exposure method and device
US20100245829A1 (en) System and method for compensating instability in an autofocus system
KR20020075432A (en) Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice
JPH10340846A (en) Aligner, its manufacture, exposing method and device manufacturing method
EP1126510A1 (en) Method of adjusting optical projection system
WO2017206755A1 (en) Focusing and leveling measurement device and method
JP3473649B2 (en) Projection exposure equipment
US4676614A (en) Apparatus for regulating the optical characteristics of a projection optical system
US8400618B2 (en) Method for arranging an optical module in a measuring apparatus and a measuring apparatus
JPH10170399A (en) Method and equipment for measuring aberration, aligner equipped with that method and equipment and fabrication of device
JPS61213814A (en) Projection exposure device
US4941745A (en) Projection aligner for fabricating semiconductor device having projection optics
JPS62140418A (en) Position detector of surface
JPS61168919A (en) Optical projection apparatus
JP2590891B2 (en) Projection optical device
JPS58202449A (en) Reduce-projecting exposure device
JPS60177625A (en) Projection exposure device
JPH01286418A (en) Projection aligner
JPH0274024A (en) Projection optical system
JPS58162844A (en) Pattern inspecting device
JPH07321005A (en) Projection aligner
JPS63302519A (en) Projection exposure device