JPS6179221A - Epitaxial growth method - Google Patents

Epitaxial growth method

Info

Publication number
JPS6179221A
JPS6179221A JP20060584A JP20060584A JPS6179221A JP S6179221 A JPS6179221 A JP S6179221A JP 20060584 A JP20060584 A JP 20060584A JP 20060584 A JP20060584 A JP 20060584A JP S6179221 A JPS6179221 A JP S6179221A
Authority
JP
Japan
Prior art keywords
crystal
grown
protective film
gaas
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20060584A
Other languages
Japanese (ja)
Inventor
Masao Mashita
真下 正夫
Miyoko Watanabe
渡辺 美代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20060584A priority Critical patent/JPS6179221A/en
Publication of JPS6179221A publication Critical patent/JPS6179221A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To prevent decrease in carrier density at the re-growth interface by growing a GaAs crystal as a protective film on a AlxGa1-xAs crystal, and growing a desired crystal after evaporating the protective film when re-growth is performed. CONSTITUTION:By the molecular beam epitaxial growth, a Al0.3Ga0.7As crystal 2 is epitaxially grown on a GaAs crystal 1, and then a GaAs crystal 3 is grown. This structure is taken out of the equipment, again placed in the equipment, and then heated to evaporate the crystal 3. After evaporation of the crystal 3, a Al0.3Ga0.7As crystal 2' is grown. As a result, a clean interface can be obtained which has no decrease in carrier density at the re-growth interface.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は分子線エピタキシャル成長法を用いてAlxG
aI XA8結晶の上に他の結晶を再成長させるエピタ
キシャル成長法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to the production of AlxG using a molecular beam epitaxial growth method.
This invention relates to an epitaxial growth method for regrowing other crystals on top of the aI XA8 crystal.

〔発明の技術的背景とその間d点〕[Technical background of the invention and point d]

n型のAΔxGa1.As結晶の分子線エピタキシでは
結晶成長の中断を行った界面において、キャリヤ濃度が
減少する現象が生ずる。この界面は、非オーム性高抵抗
層として働くため、基板を電極とするデバイスや結晶中
に電極を埋め込む構造のデバイスでは、この種の界面は
重大な問題となる。
n-type AΔxGa1. In molecular beam epitaxy of As crystals, a phenomenon occurs in which the carrier concentration decreases at the interface where crystal growth is interrupted. Since this interface functions as a non-ohmic high-resistance layer, this type of interface poses a serious problem in devices that use a substrate as an electrode or devices that have an electrode embedded in a crystal.

従って、結晶成長を中断する前にアモルファスAs膜を
分子線エピタキシャル成長装置内で形成し、この人8膜
を結晶を大気にさらした時の保護膜として用いる方法が
提案されている。例えばn型GaAsに対してAsパシ
ベーションを行った場合には界面におけるキャリヤ濃度
の減少はないといわれている。しかし、このようなAs
膜においては、アモルファス構造のために構造欠陥を通
して大気中のH,OやCOなどの不純物ガスが侵入し、
GaAsに比べて活性なAI XGa1− z As 
結晶を汚染する。また、As膜は湿気に対して極めて不
安定である欠点も有する。
Therefore, a method has been proposed in which an amorphous As film is formed in a molecular beam epitaxial growth apparatus before crystal growth is interrupted, and this film is used as a protective film when the crystal is exposed to the atmosphere. For example, it is said that when n-type GaAs is subjected to As passivation, there is no decrease in the carrier concentration at the interface. However, such As
Due to the amorphous structure of the film, impurity gases such as H, O, and CO in the atmosphere can enter through structural defects.
AI XGa1-z As more active than GaAs
Contaminate the crystal. Furthermore, the As film also has the disadvantage of being extremely unstable against moisture.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した従来の再成長法の欠点を改良したも
ので分子線エピタキシャル成長のA#Ga1゜As結晶
の再成長界面においてキャリヤa度の減少法を提供する
ことを目的とする。
The present invention improves the drawbacks of the conventional regrowth method described above, and aims to provide a method for reducing the carrier a degree at the regrowth interface of A#Ga1°As crystal grown by molecular beam epitaxial growth.

〔発明の概要〕[Summary of the invention]

本発明の方法は1分子線エピタキシャル法C:よって人
7xGls −xAsを例えばGaAs  結晶基板の
上に所望の厚さまで成長させ、更に保護膜として数10
〜数1OOXのGaAs結晶を成長させた後大気中にと
り出し、再び分子線エピタキシにより他の結晶を成長さ
せる場合には、上記保護膜としてのGaAs結晶は熱的
に蒸発させる方法である。
The method of the present invention is a single-molecular beam epitaxial method C: Therefore, 7xGls-xAs is grown on a GaAs crystal substrate to a desired thickness, and then a protective film of several tens of
When a GaAs crystal of ~100X is grown and then taken out into the atmosphere and another crystal is grown again by molecular beam epitaxy, the GaAs crystal as the protective film is thermally evaporated.

〔発明の効果〕〔Effect of the invention〕

本発明(=よれば% Ajl)CGal−X”結晶は大
気に収り出される前に非常に熱的および化学的に安定な
GaAs結晶で保護されるので大気からの汚染がなく、
再成長の際には保護膜は熱的1:蒸発される。従ってA
jxG麿、−xA、結晶の上(:結果的シーは直接、所
望の結晶を成長させることができ、かつキャリヤの減少
を示さない清浄な界面を得ることができる。
The present invention (according to % Ajl) CGal-X" crystal is protected by a very thermally and chemically stable GaAs crystal before being released into the atmosphere, so there is no contamination from the atmosphere.
During regrowth, the protective film is thermally evaporated. Therefore A
jxGmaro, -xA, on top of the crystal (: As a result, the desired crystal can be grown directly, and a clean interface showing no carrier loss can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、上述した本発明の実施例を図面に基いて説明する
。本発明では第1図において分子線エピタキシによりG
aAs結晶l結晶−AJ 6.s Ga6.y As結
晶2を1μ厚でエピタキシャル成長させ更に100 A
厚のGaAs結晶3を成長させる。このような構造のも
のを装置の外に収り出し、再び装置内に取り入れ、基板
をI X l(j’−” Torr  圧のAs雰囲気
中で710’C10分間加熱して上記100AのGaA
s結晶を蒸発させた。第2図に基板温度とGaAaの蒸
発速度の関係を示す。保護膜GaAaの蒸発条件は第2
図を用いて決定することができる。保護膜を蒸発させた
後、λJ6a@ Ga (k? Asをaoooi成長
させた。その結果、第3図に示すような構造が得られた
。比較のため、従来例の1001のAs膜で保護したも
のを第4図に、保護膜を全くつけないものを第5図に示
す。以上すべてのAJO,II Gao、y As結晶
は共通にn= 5 XIQ” amのn型のドーピング
を行っである。
Embodiments of the present invention described above will be described below with reference to the drawings. In the present invention, in FIG. 1, G is formed by molecular beam epitaxy.
aAs crystal l crystal-AJ 6. sGa6. y As crystal 2 was epitaxially grown to a thickness of 1 μ and further heated at 100 A.
A thick GaAs crystal 3 is grown. The substrate having such a structure was taken out of the apparatus and put back into the apparatus, and the substrate was heated at 710'C for 10 minutes in an As atmosphere at a pressure of I
s crystals were evaporated. FIG. 2 shows the relationship between substrate temperature and GaAa evaporation rate. The evaporation conditions for the protective film GaAa are the second
This can be determined using the diagram. After evaporating the protective film, λJ6a@Ga(k?As) was grown aooooi. As a result, a structure as shown in Fig. 3 was obtained.For comparison, the structure was protected with a conventional 1001 As film. Figure 4 shows the one with no protective film, and Figure 5 shows the one without any protective film.All of the above AJO, II Gao, and y As crystals are commonly doped with n-type n = 5 XIQ" am. be.

第5図の保護膜のないものは、窒素ガス中に放置したも
の、第1図および第4図に対応する構造のものは純水中
に30分間浸漬したものをそれぞれ再成長し、第3図の
構造を得た後C−v法によりキャリヤのプロファイルを
測定した結果を第6図に示す。■は第5図の構造に対応
し、再成長界面でのキャリヤの減少が著しい。@は第4
図に対応し、保護膜のない場合と同様、かなりのキャリ
ヤの減少が見られる。■は本発明による第1図(一対応
するプロファイルで殆んどキャリヤの減少は見られない
The ones without a protective film in Figure 5 were left in nitrogen gas, and the ones with structures corresponding to Figures 1 and 4 were immersed in pure water for 30 minutes. After obtaining the structure shown in the figure, the profile of the carrier was measured by the C-v method, and the results are shown in FIG. 3 corresponds to the structure shown in FIG. 5, and the carriers at the regrowth interface are significantly reduced. @ is the fourth
Corresponding to the figure, a significant carrier reduction is observed, similar to the case without the protective film. (2) shows almost no decrease in carriers in the profile shown in FIG. 1 (one corresponding to the present invention).

以上の説明で本発明の特徴が明確(二なったように本発
明l:よれば再成長界面でキャリヤ濃度の減少のない清
浄な界面が得られる。
From the above explanation, the features of the present invention are clear (secondarily, according to the present invention, a clean interface with no decrease in carrier concentration at the regrowth interface can be obtained).

〔発明の他の実施例〕[Other embodiments of the invention]

上記実施例ではAlxGa1−)(AsとしてAjo、
sGa&y Aaを挙げて説明したがいずれの結晶も任
意の組成を選ぶことができる。また、再成長結晶)Ni
t xAs結晶に限ることなく、GaAs結晶を含め、
他の物質からなる結晶を選ぶことができる。
In the above example, AlxGa1-) (Ajo as As,
Although sGa&yAa have been mentioned in the explanation, any composition can be selected for any of the crystals. Also, regrown crystal)Ni
Not limited to txAs crystals, including GaAs crystals,
You can choose crystals made of other materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明による一実施例を説明するため
の図、第4図及び第5図は従来例を説明するための図、
第6図は従来例の方法を採用した場合と本発明方法を採
用した場合の効果の相違な説明するための図である。 1−−− GaAs基板     2 、2’・、AJ
、、3Gao、、Alt結晶3・・・GaAs結晶  
  4・・・A8膜代理人 弁理士 則 近 憲 佑 (ほか1名) 第  1 図    第  3 図 第  2 図 温度(・C) 第  4 図    第  5 図 第  6 図 滝さCノ/rrL)
1 to 3 are diagrams for explaining an embodiment according to the present invention, and FIGS. 4 and 5 are diagrams for explaining a conventional example.
FIG. 6 is a diagram for explaining the difference in effect between the case where the conventional method is adopted and the case where the method of the present invention is adopted. 1--- GaAs substrate 2, 2', AJ
,,3Gao,,Alt crystal 3...GaAs crystal
4...A8 Membrane Agent Patent Attorney Noriyuki Chika (and 1 other person) Fig. 1 Fig. 3 Fig. 2 Fig. Temperature (・C) Fig. 4 Fig. 5 Fig. 6 Fig. Takisa Cノ/rrL)

Claims (1)

【特許請求の範囲】[Claims]  分子線エピタキシャル法によつて成長したAl_xG
a_1_−_xAs(x≠0)結晶を大気中に取り出し
た後、再び分子線エピタキシ法によりその上へ他の結晶
を成長させるエピタキシヤル成長法において、上記Al
_xGa_1_−_xAs結晶上にGaAs結晶を保護
膜として成長させ、再成長時に上記保護膜を蒸発させて
から所望の結晶を成長させることを特徴とするエピタキ
シヤル成長法。
Al_xG grown by molecular beam epitaxial method
In the epitaxial growth method in which the a_1_-_xAs(x≠0) crystal is taken out into the atmosphere and another crystal is grown thereon again by molecular beam epitaxy, the Al
An epitaxial growth method characterized by growing a GaAs crystal as a protective film on a _xGa_1_-_xAs crystal, and growing a desired crystal after evaporating the protective film during regrowth.
JP20060584A 1984-09-27 1984-09-27 Epitaxial growth method Pending JPS6179221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20060584A JPS6179221A (en) 1984-09-27 1984-09-27 Epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20060584A JPS6179221A (en) 1984-09-27 1984-09-27 Epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS6179221A true JPS6179221A (en) 1986-04-22

Family

ID=16427143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20060584A Pending JPS6179221A (en) 1984-09-27 1984-09-27 Epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS6179221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293948A (en) * 1985-10-18 1987-04-30 Rohm Co Ltd Passivation for algaas layer
JPH04192413A (en) * 1990-11-26 1992-07-10 Sharp Corp Growth method for compound semiconductor and manufacture of semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293948A (en) * 1985-10-18 1987-04-30 Rohm Co Ltd Passivation for algaas layer
JPH04192413A (en) * 1990-11-26 1992-07-10 Sharp Corp Growth method for compound semiconductor and manufacture of semiconductor laser

Similar Documents

Publication Publication Date Title
JP3307647B2 (en) Manufacturing method of high and low anti-silicon carbide
JPH0484418A (en) Method of heteroepitaxial development of iii-v group compound semiconductor for different types of substrates
JPH033364A (en) Semiconductor device
JPS60142568A (en) Manufacture of sic field effect transistor
Crumbaker et al. Growth of InP on Si substrates by molecular beam epitaxy
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
JPS6179221A (en) Epitaxial growth method
Norris et al. Substrate temperature limits for epitaxy of InP by MBE
JPS6362313A (en) Manufacture of semiconductor device
JPS6066892A (en) Semiconductor laser device and manufacture thereof
JPH012318A (en) Method of forming thin film
JP2932787B2 (en) Method for manufacturing compound semiconductor wafer
DE2166427C3 (en) Process for epitaxial growth of a doped GaAs thin film
JPS6430287A (en) Semiconductor laser device and manufacture thereof
Crumbaker et al. The influence of dislocation density on electron mobility in InP films on Si
JPS61214479A (en) Manufacture of epitaxial wafer for high-mobility transistor
JPS61276267A (en) Semiconductor hetero-junction device
JPS6212119A (en) Molecular beam epitaxial growth method
JP2555885B2 (en) Germanium / gallium arsenide junction manufacturing method
JPS62137821A (en) Vapor growth method for semiconductor
JPS6164118A (en) Manufacture of semiconductor device
JPS63192227A (en) Epitaxial growth method of compound semiconductor
JPS62243316A (en) Manufacture of semiconductor device
JPH0360173B2 (en)
JPH0666343B2 (en) Group III-V semiconductor wafers