JPS6179141A - Measuring device for optical characteristic of paper - Google Patents

Measuring device for optical characteristic of paper

Info

Publication number
JPS6179141A
JPS6179141A JP20245584A JP20245584A JPS6179141A JP S6179141 A JPS6179141 A JP S6179141A JP 20245584 A JP20245584 A JP 20245584A JP 20245584 A JP20245584 A JP 20245584A JP S6179141 A JPS6179141 A JP S6179141A
Authority
JP
Japan
Prior art keywords
paper
linear array
array sensor
wavelength
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20245584A
Other languages
Japanese (ja)
Inventor
Seiichiro Kiyobe
清部 政一郎
Yukihiko Takamatsu
幸彦 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP20245584A priority Critical patent/JPS6179141A/en
Publication of JPS6179141A publication Critical patent/JPS6179141A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve measurement precision by forming a spectrum which is predetermined on the basis of a wavelength calibration command on a linear array sensor, and calibrating the correspondence relation between wavelength and respective elements of the linear array sensor. CONSTITUTION:The optical characteristic measuring device for paper consists of a detection part 3 composed of a housing for storing an optical system, etc., an O-shaped frame which allows two housing to face each other across a running sheet of paper 4 and constitutes a base for running forth and back in a fixed section in the width direction of the paper 4, and an arithmetic control part which runs the detection part 3, switches measurement and calibration, and processes signals from the detection part 3. Then when a wavelength calibration command is sent, a mercury vapor lamp 13 is turned on instead of a halogen lamp 4 to form a spectrum having peaks of plural predetermined wavelengths on the linear array sensor 12. Further, the correspondence relation between wavelength and respective elements of the linear array sensor 12 is calibrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、紙の裏側に標準板を設置して紙の表面に光を
照射し、このときの垂直方向の反射光を分光器に導入し
て得るスペクトルをリニアアレーセ/すで検出し、紙の
色、不透明度、白色度等の光学的特性をオンラインで測
定する装置に関し、更に詳しくは、波長校正指令が与え
られたとき、予め定める複数の波長でピークを呈するス
ペクトルを前記リニアアレーセンサ上に作成して、波長
とリニアアレーセンサの対応関係を校正するようKした
紙の光学的特性測定装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention involves installing a standard plate on the back side of paper, irradiating light onto the surface of the paper, and introducing vertically reflected light from this time into a spectrometer. Regarding a device that detects the spectrum obtained by linear arraying and measures optical properties such as color, opacity, and whiteness of paper online, when a wavelength calibration command is given, a predetermined multiple The present invention relates to an apparatus for measuring optical properties of paper, in which a spectrum exhibiting a peak at a wavelength of is created on the linear array sensor to calibrate the correspondence between the wavelength and the linear array sensor.

〔従来の技術〕[Conventional technology]

紙の色、白色度及び不透明度を実験室的に測定する方法
は、日本工業規格、即ち、JI8 Z 8728、JI
8 P 8123及びJI8 P 81saに夫々規定
されておシ、上記各光学的特性をオンラインで測定する
装置においても、基本的には、上記JISの内容と同じ
である。
Methods for laboratory measurement of paper color, whiteness and opacity are based on the Japanese Industrial Standards, namely JI8 Z 8728, JI
8 P 8123 and JI 8 P 81sa, and the contents of the above-mentioned JIS are basically the same for devices that measure the above-mentioned optical characteristics online.

従来のこの種のオンライン測定装置は、被測定紙の表面
に入射角45°で照射光を尚てる手段と、前記紙の表面
における垂直方向の反射光を導入する分光器と、分光器
によるスペクトルを検出するフォトダイオード等から成
るりニアアレーセンサと、リニアアレーセ/すを駆動し
て検出信号を入力して所定の処理をする信号処理部と(
以上が、同じ筐体内に収納設置される場合が多い)、白
色板、黒色板、又は、試料板(これらを標準板と言う)
を前記紙の裏面に平行な位置に設置する手段を有する。
This type of conventional online measuring device has a means for directing irradiated light onto the surface of the paper to be measured at an incident angle of 45°, a spectrometer for introducing the reflected light in the vertical direction on the surface of the paper, and a spectrometer for detecting the spectrum by the spectrometer. A linear array sensor consisting of a photodiode, etc. that detects the linear
The above are often housed and installed in the same housing), white board, black board, or sample board (these are called standard boards)
and means for placing the paper in a position parallel to the back surface of the paper.

この標準板を設置する手段は、通常、分光器、リニアア
レーセンサを収納する筐体と共に、O形7レーム上に設
置する筺体に収納される。
The means for installing this standard plate is usually housed in a housing installed on the O-shaped 7-frame together with a housing housing the spectrometer and linear array sensor.

又、2個の筐体は、被測定体であるシート状の紙を間に
対向関係にあシ、紙の幅方向で定める区間を往復走行し
ながら測定動作をするようになっている。
Further, the two casings hold a sheet of paper, which is the object to be measured, in a facing relationship between them, and perform measurement operations while reciprocating in a section defined by the width direction of the paper.

以上の構成K>いて、測定動作のとき、信号処理部は、
リニアアレーセンサからの信号を入力し、JIS Z 
872B、JIS P 8123及びJIS P 81
75Bに定めた手法と同様な手法による処理をして、色
、白色度及び不透明に対応した信号を出力する。
With the above configuration K>, during measurement operation, the signal processing section:
Input the signal from the linear array sensor, JIS Z
872B, JIS P 8123 and JIS P 81
A signal corresponding to color, whiteness, and opacity is output by processing using a method similar to that specified in 75B.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の紙の光学的特性測定装置に6つては、筐
体移動時の振動によって生じる分光器内のグレーティン
グ、ミラー、リニアアレーセンナ等の位置ずれが小さい
ことから、この位置ずれを許容して測定を継続している
ため、測定精度を高めるのに限界があった(位置ずれに
より、リニアアレーセンサの個々のエレメントに入射す
る波長が変名いわゆる波長誤差が大きくなる)。
However, conventional paper optical property measurement devices do not tolerate this misalignment because the misalignment of gratings, mirrors, linear arrays, etc. inside the spectrometer caused by vibrations when the housing is moved is small. However, there was a limit to the ability to improve measurement accuracy (positional deviations cause the wavelengths incident on the individual elements of the linear array sensor to change names, increasing so-called wavelength errors).

そこで、本発明は、オンツイン測定中、波長校−正をか
けて、測定精度をよ〕向上させる紙の光学的特性測定装
置を提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a paper optical characteristic measuring device that performs wavelength calibration during on-twin measurement to further improve measurement accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決する本発明の紙の光学的特性測定装置
は、シート状の紙の幅方向で定める区間を往復走行しな
がら、測定動作をする検出部で6   1って、光源か
らの光を所定の入射角で前記紙の表面に照射し、このと
きの垂直方向の反射光を分光器に導入し、その出射口で
作成するスペクトルをすニアアレーセンサで検出する検
出部を備えた紙の光学的特性測定装置において、一定時
間毎、又は、必要に応じて波長校正指令を発生する手段
と、該波長校正指令に基づき、予め定める複数の波長で
ピークを呈するスペクトルを前記リニアアレーセンサ上
に作成する手段と、該リニアアレーセンサの検出信号を
用い、前記波長とIJ =アアレーセンナの各エレメン
トとの対応関係を校正する手段とで構成される。
The paper optical property measuring device of the present invention, which solves the above problems, uses a detection section that performs measurement operations while reciprocating in a section defined in the width direction of a sheet of paper. irradiates the surface of the paper at a predetermined angle of incidence, the reflected light in the vertical direction at this time is introduced into a spectrometer, and the spectrum created at the exit port is detected by a near array sensor. In the optical characteristic measuring device, a means for generating a wavelength calibration command at fixed time intervals or as needed, and a means for generating a wavelength calibration command on the linear array sensor based on the wavelength calibration command. and means for calibrating the correspondence between the wavelength and each element of the IJ array sensor using the detection signal of the linear array sensor.

〔実施例〕〔Example〕

以下、図面を参照して本発明について説明する。 The present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す構成図である。紙の
光学的特性測定装置は、光学系等を収納する筺体1及び
標準板2の保持手段を収納する筐体(図示せず)から成
る検出部3と、走行するシート状の紙4を間セして前記
2個の筐体を対峙させ、紙40幅方向で定める区間を往
復走行させる基台を構成する0形フレームと(図示せず
)、検出部3の走行動作、測定と校正の切換え、検出部
3からの信号処理等をする演算・制御部(図示せず)を
有する。筺体1は、紙4の表面に入射角45゜で測定光
を照射するハロゲンランプ5と、紙4の垂直方向の反射
光を集光するレンズ6と、集光された光をスペクトルに
分光する分光器7と(分光器7は、ミラー(凹面鏡) 
II 、 j、グレーティング10等を有する)、分光
器7の出射口11に設営し、スペクトルを検出するフォ
トダイオードから成るリニアアレーセンサ12と、分光
器7によるスペクトルが、第2図に示すように、波長λ
1.λ2及びλ5夫々にピークを呈する校正用の光を作
成する水銀ランプ13と、リニアアレーセンサ12の駆
動回路、信号増幅回路等を含み、リニアアン−センサ1
2による検出信号を処理して紙4の光学的特性を求める
コンビ、−夕から成る信号処理部14とを有する。
FIG. 1 is a configuration diagram showing an embodiment of the present invention. The paper optical property measuring device has a detection unit 3 consisting of a housing 1 that houses an optical system etc. and a housing (not shown) that houses a holding means for a standard plate 2, and a running sheet of paper 4. A type 0 frame (not shown) that constitutes a base for reciprocating the section defined by the width direction of the paper 40, with the two casings facing each other, and a It has an arithmetic/control unit (not shown) that performs switching, signal processing from the detection unit 3, and the like. The housing 1 includes a halogen lamp 5 that irradiates the surface of the paper 4 with measurement light at an incident angle of 45 degrees, a lens 6 that collects the light reflected in the vertical direction of the paper 4, and separates the collected light into a spectrum. Spectrometer 7 (Spectrometer 7 is a mirror (concave mirror)
II. , wavelength λ
1. The linear array sensor 1 includes a mercury lamp 13 that creates calibration light having peaks at λ2 and λ5, a drive circuit for the linear array sensor 12, a signal amplification circuit, etc.
2, and a signal processing section 14 consisting of a combination 2 and 3 for determining the optical characteristics of the paper 4 by processing the detection signal from the paper 4.

リニアアレーセンサ12は、第2図に示すように、直線
的に配列する複数、例えば、1024WAのエレメント
を有し、その長手方向を出射口11で作成されるスペク
トルの波長分布方向に一致させ、スペクトルの波長とり
ニアアレーセンチ12の各エレメントとの対応を明確に
した構成となっている。又、リニアアレーセンサ12の
各エレメントには、固有の番号、例えば、1.2・・・
1024を付し、信号処理部14が、リニアアレーセン
サ12から検出信号を入力するとき、個々のエレメント
と信号の波長とを明確にして読込み記憶する構成となっ
ている(番号にのエレメントが検出した信号の波長及び
大きさが分るようになっている)。更に、標準板2とし
て紙4の色測定及び白色度測定用の試料板(紙4と同質
紙を所定寸法で裁断した紙片を数枚重ね合せたもの)、
並びに、不透明測定用の黒色板(反射率0.5−以下)
及び白色板(反射率89チ)が用意されている。更に、
標準板2の保持手段社、校正のとき(筐体1と保持手段
を収納する筐体との間に、紙4が存在しない)、白色板
を紙4の走行位置(所定位置)K保持し、水銀2ンプ1
5からの照射光を分光器7に入射するようになっている
As shown in FIG. 2, the linear array sensor 12 has a plurality of linearly arranged elements, for example, 1024 WA elements, whose longitudinal direction matches the wavelength distribution direction of the spectrum created by the emission aperture 11. The configuration is such that the wavelength of the spectrum corresponds to each element of the near array centimeter 12 clearly. Further, each element of the linear array sensor 12 has a unique number, for example, 1.2...
1024, and when the signal processing unit 14 inputs a detection signal from the linear array sensor 12, it is configured to clearly read and store the individual elements and signal wavelengths (the element numbered is the one detected). (The wavelength and size of the signal can be determined.) Further, as a standard plate 2, a sample plate for measuring the color and whiteness of the paper 4 (several pieces of paper cut into predetermined dimensions from the same paper as the paper 4 are stacked together);
Also, a black plate for opacity measurement (reflectance 0.5- or less)
and a white plate (reflectance of 89 cm) are prepared. Furthermore,
The holding means for the standard plate 2 holds the white plate at the traveling position (predetermined position) K of the paper 4 during calibration (no paper 4 exists between the housing 1 and the housing housing the holding means). , mercury 2 pump 1
The irradiated light from 5 is made to enter a spectrometer 7.

以上の構成において、リニアアレーセンサ12上に作成
されるスペクトルの波長とエレメントの対応を定めるイ
ニシャライズをして、測定に入る。
In the above configuration, initialization is performed to determine the correspondence between the wavelength of the spectrum created on the linear array sensor 12 and the element, and measurement begins.

イニシャライズは、水銀ランプ13を点灯したときのリ
ニアアレーセンサ14の検出信号から、信号処理部14
が、ピーク波長λ1.λ2及びλ3を検出するエレメン
ト番号、例えば、第2図に示すに、 、 k2及びに3
を記憶すると共に、他のエレメントと波長の対応、例え
ば、番号1エレメントの検出光の波は、400nm、番
号10エレメントの検出光の波長は、405nm等を定
義し記憶する(波長分布が直線的であるとして、波長と
エレメントの対応を決定する)。
Initialization is performed by the signal processing unit 14 based on the detection signal of the linear array sensor 14 when the mercury lamp 13 is turned on.
is the peak wavelength λ1. Element numbers for detecting λ2 and λ3, for example, as shown in Figure 2, , k2 and ni3
At the same time, define and store the correspondence between other elements and wavelengths, for example, the wavelength of the detection light of the number 1 element is 400 nm, the wavelength of the detection light of the number 10 element is 405 nm, etc. (if the wavelength distribution is linear) (determine the correspondence between wavelength and element).

測定動作は、演算・制御部からの信号によシ、検出部5
を、0形7レーム上に定める測定区間を往復走行させな
がら行われる。このとき、信号処理部14ハ、ハロゲン
ランプ4による反射光のスペクトル信号をリニアアレー
センサ12から読込み記憶する。ここで、リニアアレー
センサ12のエレメントと波長の対応が、先のイニシャ
ライズで定められているため、スペクトル信号は正確に
求められる。そして、信号処理部14が、これらの信号
を用い、従来例と同様な処理をすることによシ所望の測
定信号を求めることができる。
The measurement operation is carried out by the signal from the calculation/control section, and the detection section 5
The test was carried out while the vehicle was traveling back and forth in the measurement section defined on the 0-type 7 frames. At this time, the signal processing section 14c reads the spectrum signal of the light reflected by the halogen lamp 4 from the linear array sensor 12 and stores it. Here, since the correspondence between the elements of the linear array sensor 12 and the wavelengths has been determined in the previous initialization, the spectrum signal can be accurately obtained. Then, the signal processing section 14 can obtain a desired measurement signal by using these signals and performing the same processing as in the conventional example.

一方、校正動作は、演算・制御部から、一定時間毎に発
する校正指令によ)、検出部5を校正位置(紙4の走行
路から外れた位置)に移動して行われる。校正位置にて
、検出部5は、標準板2を所定位置に設置すると共に、
ハロゲンラング4に代えて水銀ランプ13を点灯する。
On the other hand, the calibration operation is performed by moving the detection unit 5 to a calibration position (a position away from the travel path of the paper 4) according to a calibration command issued from the calculation/control unit at regular intervals. At the calibration position, the detection unit 5 installs the standard plate 2 at a predetermined position, and
The mercury lamp 13 is turned on instead of the halogen lamp 4.

これによシ、リニアアレーセンサ12上に、第2図に示
すスペクトルが作成される。信号処理部14は、このと
きのピーク波長λ1.λ2及びλ5を検出するリニアア
レーセンサ12のニレメン) kll、 k217及び
’Q1を求めて記憶すると共に、波長分布が直線的であ
るとして、他のエレメントと波長の対応を定義し記憶す
る(メモリの内容を更新する)。ここで、前記イニシャ
ライズから校正をかけるまでの間に、ミラー11 、9
、グレーティング10等やリニアアレーセンサ12の位
置ずれがない場合、kl = kll 、k2 =に2
1及びに5=に31が成〕立ち、記憶内容は、実質的に
変らない。
As a result, the spectrum shown in FIG. 2 is created on the linear array sensor 12. The signal processing unit 14 uses the peak wavelength λ1. kll, k217, and 'Q1 of the linear array sensor 12 that detects λ2 and λ5 are determined and stored, and, assuming that the wavelength distribution is linear, the correspondence between other elements and wavelengths is defined and stored (memory (update content). Here, between the initialization and the calibration, the mirrors 11, 9
, when there is no positional shift of the grating 10 etc. or the linear array sensor 12, kl = kll, k2 = 2
1 and 5 = 31], and the memory contents remain essentially unchanged.

上記校正によシ、イニシャライズから校正をかけるまで
の間に、ミラー8,9、グレーティング10等やリニア
アレーセンナ12に位置ずれがあっても、それが補償さ
れることになり、以後の測定精度を向上することができ
る。
In addition to the above calibration, even if there is a positional shift in the mirrors 8, 9, grating 10, etc. or linear array sensor 12 between initialization and calibration, this will be compensated for and the subsequent measurement accuracy will be improved. can be improved.

賞、本発明は、上記実施例に限定するものではなく、例
えば、水銀ランプtsK代え、ノ・ロゲンランプ5から
の光を透過するバンドパスフィルタを備え、波長λ1.
λ2及びλ3に相当するピーク波長をリニアアレーセン
サ12上に作成するようにしてもよい。又、校正をかけ
る指令を、必要に応じて与えるようにしてもよい。更に
、校正指令が与えられたとき、水銀2ンプ13やパント
ノ(フィルタによる校正用の光を、直接、分光器に入射
するようにしてもよい。
The present invention is not limited to the above-mentioned embodiments. For example, instead of the mercury lamp tsK, a bandpass filter that transmits light from the mercury lamp 5 is provided, and the wavelength λ1.
Peak wavelengths corresponding to λ2 and λ3 may be created on the linear array sensor 12. Further, a command for performing calibration may be given as necessary. Furthermore, when a calibration command is given, calibration light from the mercury 2 pump 13 or pantone filter may be made to directly enter the spectrometer.

〔発明の効果〕〔Effect of the invention〕

以上、説明の通り、本発明の紙の光学的特性測定装置に
よれば、一定時間毎に、又は、必要に応じで発せられる
波長校正指令に基づいて、予め定める複数の波長でピー
クを呈するスペクトルをリニアアレーセンサ上に作成し
て、波長とリニアアレーセンサの各エレメントとの対応
関係を校正するため、測定精度をよシ向上させることが
できる。
As explained above, according to the paper optical property measuring device of the present invention, the spectrum exhibits peaks at a plurality of predetermined wavelengths based on a wavelength calibration command issued at regular intervals or as needed. is created on the linear array sensor and the correspondence between the wavelength and each element of the linear array sensor is calibrated, so the measurement accuracy can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す構成図、第2因蝶、
波長校正時のスペクトルとリニアアレーセンナの対応を
示す図である。 1・・・標準板、5・・・検出部、4・・・シート状の
紙、5・・・ハロゲン2ング、7・・・分光器、8.9
・・・ミラー、10・・・グレーティング、12・・・
リニアアレーセンサ、13・・・水銀2ンプ、14・・
・信号処理部。 第1図   、3 第2図 出
FIG. 1 is a configuration diagram showing one embodiment of the present invention,
FIG. 7 is a diagram showing the correspondence between a spectrum and a linear array antenna during wavelength calibration. DESCRIPTION OF SYMBOLS 1... Standard plate, 5... Detection part, 4... Sheet-like paper, 5... Halogen 2 ring, 7... Spectrometer, 8.9
...Mirror, 10...Grating, 12...
Linear array sensor, 13...Mercury 2 pump, 14...
・Signal processing section. Figure 1, 3 Figure 2

Claims (1)

【特許請求の範囲】 シート状の紙の幅方向で定める区間を往復走行しながら
、測定動作をする検出部であって、光源からの光を所定
の入射角で前記紙の表面に照射し、このときの垂直方向
の反射光を分光器に導入し、その出射口で作成するスペ
クトルをリニアアレーセンサで検出する検出部を備えた
紙の光学的特性測定装置において、 一定時間毎、又は、必要に応じて波長校正指令を発生す
る手段と、該波長校正指令に基づき、予め定める複数の
波長でピークを呈するスペクトルを前記リニアアレーセ
ンサ上に作成する手段と、該リニアアレーセンサの検出
信号を用い、前記各波長と前記リニアアレーセンサの各
エレメントとの対応関係を求めると共に、この結果に基
づき、他のエレメントと波長との対応関係を求める手段
を備えることを特徴とする紙の光学的特性測定装置。
[Scope of Claims] A detection unit that performs a measurement operation while reciprocating in a section defined in the width direction of a sheet of paper, which irradiates the surface of the paper with light from a light source at a predetermined incident angle, In a paper optical property measuring device equipped with a detection unit that introduces the vertically reflected light into a spectrometer and detects the spectrum created at the exit of the spectrometer using a linear array sensor, means for generating a wavelength calibration command in accordance with the wavelength calibration command, means for creating a spectrum on the linear array sensor that exhibits peaks at a plurality of predetermined wavelengths based on the wavelength calibration command, and using the detection signal of the linear array sensor. , a method for measuring the optical properties of paper, comprising means for determining the correspondence between each of the wavelengths and each element of the linear array sensor, and, based on this result, determining the correspondence between other elements and wavelengths. Device.
JP20245584A 1984-09-27 1984-09-27 Measuring device for optical characteristic of paper Pending JPS6179141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20245584A JPS6179141A (en) 1984-09-27 1984-09-27 Measuring device for optical characteristic of paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20245584A JPS6179141A (en) 1984-09-27 1984-09-27 Measuring device for optical characteristic of paper

Publications (1)

Publication Number Publication Date
JPS6179141A true JPS6179141A (en) 1986-04-22

Family

ID=16457809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20245584A Pending JPS6179141A (en) 1984-09-27 1984-09-27 Measuring device for optical characteristic of paper

Country Status (1)

Country Link
JP (1) JPS6179141A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522538A (en) * 1975-06-16 1977-01-10 Ibm Spectrum analyzer
JPS5711228U (en) * 1980-06-24 1982-01-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522538A (en) * 1975-06-16 1977-01-10 Ibm Spectrum analyzer
JPS5711228U (en) * 1980-06-24 1982-01-20

Similar Documents

Publication Publication Date Title
US5771094A (en) Film measurement system with improved calibration
KR970707432A (en) DEFECT DETECTION IN PATTERNED SUBSTRATES USING OPTICAL COMPUTING
US4540281A (en) Double-beam spectrophotometer
EP0345773A2 (en) Microspectroscope
JP2022533246A (en) Optical diagnosis of semiconductor processes using hyperspectral imaging
KR20220101344A (en) Optical measuring system based on hyperspectral imaging and method of correcting the system
EP3341703B1 (en) Holmium oxide glasses as calibration standards for near infrared moisture sensors
US8825448B2 (en) Spectroscopic reflectometer
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
JPS6179141A (en) Measuring device for optical characteristic of paper
JPH0781840B2 (en) Optical film thickness measuring device
GB2051346A (en) Photometer
US4391523A (en) Scannable detector system for echelle grating spectrometers
JPS6179140A (en) Measuring device for optical characteristic of paper
KR20220074626A (en) HSI apparatus and inspection apparatus including the same
JPH06241897A (en) Spectroscope
JP2005321349A (en) Material determining apparatus
GB2219853A (en) A spectral filter
EP0426104A2 (en) Laser wavelength measuring device
JP2022145106A (en) Regular reflection measurement device, and regular reflection measurement device sample holder
JP4622467B2 (en) Differential spectrum measuring apparatus, measuring method using the same, and measuring apparatus
JPH02184740A (en) Absorbancy measuring instrument
JPH04326026A (en) Spectrophotometer
JPH08159876A (en) Spectrometric apparatus
JPH05288688A (en) Method and apparatus for inspecting foreign matter