JPS6179140A - Measuring device for optical characteristic of paper - Google Patents

Measuring device for optical characteristic of paper

Info

Publication number
JPS6179140A
JPS6179140A JP20245484A JP20245484A JPS6179140A JP S6179140 A JPS6179140 A JP S6179140A JP 20245484 A JP20245484 A JP 20245484A JP 20245484 A JP20245484 A JP 20245484A JP S6179140 A JPS6179140 A JP S6179140A
Authority
JP
Japan
Prior art keywords
light
paper
wavelength
detects
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20245484A
Other languages
Japanese (ja)
Other versions
JPH0423738B2 (en
Inventor
Yukihiko Takamatsu
幸彦 高松
Seiichiro Kiyobe
清部 政一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP20245484A priority Critical patent/JPS6179140A/en
Publication of JPS6179140A publication Critical patent/JPS6179140A/en
Publication of JPH0423738B2 publication Critical patent/JPH0423738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Abstract

PURPOSE:To improve measurement precision by allowing a signal processing part to find the wavelength of primary light and correspondence relation between a primary light detection element and the wavelength on the basis of an element which detects the zero-order light of a spectrum formed on a linear array sensor and perform calibration. CONSTITUTION:The device consists of a detection part 3 which consists of a housing and a housing for containing a holding means for a standard plate 2, an O-shaped frame which allows the two housing to face each other across a running sheet of paper 4 and constitutes a base running forth and back in a section determined in the width direction of the paper 4, and an arithmetic and control part. When calibration is performed, the detection part 3 is put at a calibration position off the running path of the paper 4, a white plate 14 is set at a specific position, and light from a halogen lamp 5 is allowed to strike a spectroscope 7. Then, the signal processing part 13 reads the detection signal of the spectrum image-formed on the linear array sensor 12 and calculates the wavelength of the primary light and the correspondence relation between an element which detects the primary light and the primary light on the basis of the element which detects zero-order light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、紙の裏側に標準板を設置して紙の表面に光を
照射し、そのときの垂直方向の反射光を分光器に導入し
てリニアアレーセンサで信号を検出し、紙の光学的特性
をオンラインで測定する装置に関し、更に詳しくは、校
正指令が与えられたとき、光源の光を直接、又は、白色
板で反射して分光器に導入し、零次光及び一次光を含む
スペクトルをリニアアレーセンサ上に結像し、零次光を
検出するエレメントを基準にして、一次光の波長及び該
一次光を検出するエレメントと一次光の波長との対応関
係を求めるようにした紙の光学的特性測定装置に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention involves installing a standard plate on the back side of paper, irradiating light onto the surface of the paper, and introducing vertically reflected light at that time into a spectrometer. This device detects the signal using a linear array sensor and measures the optical properties of paper online. The spectrum containing the zero-order light and the first-order light is imaged on a linear array sensor, and the wavelength of the first-order light and the element that detects the first-order light are measured based on the element that detects the zero-order light. The present invention relates to a paper optical characteristic measuring device that determines the correspondence relationship with the wavelength of primary light.

〔従来の技術〕[Conventional technology]

紙の色、白色度及び不透明度を実験室的に測定する方法
は、日本工業規格、即ち、JIS Z8728、JIS
 P81’23及びJIS P8138に夫々規定され
ておシ、上記各光学的特性をオンラインで測定する装置
においても、基本的には、上記JISの内容と同じであ
る。
The method for laboratory measurement of paper color, whiteness and opacity is based on the Japanese Industrial Standards, namely JIS Z8728, JIS
P81'23 and JIS P8138, respectively, and the contents of the above-mentioned JIS are basically the same for devices that measure each optical characteristic online.

従来のこの種のオンライン測定装置は、被測定紙の表面
に入射角45°で照射光を当てる手段と、前記紙の表面
における垂直方向の反射光を導入する分光器と、分光器
によるスペクトルを検出するフォトダイオード等から成
るリニアアレーセンサと、リニアアレーセンサを駆動し
て検出信号を入力して所定の処理をする信号処理部と(
以上が、同じ筐体内に収納設置される場合が多い)、白
色板、黒色板、又は、試料板(これらを標準板と言う)
を前記紙の裏面に平行な位置に設置する手段を有する。
A conventional online measurement device of this kind includes a means for applying irradiation light to the surface of the paper to be measured at an incident angle of 45°, a spectrometer for introducing the reflected light in the vertical direction on the surface of the paper, and a spectrum measurement device using the spectrometer. A linear array sensor consisting of a photodiode, etc. for detection, a signal processing section that drives the linear array sensor, inputs a detection signal, and performs predetermined processing (
The above are often housed and installed in the same housing), white board, black board, or sample board (these are called standard boards)
and means for placing the paper in a position parallel to the back surface of the paper.

この標準板を設置する手段は、通常〜分光器、リニアア
レーセンナを収納する筐体と共に、0形フレーム上に設
置する筐体に収納される。
The means for installing this standard plate is usually housed in a housing installed on a 0-type frame together with a housing housing a spectrometer and a linear array.

又、2個の筐体は、被測定体であるシート状の紙を間に
対向関係にあシ、紙の幅方向で定める区間を往復走行し
ながら測定動作をするようになっている。
Further, the two casings hold a sheet of paper, which is the object to be measured, in a facing relationship between them, and perform measurement operations while reciprocating in a section defined by the width direction of the paper.

以上の構成において、測定動作のとき、信号処理部は、
リニアアレーセンサからの信号を入力し、JIS Z8
72B、JIS P8125及びJIS P8138に
定めた手法と同様な手法による処理をして、色、白色度
及び不透明に対応した信号を出力する。
In the above configuration, during measurement operation, the signal processing section:
Input the signal from the linear array sensor, JIS Z8
72B, JIS P8125, and JIS P8138, and outputs a signal corresponding to color, whiteness, and opacity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の紙の光学的特性測定装置にありては、筐
体移動時の振動によって生じる分光器内のグレーティン
グ、ミラー、リニアアレーセンサ等の位置ずれが小さい
ことから、この位置ずれを許容して測定を継続している
ため、測定精度を高めるのに限界があった(位置ずれK
より、リニアアレーセンナの個々のエレメントに入射す
る波長が変るいわゆる波長誤差が大きくなる)。
However, in conventional paper optical property measuring devices, the positional deviations of the gratings, mirrors, linear array sensors, etc. inside the spectrometer caused by vibrations caused by the movement of the casing are small, so this positional deviation is tolerated. Because measurement is continued at the
This increases the so-called wavelength error in which the wavelength incident on each element of the linear array changes.

そこで、本発明は、オンライン測定中、波長校正をかけ
て、測定精度をより向上させる紙の光学的特性測定装置
を提供する罠あや。
SUMMARY OF THE INVENTION Therefore, the present invention provides a paper optical property measuring device that performs wavelength calibration during on-line measurement to further improve measurement accuracy.

〔問題点を解決するための手段〕          
1上記問題点を解決する本発明の紙の光学的特性測定装
置は、シート状の紙の幅方向で定める区間を往復走行し
ながら、光源からのftを所定の入射角で前記紙の表面
に照射し、このときの垂直方向の反射光を検出する検出
部と、該検出部による信号を用いて所定の処理部して前
記紙の光学的特性を求める信号処理部を備える紙の光学
的特性測定装置において、前記検出部が、入射光を分光
して作成する零次光及び一次光を含むスペクトルを出射
口に結像する分光器と、該出射口にて、前記スペクトル
の波長分布方向にエレメントの配列方向を一致させて、
該スペクトルを検出するリニアアレーセンナを備えると
共に、前記信号処理部が、校正のとき、前記リニアアレ
ーセンサ上に結像するスペクトルにおける零次光を検出
するエレメントを基準にして、一次光の波長及び該一次
光を検出するエレメントと一次光の波長との対応関係を
求める手段を備える構成となっている。
[Means for solving problems]
1. The paper optical property measuring device of the present invention, which solves the above-mentioned problems, reciprocates in a section defined in the width direction of a sheet of paper, and measures ft from a light source onto the surface of the paper at a predetermined angle of incidence. optical characteristics of paper, comprising: a detection unit that irradiates light and detects vertically reflected light; and a signal processing unit that uses a signal from the detection unit to perform a predetermined processing unit to obtain optical properties of the paper; In the measuring device, the detection unit includes a spectrometer that images a spectrum including zero-order light and first-order light created by dispersing incident light on an output aperture, and a spectrometer that forms an image of a spectrum including zero-order light and first-order light created by dispersing incident light; Match the arrangement direction of the elements,
The signal processing unit includes a linear array sensor that detects the spectrum, and the signal processing unit determines the wavelength of the primary light and the element that detects the zero-order light in the spectrum imaged on the linear array sensor during calibration. The configuration includes means for determining the correspondence between the element that detects the primary light and the wavelength of the primary light.

〔実施例〕〔Example〕

以下、図面を参照し本発明について説明する。 The present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す構成図である。紙の
光学的特性測定装置は、光学系等を収納する筐体1及び
標準板2の保持手段を収納する筐体(図示せず)から成
る検出部5と、走行する/−ト状の紙4t−間にして前
記2個の筐体を対峙させ、紙4の幅方向で定める区間を
往復走行させる基台を構成する0形フレームと(図示せ
ず)、検出部5の走行動作、測定と校正の切換え、検出
部3からの信号処理等をする演算・制御部(図示せず)
を有する。筺体1は、紙4の表面に入射角45゜で測定
光を照射するハロゲンランプ5と、紙4の垂直方向の反
射光を集光するレンズ6と、集光された光を入射し、出
射口11に零次光及び一次光を含むスペクトルを結像す
る分光器7と(分光器7は、ミラー(凹面鏡)8.9、
グレーティング10等を有する)、分光器7の出射口1
1に設置し、スペクトルを検出するフォトダイオードか
ら成るリニアアレーセンサ12と、リニアアレーセンチ
12の運動回路、信号増幅回路等を含み、リニアアレー
センサ12による検出信号を処理して紙4の光学的特性
を求めるコンピュータから成る信号処理部13とを有す
る。リニアアレーセンサ12は、直線的に配列する複数
、例えば、1024個のエレメントを有し、その長手方
向を出射口11で作成されるスペクトルの波長分布方向
に一致させ、スペクトルの波長とリニアアレーセンサ1
2の各エレメントとの対応を明確にした構成となってい
る。又、リニアアレーセンサ12の各エレメントには、
固有の番号、例えば、第1図の左側に位置するエレメン
トから、1.2・・・1024を付し、信号処理部15
が、リニアアレーセンサ12から検出信号を入力すると
き、個個のエレメントと信号の波長との対応関係を明確
にして読込み記憶する構成となっている(番号にのエレ
メントが検出した信号の波長及び大きさが分るようにな
っている)。更に、標準板2として紙4の色測定及び白
色度測定用の試料板(紙4と同質紙を所定寸法で裁断し
た紙片を数枚重ね合せたもの)、並びに、不透明測定用
の黒色板(反射率0.5チ以下)及び白色板(反射IE
a9%)が用意されている。更に、標準板2の保持手段
は、校正のとき(筐体1と保持手段を収納する筐体との
間に、紙4が存在しない)、第2図に示すように、白色
板14を紙4の走行位置く保持し、ノーロゲンランプ5
からの照射光を分光器7に入射するようになっている。
FIG. 1 is a configuration diagram showing an embodiment of the present invention. The paper optical property measuring device consists of a detection unit 5 consisting of a housing 1 housing an optical system etc. and a housing (not shown) housing a holding means for a standard plate 2, and a traveling/t-shaped paper. The two casings are made to face each other with an interval of 4t, and a 0-type frame (not shown) that constitutes a base for reciprocating the section defined by the width direction of the paper 4, and the traveling operation and measurement of the detection unit 5. an arithmetic/control unit (not shown) that performs switching between and calibration, signal processing from the detection unit 3, etc.
has. The housing 1 includes a halogen lamp 5 that irradiates the surface of the paper 4 with measurement light at an incident angle of 45 degrees, a lens 6 that collects the reflected light in the vertical direction of the paper 4, and a lens that receives the collected light and outputs it. A spectroscope 7 that images a spectrum including zero-order light and first-order light at the mouth 11 (the spectroscope 7 is a mirror (concave mirror) 8.9,
grating 10, etc.), exit port 1 of spectrometer 7
1 and includes a linear array sensor 12 consisting of a photodiode that detects a spectrum, a movement circuit for the linear array centimeter 12, a signal amplification circuit, etc., and processes the detection signal from the linear array sensor 12 to generate an optical signal on the paper 4. It has a signal processing section 13 consisting of a computer for determining characteristics. The linear array sensor 12 has a plurality of linearly arranged elements, for example, 1024 elements, and the longitudinal direction of the linear array sensor 12 is made to match the wavelength distribution direction of the spectrum created by the emission aperture 11, so that the wavelength of the spectrum and the linear array sensor 1
It has a structure that clearly corresponds to each element of 2. In addition, each element of the linear array sensor 12 has
A unique number, for example, 1.2...1024 is assigned from the element located on the left side of FIG. 1, and the signal processing unit 15
However, when a detection signal is input from the linear array sensor 12, the correspondence between each element and the wavelength of the signal is clearly read and stored. (You can see the size). In addition, a sample plate (several pieces of paper cut to predetermined dimensions of the same paper as the paper 4 stacked together) was used as the standard plate 2 for measuring the color and whiteness of the paper 4, and a black plate for measuring the opacity ( reflectance of 0.5 inches or less) and white plate (reflective IE
a9%) are available. Furthermore, the holding means for the standard plate 2 holds the white plate 14 in place during calibration (there is no paper 4 between the casing 1 and the casing housing the holding means), as shown in FIG. Hold the running position of 4 and turn on the norogen lamp 5.
The irradiated light is made to enter the spectroscope 7.

以上の構成において、リニアアレーセンサ127/!上
に作成されるスペクトルの波長とエレメントの対応を定
めるイニシャライズをして、測定に入る。
In the above configuration, the linear array sensor 127/! Initialize to determine the correspondence between the wavelength and element of the spectrum created above, and begin measurement.

イニシャライズは、第2図に示すように、白色板14を
所定位置に設置し、ノ10ゲンランプ5の光を分光器7
に導入して行われる。分光器7の入射光は、出射口11
(リニアアレーセンサ12)にスペクトルとなって結像
する。このスペクトルは、第3図に示すよう匝、分散し
ない零次光及び分散した光、即ち、一次光、二次光等を
含むものとなる。
For initialization, as shown in FIG.
It is carried out by introducing it into The incident light of the spectrometer 7 is transmitted through the exit port 11
A spectrum is formed as an image on the linear array sensor 12. As shown in FIG. 3, this spectrum includes non-dispersed zero-order light and dispersed light, that is, primary light, secondary light, etc.

このスペクトルにおける、零次光と一次光との相対関係
は、ミラー8.9の曲率半径、グレーティング10の溝
数等によりて決まる(実施例の場合、溝数150本Mm
s エレメント数1024 (受光部約25 mn )
で、一次光の波長は、約380〜780 nmとなって
いる)。信号処理部13は、リニアアレーセンサ12の
検出信号を読込み、零次光を検出するエレメントを基準
にして、一次光の波長及びこの一次光を検出するエレメ
ントと一次光との対応関係(例えば、番号500エレメ
ントの検出光は、400nmx番号400エレメントの
検出光は、450nmとなる)を求めて記憶する(紙の
光学的特性測定装置の場合、一次光を検出するリニアア
レーセンナの各エレメントと波長の対応関係を定義する
だけでよい)。
The relative relationship between the zero-order light and the first-order light in this spectrum is determined by the radius of curvature of the mirror 8.9, the number of grooves of the grating 10, etc. (in the case of the example, the number of grooves is 150 Mm
s Number of elements: 1024 (light receiving area approx. 25 mn)
The wavelength of the primary light is approximately 380 to 780 nm). The signal processing unit 13 reads the detection signal of the linear array sensor 12, and uses the element that detects the zero-order light as a reference to determine the wavelength of the primary light and the correspondence relationship between the element that detects the primary light and the primary light (for example, The detected light of the number 500 element is 400 nm x the detected light of the number 400 element is 450 nm. ).

測定動作は、演算・制御部からの信号により、検出部3
を、O形フレーム上に定める測定区間を往復走行させな
がら行われる。このとき、信号処理f51sH、ハロゲ
ンランプ4による反射光のスペクトル信号をリニアアレ
ーセンサ12から読込み記憶する。ここで、リニアアレ
ーセンサ12のエレメントと波長の対応が、先のイニシ
ャライズで定められているため、スペクトル信号は正確
に求められる。そして、信号処理部13が、これらの信
号を用い、従来例と同様な処理をすることにより所望の
測定信号を求めることができる。
The measurement operation is performed by the detection unit 3 based on the signal from the calculation/control unit.
This is carried out while traveling back and forth over the measurement section defined on the O-shaped frame. At this time, the signal processing f51sH reads the spectrum signal of the light reflected by the halogen lamp 4 from the linear array sensor 12 and stores it. Here, since the correspondence between the elements of the linear array sensor 12 and the wavelengths has been determined in the previous initialization, the spectrum signal can be accurately obtained. Then, the signal processing section 13 can obtain a desired measurement signal by using these signals and performing the same processing as in the conventional example.

一方、校正動作は、演算・制御部から、一定時間毎に発
する校正指令により、検出部3を校正位置(紙4の走行
路から外れた位置)に移動して行われる。校正位置にて
、検出部3は、第2図に示すように、白色板14を所定
位置にして、信号処理部゛13が、前記イニシャライズ
と同様な動作により波長校正を行い、リニアアレーセン
t12の各エレメントと波長の対応を定義し記憶する。
On the other hand, the calibration operation is performed by moving the detection unit 3 to a calibration position (a position away from the travel path of the paper 4) in response to a calibration command issued from the calculation/control unit at regular intervals. At the calibration position, the detection unit 3 sets the white plate 14 at a predetermined position as shown in FIG. Define and store the correspondence between each element and wavelength.

これにより、イニシャライズから校正をかけるまでの間
に、ミラー8.9、グレーティング10等やりニアアレ
ーセンサ12に位置ずれがあっても、それが補償される
ことになり、以後の測定精度を向上することができる。
As a result, even if there is a positional shift in the mirror 8, 9, grating 10, etc. or near array sensor 12 between initialization and calibration, this will be compensated for, improving subsequent measurement accuracy. be able to.

尚、上記実施例において、校正指令が与えられたとき、
白色板14を設置する例を示したが、本発明は、これく
限定するものではなく、ノ・ロゲンランプの光を移動し
て、直接、分光器に入射するようにしてもよい。
In addition, in the above embodiment, when a calibration command is given,
Although the example in which the white plate 14 is installed is shown, the present invention is not limited to this, and the light from the nitrogen lamp may be moved to directly enter the spectroscope.

〔発明の効果〕〔Effect of the invention〕

以上、説明した通り、本発明の紙の光学的特性測定装置
によれば、一定時間毎、又は、必要に応じて校正をかけ
て、光源の光を直接、又は、白色板で反射して分光器に
導入し、零次光及び一次光を含むスペクトルをリニアア
レーセンサ上に結像し、零次光を検出するエレメントを
基準にして、一次光の波長及びこの一次光を検出するエ
レメントと波長の対応関係を求めるようにしたため、測
定精度を向上することができる。
As explained above, according to the paper optical property measuring device of the present invention, the light from the light source is spectralized either directly or by reflecting it on a white plate, after being calibrated at regular intervals or as necessary. The spectrum containing the zero-order light and the first-order light is imaged on a linear array sensor, and the wavelength of the primary light and the element and wavelength that detect this first-order light are determined based on the element that detects the zero-order light. Since the correspondence relationship is determined, measurement accuracy can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す構成図、第2図は、
本発明の一実施例における校正状態を示す構成図、第5
図は、スペクトル図である。 2・・・標準板、3・・・検出部、4・・・シート状の
紙、5・・・ハロゲンランプ、7・・・分光器、8,9
・・・ミラー、10・・・グレーティング、11・・・
出射口、12・・・リニアアレーセンサ、13・・・信
号処理部、14・・・白色板。 第1図 乙 第2図
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
A fifth block diagram showing the calibration state in an embodiment of the present invention.
The figure is a spectrum diagram. 2... Standard plate, 3... Detection unit, 4... Sheet-like paper, 5... Halogen lamp, 7... Spectrometer, 8, 9
...Mirror, 10...Grating, 11...
Output port, 12... Linear array sensor, 13... Signal processing section, 14... White plate. Figure 1 Figure B Figure 2

Claims (1)

【特許請求の範囲】 シート状の紙の幅方向で定める区間を往復走行しながら
、光源からの光を所定の入射角で前記紙の表面に照射し
、このときの垂直方向の反射光を検出する検出部と、該
検出部による信号を用いて所定の処理をして前記紙の光
学的特性を求める信号処理部を備える紙の光学的特性測
定装置において、 前記検出部が、入射光を分光して作成する零次光及び一
次光を含むスペクトルを出射口に結像する分光器と、該
出射口にて、前記スペクトルの波長分布方向にエレメン
トの配列方向を一致させて、該スペクトルを検出するリ
ニアアレーセンサを備えると共に、前記信号処理部が、
校正のとき、前記リニアアレーセンサ上に結像するスペ
クトルの零次光を検出するエレメントを基準にして、一
次光の波長及び該一次光を検出するエレメントと一次光
の波長との対応関係を求める手段を備えることを特徴と
する紙の光学的特性測定装置。
[Scope of Claims] Light from a light source is irradiated onto the surface of the paper at a predetermined angle of incidence while traveling back and forth in a section defined by the width direction of a sheet of paper, and the reflected light in the vertical direction at this time is detected. A paper optical property measuring device comprising: a detection unit that performs a predetermined process using a signal from the detection unit; and a signal processing unit that performs predetermined processing using a signal from the detection unit to determine the optical properties of the paper; a spectroscope that images a spectrum including zero-order light and first-order light created by the above-mentioned light beam on an exit port, and detects the spectrum by aligning the arrangement direction of the elements with the wavelength distribution direction of the spectrum at the exit port. The signal processing unit includes a linear array sensor that
During calibration, the wavelength of the primary light and the correspondence relationship between the element that detects the primary light and the wavelength of the primary light are determined based on the element that detects the zero-order light of the spectrum imaged on the linear array sensor. An apparatus for measuring optical properties of paper, comprising means.
JP20245484A 1984-09-27 1984-09-27 Measuring device for optical characteristic of paper Granted JPS6179140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20245484A JPS6179140A (en) 1984-09-27 1984-09-27 Measuring device for optical characteristic of paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20245484A JPS6179140A (en) 1984-09-27 1984-09-27 Measuring device for optical characteristic of paper

Publications (2)

Publication Number Publication Date
JPS6179140A true JPS6179140A (en) 1986-04-22
JPH0423738B2 JPH0423738B2 (en) 1992-04-23

Family

ID=16457792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20245484A Granted JPS6179140A (en) 1984-09-27 1984-09-27 Measuring device for optical characteristic of paper

Country Status (1)

Country Link
JP (1) JPS6179140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238948A (en) * 1988-07-29 1990-02-08 Hitachi Koki Co Ltd Analyzer
JP2010223846A (en) * 2009-03-25 2010-10-07 Jasco Corp Detector and infrared microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238948A (en) * 1988-07-29 1990-02-08 Hitachi Koki Co Ltd Analyzer
JP2010223846A (en) * 2009-03-25 2010-10-07 Jasco Corp Detector and infrared microscope

Also Published As

Publication number Publication date
JPH0423738B2 (en) 1992-04-23

Similar Documents

Publication Publication Date Title
JP2008524631A (en) Method and apparatus for measuring the thickness of a thin film
GB2128359A (en) Double-beam spectrophotometer
CN110736721A (en) Glass plate refractive index uniformity detection device and detection method based on diffraction grating
US7292335B2 (en) Optical measurements of patterned structures
JPS6179140A (en) Measuring device for optical characteristic of paper
EP0121714A2 (en) Automatic wavelength calibration correction system
JPH0781840B2 (en) Optical film thickness measuring device
US5160981A (en) Method of measuring the reflection density of an image
JP2002005631A (en) Method and apparatus for measuring characteristics of plate
US5323230A (en) Method of measuring the reflection density of an image
US5044754A (en) Apparatus and method for use in determining the optical transmission factor or density of a translucent element
JPH07190735A (en) Optical measuring device and its measuring method
JPH0323883B2 (en)
WO2002012950A1 (en) Method of analyzing spectrum using multi-slit member and multi-channel spectrograph using the same
JPH01142401A (en) Optical displacement measuring apparatus
JPH05288688A (en) Method and apparatus for inspecting foreign matter
JPH0642168Y2 (en) Smoothness / Glossiness meter
JPH05267117A (en) Method and device for detecting and setting gap between mask and substrate
JPH0661115A (en) Gap detection and setting device
JPH03118406A (en) Laser thickness gauge
JPH03115911A (en) Thickness measuring instrument for transparent body
RU1770850C (en) Method of determining spectral directional - hemispheric refraction coefficients of specimens
JPH02173509A (en) Surface roughness measuring instrument
JPH063364B2 (en) Film thickness measurement method
CN112902838A (en) Zero sensor and detection system