JPS6178862A - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film

Info

Publication number
JPS6178862A
JPS6178862A JP20224484A JP20224484A JPS6178862A JP S6178862 A JPS6178862 A JP S6178862A JP 20224484 A JP20224484 A JP 20224484A JP 20224484 A JP20224484 A JP 20224484A JP S6178862 A JPS6178862 A JP S6178862A
Authority
JP
Japan
Prior art keywords
film
polyester
blend
biaxially oriented
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20224484A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Itoyama
糸山 国義
Kunihiro Hotta
堀田 訓弘
Shigemi Seki
関 重巳
Tomoyuki Minami
智幸 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20224484A priority Critical patent/JPS6178862A/en
Publication of JPS6178862A publication Critical patent/JPS6178862A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a biaxially oriented polyester film having high modulus and excellent dimensional stability, by blending a specified polyester with polyethylene terephthalate and molding the blend into a film having a specified crystal form. CONSTITUTION:The titled film is obtd. from a blend of a polyester (I) composed of units of formulas I and II and having a flow temp. of 350 deg.C and melt anisotropy forming properties with polyethylene terephthalate. The film is com posed of a blend wherein the molar fraction of component (A) in the polyester (I) is at least 40mol% and blend ratio Xbwt% of the polyester (I) is a value obtd. from formula III wherein Mfmol% is the molar fraction of component A. The film is a biaxially oriented polyester film wherein a coefficient of orienta tion in the crystal face (100) of polyethylene terephthalate is 0.75-0.95 and crystalline size in the direction of the crystal face is 35-65Angstrom .

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二軸配向ポリエステルフィルム、さらに詳しく
は磁気テープ用やフレキシブルプリント回路基板用に好
適な寸法安定性にすぐれた高弾性率二軸配向ポリエステ
ルフィルムに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a biaxially oriented polyester film, more specifically, a high modulus biaxially oriented polyester film with excellent dimensional stability suitable for magnetic tapes and flexible printed circuit boards. Regarding polyester film.

[従来技術とその欠点1 磁気テープのベースやフレキシブルプリント回路基板に
は二軸配向したポリエチレンテレフタレートフィルムが
用いられている。
[Prior art and its drawbacks 1 Biaxially oriented polyethylene terephthalate film is used for the base of magnetic tape and flexible printed circuit boards.

しかし、磁気テープやフレキシブルプリント回路の加工
工程の省力化又は使用目的の高度化に伴って、一層高弾
性率で寸法安定性の良いフイルム特性が要求されるに至
った。しかるに二軸配向ポリエチレンテレフタレートフ
ィルムの場合、フィルム製膜工程において多段的に延伸
するとある程度弾性率が高まるが、寸法安定性は逆に不
良となる欠点があった。
However, as the processing steps for magnetic tapes and flexible printed circuits become more labor-saving and the purposes for which they are used become more sophisticated, film properties such as higher modulus of elasticity and better dimensional stability have come to be required. However, in the case of a biaxially oriented polyethylene terephthalate film, although the elastic modulus increases to some extent when the film is stretched in multiple stages in the film forming process, the dimensional stability is disadvantageously deteriorated.

一方、分子鎖が剛直な、溶融異方性形成能をもつ液晶ポ
リマをナイロンやポリエチレンテレフタレーj・のよう
な柔軟鎮ポリマにブレンドして、高弾性又は低熱収縮化
することが未延伸テープ状物、繊維について知られてい
る。例えば、ナイロンにライてはPure &App1
.CC11e、、 55 、5 、819 (1983
) : J、 Macromol、Sci、 −Phy
s、。
On the other hand, it is possible to blend a liquid crystal polymer with rigid molecular chains and the ability to form melt anisotropy with a soft and stabilized polymer such as nylon or polyethylene terephthalate to obtain high elasticity or low heat shrinkage. Known about materials and textiles. For example, when wearing nylon, use Pure & App1.
.. CC11e, 55, 5, 819 (1983
): J, Macromol, Sci, -Phy
s.

B17,4,591 (1980)、または繊維に”)
 イ’U 11、’Mi711)a57−101020
号、特開昭57−101021号に液晶ポリマのブレン
ド効果について示されでいる。しかしながら、液晶ポリ
マをブレンドしたポリマ系についてのフィルムの二軸延
伸は試みられてなく、また液晶ポリマを柔軟鎖ポリマに
無作意にブレンドするだけでは、分散性不良や分散相界
面での破壊により二軸延伸可能なフィルムは得られない
B17, 4, 591 (1980), or “to fibers”)
I'U 11, 'Mi711) a57-101020
No. 57-101021 discloses the blending effect of liquid crystal polymers. However, biaxial stretching of a film for a polymer system blended with a liquid crystal polymer has not been attempted, and simply blending a liquid crystal polymer with a flexible chain polymer at random may result in poor dispersibility or destruction at the dispersed phase interface. A biaxially stretchable film cannot be obtained.

[発明の目的] 本発明は、上記二軸配向ポリエチレンテレフタレートフ
ィルムの欠点を解消せしめ、弾性率が高く、しかも寸法
安定性にすぐれた(低熱収縮率)ポリエステルフィルム
を提供せんとするものである。
[Object of the Invention] The present invention aims to eliminate the drawbacks of the above-mentioned biaxially oriented polyethylene terephthalate film and provide a polyester film having a high elastic modulus and excellent dimensional stability (low heat shrinkage rate).

[発明の構成] 本発明は上記目的を達成するため、次の構成、すなわち
下記一般式で表わされる(A)及び(B)成分からなる
、350℃以下の流動温度をもち、かつ溶融異方性形成
能を有するポリエステル(1)をポリエチレンテレフタ
レートにブレンドさせてなるフィルムであり、該フィル
ムは、ポリエステル(I)中の(A)成分のモル分率が
40モル%以上で、その値をMf(モル%)とすると、
ポリエステル(1)のブレンド率x、<重量%)は1≦
Xし≦−0.8Mモ+90 の範囲から選ばれたブレンド物からなり、かつ、ポリエ
チレンテレフタレート結晶<ioo>而の面配向係数が
0.75〜0.97、該面方向の結晶1tイズか35〜
65大であることを特徴とする二軸配向ポリエステルフ
ィルムである。
[Structure of the Invention] In order to achieve the above object, the present invention has the following structure, that is, it consists of components (A) and (B) represented by the following general formula, has a flow temperature of 350°C or less, and has melting anisotropy. This film is made by blending polyester (1) having properties-forming ability with polyethylene terephthalate, and the film has a molar fraction of component (A) in polyester (I) of 40 mol% or more, and the value is Mf (mol%),
Blend ratio x of polyester (1), <weight%) is 1≦
It is made of a blend selected from the range of 35~
It is a biaxially oriented polyester film characterized by having a diameter of 65.

0− R−C−(A > (式中、〃は2,4.6から選ばれる整数であり、R,
R’は1.3フエニレン、1,4フエニレン、r、( 本発明のフィルムを構成する一つの成分であるポリエチ
レンテレフタレート(以下、PETと略称する)は、実
質的に O の繰り返し単位からなるポリマである。このポリマはエ
チレングリコール単位及びテレフタル酸単位以外の成分
が共1合されていても、約10モル%までであれば許容
される。
0-R-C-(A>(wherein, 〃 is an integer selected from 2, 4.6, R,
R' is 1.3 phenylene, 1,4 phenylene, r, (Polyethylene terephthalate (hereinafter abbreviated as PET), which is one of the components constituting the film of the present invention, is a polymer consisting essentially of O repeating units. Even if components other than ethylene glycol units and terephthalic acid units are co-incorporated in this polymer, up to about 10 mol % is allowed.

本発明のフィルムを構成する他の一つの成分であるポリ
エステル(1)とは、溶融異方性形成能を有するポリエ
ステルで下記一般式で表わされる(A)及び(B)成分
からなり、(A)成分のモル分率が40モル%以上で、
流動温度が350℃以下であるポリマである。
The polyester (1), which is another component constituting the film of the present invention, is a polyester having the ability to form melt anisotropy, and is composed of components (A) and (B) represented by the following general formula. ) component has a molar fraction of 40 mol% or more,
It is a polymer with a flow temperature of 350°C or less.

0−R−C−(A) 一○−(CHz)x  −OC−R’  C(B)II
           II O このポリエステル(1)は、(A)成分のモル分率があ
る値以上であれば、流動温度以上にポリマを加熱したと
き光学的異方性を示し液晶構造をとる。また、加熱融解
によって液晶を形成しないポリマであっても、(A)成
分のモル分率が40モル%以上であると、ポリマを2枚
のガラス板にはさんで、流動温度以上の温度で、1枚の
ガラス板を固定し、他のガラス板をすべらして、融液に
10sec−1以下の比較的に小さいすり速度をかける
と流動複屈折を示し、光学的異方性液となる。
0-R-C-(A) 1○-(CHz)x -OC-R' C(B)II
II O This polyester (1) exhibits optical anisotropy and assumes a liquid crystal structure when the polymer is heated above the flow temperature, if the molar fraction of component (A) is above a certain value. In addition, even if the polymer does not form liquid crystals by heating and melting, if the mole fraction of component (A) is 40 mol% or more, the polymer can be sandwiched between two glass plates and heated at a temperature higher than the flow temperature. When one glass plate is fixed and the other glass plate is slid, and a comparatively small sliding speed of 10 sec-1 or less is applied to the melt, it exhibits flow birefringence and becomes an optically anisotropic liquid. .

ここで、ポリマ融液の光学異方性は、ヒーティングスデ
ジ付の偏光顕微鏡を用いて直交ニコル下で観察できる。
Here, the optical anisotropy of the polymer melt can be observed under crossed Nicols using a polarizing microscope equipped with a heating digital camera.

このように、ポリマを流動湯度以上に加熱して、静止状
態又は10sec−1以下のずり変形下で光学的異方性
を示すポリマを゛溶融異方性形成能をもつ′という。ま
た、溶融異方性形成能のもう一つの判定法は、粘度計を
用いてずり速度−ずり応力の関係を調べることである。
A polymer that exhibits optical anisotropy in a static state or under shear deformation of 10 sec-1 or less when heated above the fluidizing temperature is said to have the ability to form melt anisotropy. Another method for determining the ability to form melt anisotropy is to examine the relationship between shear rate and shear stress using a viscometer.

すなわら、ポリマ融液のずり応力をずり速度を増加させ
ながら測定し、その後、ずり速度を減少させながら測定
したときに前者と復習でずり応力−ずり速度曲線が一致
しない場合、いわゆるヒステリシスを示すとき、ポリマ
は溶融異方性形成能をもつという。
In other words, when the shear stress of a polymer melt is measured while increasing the shear rate and then while decreasing the shear rate, if the shear stress-shear rate curves do not match in the former and review cases, so-called hysteresis is detected. , the polymer is said to have the ability to form melt anisotropy.

このように、本発明フィルムにおいてPETにブレンド
するポリエステルは、溶融異方性形成能を有し、静止、
流動状態で分子が相互に配列・配向し易い性質をもって
いるのが¥t′eIi的である。この特性を保持するた
めには、分子の(A)成分モル分率は少なくとも40モ
ル%以上である必要があり、これによって、二軸配向ポ
リエステルフィルムのすぐれた特性を発現せしめること
が可能となる。(A)成分のモル分率が40モル%より
少ないと、ブレンドして得た二軸配向ポリエステルフィ
ルムの弾性率、熱収縮率などの特性はPET単独のフィ
ルムとほとんど差異がなくなるか、又は劣り、ブレンド
による特性改善は認められなくなる。
As described above, the polyester blended with PET in the film of the present invention has the ability to form melt anisotropy, and
It is \t'eIi-like that molecules tend to align and orient themselves mutually in a fluid state. In order to maintain this property, the molar fraction of component (A) in the molecule needs to be at least 40 mol%, which allows the biaxially oriented polyester film to exhibit excellent properties. . If the molar fraction of component (A) is less than 40 mol%, the properties such as elastic modulus and heat shrinkage of the biaxially oriented polyester film obtained by blending will be almost the same or inferior to a film made of PET alone. , no improvement in properties due to blending is observed.

上述のように、ブレンドするポリエステルの(A>成分
のモル分率は40モル%以上、好ましくは50〜80モ
ル%がよい。この範囲では溶融異方性形成能をもつポリ
エステルはPETの融点に近い流動温度をもつこと、及
びPETマトリックス中の分散が良好になることから、
フィルムの製膜性が向上し、フィルムとしての特性は著
しく良好となる。
As mentioned above, the molar fraction of component (A>) in the polyester to be blended is preferably 40 mol% or more, preferably 50 to 80 mol%. Due to their close flow temperatures and better dispersion in the PET matrix,
The film formability of the film is improved, and the properties of the film are significantly improved.

本発明のフィルムの溶融異方性形成能をもつポリエステ
ル(I)の(A)、(B)成分の共重合様式はランダム
又はブロック共重合のいずれでもよいが、ランダムの方
をブレンドした方が二軸配向のための延伸が容易で・、
フ、メルム製造上好ましい。また、該ポリエステル(1
)の流aS度は350°C以下、好ましくは300 ’
C以下である。なお、流#J湯温度下限は特に限定され
ないが150℃が好ましい。ここで、流動温度とは、該
温度以上でポリマが流動化しうる温度を指し、共重合の
少ないポリエステルの場合融点と一致することが多いが
、共重合性が高まると熱分析法では明確な融点が確認で
きないにもかかわらず、加熱下でポリマが流動しはじめ
る温度の存在が認められ、その場合、この温度を指す。
The copolymerization mode of the components (A) and (B) of the polyester (I) having the ability to form melt anisotropy of the film of the present invention may be either random or block copolymerization, but it is better to blend the random one. Easy to stretch for biaxial orientation
It is preferable for producing melum. In addition, the polyester (1
) flow aS degree is below 350°C, preferably 300'
C or lower. Note that the lower limit of the flow #J hot water temperature is not particularly limited, but is preferably 150°C. Here, the flow temperature refers to the temperature above which the polymer can be fluidized, and in the case of polyesters with little copolymerization, it often coincides with the melting point, but when the copolymerization increases, the melting point is clearly determined by thermal analysis. Although this cannot be confirmed, the existence of a temperature at which the polymer begins to flow under heating is recognized, and in this case, it refers to this temperature.

350℃を越える流動温度では、融解混合温度やフィル
ムの製膜温度が高くなるためポリマの熱分解、変性が起
ったり、経済的でなくなったりして好ましいとは言えな
い。
A flow temperature exceeding 350° C. is not preferable because the melting and mixing temperature and the film forming temperature become high, leading to thermal decomposition and modification of the polymer, and making it uneconomical.

また、該ポリエステルの構成成分(B)におけるnの値
は2.4.6から選ばれた整数であるが、フィルムの弾
性率の点から特に好ましいのはn−2の場合である。さ
らに、上記(A)、(B)式にc6けるR、R’は1,
3フエニレン、1.47ブレンドによって二軸配向フィ
ルムの特性改善がる。
Further, the value of n in the component (B) of the polyester is an integer selected from 2.4.6, but n-2 is particularly preferred from the viewpoint of the elastic modulus of the film. Furthermore, R and R' at c6 in the above formulas (A) and (B) are 1,
3-phenylene, 1.47 blend improves the properties of biaxially oriented films.

本発明フィルムに用いる溶融異方性形成能をもつポリエ
ステル(I)の具体例として、(を=0.4〜0.8)
、 (’1)−=0.4〜0.8)、 1=0.4〜0.8)、 (υ=0.4〜0.8) 、 (qf=0.6〜0.9) などがあるが、この中でフィルム特性上特に好ましいポ
リエステルは(a)、(b)、(c)である。
As a specific example of the polyester (I) having the ability to form melt anisotropy used in the film of the present invention, (=0.4 to 0.8)
, ('1)-=0.4~0.8), 1=0.4~0.8), (υ=0.4~0.8), (qf=0.6~0.9) Among them, polyesters (a), (b), and (c) are particularly preferable in terms of film properties.

さらに、該ポリエステルは5モル%未満であれば、他の
成分を共重合してもよい。この場合の他の成分としては
、テレフタル酸、イソフタル酸、2.6−ナフタレンジ
カルボン酸、α、β−ビス(フェノキシ)エタン4.4
′−ジカルボン酸、4.4′ジフェニルカルボン 酸類、あるいは1.4−シクロヘキサンジメタカール、
フェニールヒドロキノンなどのジオキシ化合物が用いら
れる。
Furthermore, the polyester may be copolymerized with other components as long as it is less than 5 mol%. Other components in this case include terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, α,β-bis(phenoxy)ethane 4.4
'-dicarboxylic acid, 4,4' diphenylcarboxylic acids, or 1,4-cyclohexane dimethacal,
Dioxy compounds such as phenylhydroquinone are used.

本発明のフィルムを構成する溶融異方性形成をもつポリ
エステル(1)をPE下にブレンドする場合、そのブレ
ンド率Xb(重量%)の好ましい範囲は、該ポリエステ
ル中の(A>成分のモル分IMF(%)によって異なり
、次式によって示される。
When the polyester (1) having melt anisotropy forming the film of the present invention is blended under PE, the preferable range of the blending ratio Xb (wt%) is as follows: It varies depending on IMF (%) and is expressed by the following formula.

1≦Xb  ≦−0.8Me+90 ここで、ブレンド率Xν (重量%)はで定義される。1≦Xb ≦-0.8Me+90 Here, the blend ratio Xv (weight %) is defined as:

該ポリエステル(I)中の(A)成分のモル分率が高ま
ると、分子鎖は剛直になること及びPETと親和力の変
化などから、適正なブレンド率の上限1直は低下する。
As the molar fraction of component (A) in the polyester (I) increases, the upper limit of the appropriate blend ratio decreases because the molecular chain becomes rigid and the affinity with PET changes.

上記に指定した好ましいブレンド率xbの上限値を越え
て該ポリエステルをブレンドした場合、フィルムの延伸
性が低下し、得られた二軸延伸フィルムの特性は耐衝撃
性や弾性率が不良であり、好ましいものではない。また
、上記Xbの範囲の下限値以下にブレンドした場合には
、ブレンドによるフィルム特性改善の程度は実用上有意
と認められない程度であり、好ましくない。
When the polyester is blended in an amount exceeding the upper limit of the preferable blending ratio xb specified above, the stretchability of the film decreases, and the resulting biaxially oriented film has poor impact resistance and elastic modulus. Not desirable. Furthermore, when blending is carried out below the lower limit of the above-mentioned Xb range, the degree of improvement in film properties due to blending is not recognized to be of practical significance, which is not preferable.

本発明の二軸配向フィルムは高弾性率、低熱収縮率、耐
衝撃性を兼備しているが、このようなフィルムは、PE
T結晶の(100)而の面配向係数が0.75〜0.9
5、該面方向の結晶サイズが35〜65大である。面配
向係数が0.75より小さいと、二軸配向フィルムの耐
衝撃性が不良であったり、弾性率が低かったりして本発
明の目的を達成し得ない。また面配向係数が0.95を
越えると、フィルムはもろくなり、実用上必要な耐衝撃
性を持ち得ない。ざらに、結晶サイズが上記指定する範
囲の下限値を下まわった場合、二軸配向フ.Cルムの熱
的安定性が不良となり、低熱収縮が得られず、また上限
値以上では耐衝撃性が低下し、実用上使用に耐えないも
のとなるので好ましくない。
The biaxially oriented film of the present invention has high elastic modulus, low thermal shrinkage, and impact resistance.
The (100) plane orientation coefficient of T crystal is 0.75 to 0.9
5. The crystal size in the plane direction is 35 to 65 large. If the plane orientation coefficient is less than 0.75, the biaxially oriented film may have poor impact resistance or a low elastic modulus, making it impossible to achieve the object of the present invention. Furthermore, if the plane orientation coefficient exceeds 0.95, the film becomes brittle and cannot have the practically necessary impact resistance. Generally speaking, if the crystal size falls below the lower limit of the range specified above, biaxial orientation will occur. The thermal stability of the carbon lumen becomes poor, and low thermal shrinkage cannot be obtained, and if it exceeds the upper limit, the impact resistance decreases, making it unsuitable for practical use.

また、本発明のフィルムを構成するPET及び溶融異方
性形成能をもつポリエステル(Hのそれぞれに、もしく
は両者をブレンドしたものに他種のポリマを本発明の目
的を阻害しない範囲内で好ましくは10重量%未満でブ
レンドしてもよいし、また必要によっては、酸化防止剤
、熱安定剤、滑剤、核生成剤、表面突起形成剤などの無
機及び/又は有機添加剤が通常用いられる程度に添加さ
れてもよい。
In addition, it is preferable to add other types of polymers to each of PET and the polyester (H) having melt anisotropy forming ability that constitute the film of the present invention, or to a blend of both, within a range that does not impede the purpose of the present invention. It may be blended at less than 10% by weight and, if necessary, inorganic and/or organic additives such as antioxidants, heat stabilizers, lubricants, nucleating agents, surface protrusion forming agents, etc., to the extent normally used. May be added.

次に本発明フィルムの製造方法を説明する。Next, a method for manufacturing the film of the present invention will be explained.

まず、本発明で用いるPETは、公知の方法により、エ
チレングリコールとテレフタル酸又はその誘導体とから
重合される。フィルムの高い強度、弾性率を保証する意
味で、0.5以上の還元粘度η5p/CをもつPETが
用いられる。
First, PET used in the present invention is polymerized from ethylene glycol and terephthalic acid or its derivatives by a known method. PET having a reduced viscosity η5p/C of 0.5 or more is used to ensure high strength and elastic modulus of the film.

本発明で用いる他の一成分である溶融異方性形成能をも
つポリエステル(1)は次のような方法で合成すること
ができる。すなわち、アルキレングリコール(炭素数:
2.4又は6)とテレフタル酸、イソフタ71し酸、2
,6−ナフタレンジカルボン酸、2.7−ナフタレンジ
カルボン酸、モノクロルテレフタル酸などのジカルボン
酸のエステル化物をカルシウム、マグネシウム、リチウ
ム化合物などの触媒の存在下で、130〜260℃の温
度でエステル交換反応せしめた後、アンチモン、ゲルマ
ニウム化合物などの触媒のもとで、220〜300℃、
高真空下で重縮合して、ホモポリエステルを合成する。
Polyester (1) having the ability to form melt anisotropy, which is another component used in the present invention, can be synthesized by the following method. That is, alkylene glycol (number of carbons:
2.4 or 6) and terephthalic acid, isophthalic acid, 2
, 6-naphthalene dicarboxylic acid, 2.7-naphthalene dicarboxylic acid, monochloroterephthalic acid, and other dicarboxylic acid esters are transesterified at a temperature of 130 to 260°C in the presence of a catalyst such as a calcium, magnesium, or lithium compound. After cooling, heat at 220 to 300°C under a catalyst such as antimony or germanium compound.
A homopolyester is synthesized by polycondensation under high vacuum.

次に、このポリエステルにp−ヒドロキシ安息香酸、β
−オキシ−6−ナフトエ酸などのじドロキシカルボン酸
のアセチル化物を所定の比率ブレンドして、減圧下<1
0−1〜10’−2torr) 250〜340℃で脱
アセチル化反応させて、溶融異方性形成能をもつポリエ
ステルが得られる。該ポリエステル中の(A)成分のモ
ル%を本発明の範囲とするためには、ヒドロキシカルボ
ン酸のアセチル化物のブレンド量を適当量に選ばなけれ
ばならない。かくして得られた溶融異方性形成能をもつ
ポリエステルは、必要によっては高真空下でポリマの融
点近くまで再加熱して同相重合を行ない、重合度が高め
られる。
Next, p-hydroxybenzoic acid, β
- Acetylated didroxycarboxylic acids such as oxy-6-naphthoic acid are blended in a predetermined ratio, and <1
A deacetylation reaction is carried out at 250 to 340°C (0-1 to 10'-2 torr) to obtain a polyester having the ability to form melt anisotropy. In order to keep the mole % of component (A) in the polyester within the range of the present invention, the blending amount of the acetylated product of hydroxycarboxylic acid must be selected appropriately. The thus obtained polyester having the ability to form melt anisotropy may be reheated under high vacuum to a temperature close to the melting point of the polymer to perform in-phase polymerization to increase the degree of polymerization.

次に、溶融異方性形成能をもつポリエステル(1)とP
ETをブレンドする。ブレンドは両ポリマの粉末又はベ
レット状物を混合したのち、又し混合しつつ、公知の溶
融押出握に供給することによって行なうが、その方法は
特に限定されない。
Next, polyester (1) with melt anisotropy forming ability and P
Blend ET. Blending is carried out by mixing the powders or pellets of both polymers and then feeding them into a known melt extrusion machine while mixing, but the method is not particularly limited.

しかし、該ポリエステルをPET中に出来るだけ微分散
させるのが好ましく、細かく分散するために、公知のス
タティックミキサを用いたり、混線ゾーン付きのスクリ
ュを用いることは望ましいことである。ただし、溶融状
態であまり長時間にわたって混合すると、PETと該ポ
リエステル(I)としエステル交換反応により、ポリマ
組成が変化し、予期したフィルム特性が得られないこと
かあるので注意を要する。
However, it is preferable to disperse the polyester in PET as finely as possible, and in order to achieve fine dispersion, it is desirable to use a known static mixer or a screw with a crosstalk zone. However, care must be taken because if the mixture is mixed in a molten state for too long, the polymer composition may change due to the transesterification reaction between PET and the polyester (I), and the expected film properties may not be obtained.

かくして溶融押出機に供給された2種のポリマは270
〜320℃で融解して、融体をスリット状のダイからシ
ート状に押出し、表面温度10〜80℃に制御されたキ
ャスティング・ドラムに巻き付けて冷却固化し、未延伸
フィルムを作る。この場合、急速に、かつ均一に冷却す
るためt4電印加キャスト法が有効である。     
         1PETの中に溶融異方性形成能を
もつポリエステル(1)を溶融ブレンドしたとき、多く
の場合ブレンド体は海島構造をとるが、島を形成する後
者は軸比の大きい棒、針状形態をとるのがフィルム特性
上好ましい。このため、溶融押出機から吐出した融体を
伸長させて島状に分散したポリエステルを引き延しなが
ら、キャスティング・ドラム上に冷却固化する。融体の
伸長の程度は、溶融押出機のスリットダイの断面積を、
キャスト後のフィルムの長手方向に垂直な断面積で除し
た値、すなわちドラフト比で表わすとすると、3〜30
倍のドラフト比の範囲で融体を巻き取るのが好適であり
、これによって最終的に得られる二軸配向フィルムはす
ぐれた弾性率と寸法安定性を兼備することになる。
The two polymers thus fed to the melt extruder were 270
The melt is melted at ~320°C, extruded into a sheet through a slit-shaped die, wound around a casting drum whose surface temperature is controlled at 10-80°C, and cooled and solidified to produce an unstretched film. In this case, the t4 voltage application casting method is effective for rapid and uniform cooling.
When polyester (1) that has the ability to form melt anisotropy is melt-blended into 1PET, the blended body often takes a sea-island structure, but the latter that forms the islands have a rod-like or needle-like shape with a large axial ratio. In terms of film properties, it is preferable to For this purpose, the melt discharged from the melt extruder is elongated and the polyester dispersed in islands is drawn out while being cooled and solidified on the casting drum. The degree of elongation of the melt is determined by the cross-sectional area of the slit die of the melt extruder,
When expressed as the value divided by the cross-sectional area perpendicular to the longitudinal direction of the film after casting, that is, the draft ratio, it is 3 to 30.
It is preferable to wind up the melt within a range of twice the draft ratio, so that the biaxially oriented film finally obtained has both excellent elastic modulus and dimensional stability.

次に、この未延伸フィルムを二軸延伸する。二軸延伸法
として公知の同時二軸延伸法や逐次二軸延伸法を用いる
ことができる。逐次二軸延伸法の場合、長手方向、幅方
向の順に延伸するのが一般的であるが、この順序を逆に
延伸してもよい。二軸延伸の条件はPET中の溶融異方
性形成能をもつポリエステル(1)の添加量や、フィル
ムの延伸方法などによって、必ずとも一定ではないが、
70〜120℃、好ましくは80〜100℃の温度で、
延伸速度103〜105%/分の範囲で延伸するのが望
ましい。また、本発明フィルムの面配向係数及び結晶サ
イズを得るための好ましい延伸倍□率は、長手方高の倍
率αと幅方向の倍率βが下式を満足することが必要であ
る。
Next, this unstretched film is biaxially stretched. As the biaxial stretching method, a known simultaneous biaxial stretching method or a sequential biaxial stretching method can be used. In the case of the sequential biaxial stretching method, it is common to stretch in the longitudinal direction and then in the width direction, but this order may be reversed. The conditions for biaxial stretching are not necessarily constant, depending on the amount of polyester (1) that has the ability to form melt anisotropy in PET, the method of stretching the film, etc.
at a temperature of 70-120°C, preferably 80-100°C,
It is desirable to stretch at a stretching speed of 103 to 105%/min. Further, the preferred stretching ratio for obtaining the planar orientation coefficient and crystal size of the film of the present invention requires that the longitudinal height ratio α and the width direction ratio β satisfy the following formula.

12.5≦α2+β2≦55.0 (ただし、α〉2、β〉2) また、−ユニ軸延伸したフィルムを少なくとも一方方向
に再延伸する方法は、弾性率を高めるのに効果的である
12.5≦α2+β2≦55.0 (however, α>2, β>2) Furthermore, a method of re-stretching a −uniaxially stretched film in at least one direction is effective for increasing the elastic modulus.

次に、この延伸フィルムを熱処理する。熱処理はオーブ
ン又はロール上などの公知の方法で行なうことができる
。本発明のフィルムを得るための熱処理条件としては、
処理温度が180〜240°Cで0.1〜120秒の処
理時間が好ましい。
Next, this stretched film is heat treated. The heat treatment can be performed by a known method such as in an oven or on a roll. The heat treatment conditions for obtaining the film of the present invention are as follows:
Preferably, the treatment temperature is 180 to 240°C and the treatment time is 0.1 to 120 seconds.

また、本発明フィルムに公知のコロナ放電処理(空気中
、窒素中、炭酸ガス中など)を施して用いてもよいし、
また接着性、耐湿性、ヒートシール性、滑性、表面平滑
性などを付与する目的で、他種ポリマを積層した形や有
機及び/又は無機組成物で被覆した形で用いてもよい。
Further, the film of the present invention may be subjected to a known corona discharge treatment (in air, nitrogen, carbon dioxide, etc.) and used.
Further, in order to impart adhesion, moisture resistance, heat sealability, lubricity, surface smoothness, etc., it may be used in the form of a laminate with other polymers or in the form of a coating with an organic and/or inorganic composition.

本発明の特性値は次の測定法、評l1IIi基準による
ものである。
The characteristic values of the present invention are based on the following measurement method and evaluation criteria.

■ 流動温度 真空理工(株〉の熱機械試験装置(TMA)を用いてP
 enetration法で針が試料厚みの90%以上
貫入する温度を測定し、これをポリマの流動温度とした
。なお、貫入試験は、径i mmoの円柱状石英ガラス
棒をポリマシートに垂直に立て、ガラス棒に荷Φ1gを
負荷しながら20℃/minの速度で昇温した。
■ Using the thermomechanical testing apparatus (TMA) of Fluid Temperature Vacuum Riko Co., Ltd.
The temperature at which the needle penetrates 90% or more of the sample thickness using the enetration method was measured, and this was taken as the flow temperature of the polymer. In the penetration test, a cylindrical quartz glass rod with a diameter of 1 mm was stood perpendicularly to the polymer sheet, and the temperature was raised at a rate of 20° C./min while a load of Φ1 g was applied to the glass rod.

■ 弾性率、比弾性率 J l5−7−1702に規定された方法に従ってイン
ストロンタイプの引張試験機を用いて、25℃、65%
RHで弾性率を測定した。二軸配向フィルムの弾性率は
フィルムの長手方向と幅方向の弾性率の相加平均値とし
た。同一条件で製膜したPETフィルムとブレンドした
フィルムの弾性率をそれぞれEa、Eとすると、E /
 E oをもってブレンドしたフィルムの比弾性率とし
た。
■ Elastic modulus, specific elastic modulus J 25℃, 65% using an Instron type tensile tester according to the method specified in 15-7-1702.
The elastic modulus was measured at RH. The elastic modulus of the biaxially oriented film was taken as the arithmetic average value of the elastic modulus in the longitudinal direction and the width direction of the film. If the elastic modulus of the PET film formed under the same conditions and the blended film are Ea and E, respectively, E/
E o was taken as the specific elastic modulus of the blended film.

■ 耐衝撃性 ASTM−D−256に規定された方法に従って、東洋
製i製作所のシャルピーインパクトテスタを用いて、フ
ィルムのシャルビ衝撃強度(単位ニー・cIIl/n+
m2 )を測定した。なお、値はフィルムの長手方向を
2支点間に水平にセットした場合とフィルムの幅方向を
水平にセットした場合の相加平均値を用いた。シャルビ
衝撃強度が20以上の場合は耐衝撃性良好、20未満の
場合は耐衝撃性不良と判定した。
■ Impact resistance In accordance with the method stipulated in ASTM-D-256, the Charpy impact strength of the film (unit: knee・cIIl/n+
m2) was measured. In addition, the arithmetic mean value was used for the value when the longitudinal direction of the film was set horizontally between two supporting points and when the width direction of the film was set horizontally. When the Charvi impact strength was 20 or more, it was determined that the impact resistance was good, and when it was less than 20, it was determined that the impact resistance was poor.

■ 寸法安定性(熱収縮率) 試料フィルムを幅10mm、長さ250mmに切り出し
、約200ff1mの間隔で2本の標線を入れ、その間
隔を正確に測定したくこれを八)とする)。
■ Dimensional stability (thermal shrinkage rate) A sample film was cut out to a width of 10 mm and a length of 250 mm, and two marked lines were placed at an interval of approximately 200 ff 1 m. To accurately measure the interval, this was designated as 8)).

この試料の先端に3.C1の荷重をかけた状態で180
℃の熱風オーブン中に10分間放置したのち、フィルム
を至温まで冷却し標線間隔を測定した(これをB111
l11とする)。フィルムの長手方向と幅方向について
100X (A−B)/Aを求め、それらの相加平均を
フィルムの熱収縮率とした。
3. At the tip of this sample. 180 with C1 load applied
After leaving the film in a hot air oven at ℃ for 10 minutes, the film was cooled to the lowest temperature and the distance between the marked lines was measured (this was
11). 100X (A-B)/A was determined in the longitudinal direction and width direction of the film, and the arithmetic average thereof was taken as the heat shrinkage rate of the film.

■ 寸法安定係数 フィルムの弾性率E1熱収縮率δとして、δ/(E−4
00)をもって寸法安定係数とした。この値は25X1
0−3未満の場合は、ヤング率と熱収縮率がバランスが
良好、25X10−3以上の場合は不良と判定した。
■ Dimensional stability coefficient As the elastic modulus E1 of the film and the heat shrinkage rate δ, δ/(E-4
00) was taken as the dimensional stability coefficient. This value is 25X1
When it was less than 0-3, it was determined that the Young's modulus and thermal shrinkage were well balanced, and when it was 25×10-3 or more, it was determined to be poor.

■ 面配向係数 X線回折において、回折角2θ=25.7°のPET(
100)面回折の強度を試料を方位角回転させながら観
察し、そのときに描くピークの半価幅をΔとすると、面
配向係数はく180−△)X100/180で与える。
■ In plane orientation coefficient X-ray diffraction, PET (with diffraction angle 2θ = 25.7°)
100) The intensity of plane diffraction is observed while rotating the sample in azimuth, and if the half width of the peak drawn at that time is Δ, then the plane orientation coefficient is given by 180−Δ)X100/180.

■ 結晶サイズ X線回折において、回折角2θ’=25.7°のPET
 (100)面の回折ピークから、下記式に従って結晶
サイズDを算出した。
■ Crystal size In X-ray diffraction, PET with diffraction angle 2θ' = 25.7°
The crystal size D was calculated from the diffraction peak of the (100) plane according to the following formula.

λ 但し、B:回折ピークの半価幅、b:o、12、λ:C
uのにα線波長(1,5418人)なお、チャートの2
θ=8″と2θ=366の散乱強度を示す点間を結ぶ直
線をベースラインとした。
λ However, B: Half width of diffraction peak, b: o, 12, λ: C
α ray wavelength for u (1,5418 people) Furthermore, 2 in the chart
The straight line connecting the points showing the scattering intensities at θ=8″ and 2θ=366 was defined as the baseline.

■ 還元粘度η叩/C フェノール6容量/テトラクロロエタン4容量の混合溶
媒中に0.5g/dQの濃度になるようPETを溶解し
て、30℃で測定した粘度から還元粘度を求めた。
(2) Reduced viscosity η/C PET was dissolved in a mixed solvent of 6 volumes of phenol/4 volumes of tetrachloroethane to a concentration of 0.5 g/dQ, and the reduced viscosity was determined from the viscosity measured at 30°C.

[作用1 本発明は、特定の比較的剛直なセグメントをもつ共重合
ポリエステルを比較的柔軟分子鎖であるPETに特定の
比率でブレンド分散させ二軸配向フィルムとしたもので
、共重合ポリエステルの分子分散及び/又は相分散によ
る補強作用によって、次のようなすぐれた効果を得るこ
とができたものである。
[Effect 1] The present invention is a biaxially oriented film made by blending and dispersing a copolyester having a specific relatively rigid segment in PET, which is a relatively flexible molecular chain, at a specific ratio. The reinforcing effect of dispersion and/or phase dispersion makes it possible to obtain the following excellent effects.

[発明の効果1 ■ 弾性率が高く、かつ寸法安定性、耐衝撃性のすぐれ
たフィルムとなる。
[Effect of the invention 1 ■ A film with high elastic modulus and excellent dimensional stability and impact resistance is obtained.

(■ 磁気テープとしたとき、電磁変換特性にすぐれた
フィルムとなる。
(■ When made into magnetic tape, it becomes a film with excellent electromagnetic conversion properties.

■ フレキシブルプリント回路基板として、寸法安定性
にずぐれたフィルムとなる。
■ The film has excellent dimensional stability as a flexible printed circuit board.

[用途] 本発明のフィルムは、従来、二軸配向PETフィルムが
用いられてすべての用途に適用できるが、特に適した用
途は、ビデオ、オーディオの磁気テープ用ベースフィル
ム、あるいは磁気ディスク用ベースフィルム、及びフレ
キシブルプリント回路11で?)る。また、本発明フィ
ルムの厚さは特定されるものではないが、磁気テープ用
としては厚さ1〜15μm1好ましくは4〜12μmの
フィルムが小型化、長時間用テープとして好ましく、フ
レキシブルプリント回路基板としては50〜150μm
の厚みのフィルムが好適である。
[Applications] The film of the present invention can be applied to all applications in which biaxially oriented PET films have conventionally been used, but particularly suitable applications include base films for video and audio magnetic tapes, or base films for magnetic disks. , and flexible printed circuit 11? ). Further, although the thickness of the film of the present invention is not specified, a film with a thickness of 1 to 15 μm, preferably 4 to 12 μm, is preferable for use in magnetic tapes, as it is suitable for miniaturization and long-term use, and as a flexible printed circuit board. is 50-150μm
A film having a thickness of .

次に実施例にもとづいて本発明の実施態様を説明する。Next, embodiments of the present invention will be described based on Examples.

実施例1 常法に従って重合したPET (ηsP/ C= O。Example 1 PET polymerized according to a conventional method (ηsP/C=O.

66)のベレットを粉砕機で砕いて粉粒体状にした。The pellets obtained in No. 66) were crushed using a pulverizer to form powder.

一方、PET粉粒体状物624重足部に対してp−アセ
トキシ安息香酸126o重量部を混合して、脱酢酸重合
法(J、 polymer  Sci、 、14.20
43 (1976)に記載の方法に従う)で、エチレン
テレフタレート−p−オキシベンゾエート共重合体(p
−オキシベンゾエート70モル%含有)を重合した。こ
のポリマは粉砕機にかけて、PETと同様に粉粒体状に
砕いた。該ポリマを加熱装置付偏光顕微鏡で約310℃
にして直交ニコル下で観察した結果、光学的異方性を示
した。また、ポリマの流動温度は350℃以下であった
On the other hand, 126 parts by weight of p-acetoxybenzoic acid was mixed with 624 parts by weight of PET powder and granules, and the acetic acid depolymerization method (J, Polymer Sci, 14.20
43 (1976)), the ethylene terephthalate-p-oxybenzoate copolymer (p-oxybenzoate copolymer
-containing 70 mol% of oxybenzoate) was polymerized. This polymer was crushed into powder in the same way as PET using a crusher. The polymer was heated to about 310°C using a polarizing microscope equipped with a heating device.
When observed under crossed nicols, it showed optical anisotropy. Further, the flow temperature of the polymer was 350°C or lower.

次に、PETとエチレンテレフタレート−p−オキシベ
ンゾエート共重合体の粉粒体をV型ブレンダに、後者添
加量が7重量%になるよう投入し、約1時聞易合した。
Next, powders of PET and ethylene terephthalate-p-oxybenzoate copolymer were put into a V-type blender so that the amount of the latter added was 7% by weight, and blended for about 1 hour.

このようにして混合した粉粒状物及び比較としてPET
のみの粉粒状物を、十分に乾燥したのら、スクリュー直
径35mmの押出機に供給し、290℃でシート状に溶
融押出した。
Powder and granules mixed in this way and PET as a comparison
After sufficiently drying the granular material, it was supplied to an extruder with a screw diameter of 35 mm, and melt-extruded into a sheet at 290°C.

ドラフト比6の巻取り速度で、静電印加キレスト法を用
いて表面温度20℃のキャスティング・ドラムに溶融体
シートを巻きつけて冷却固化し、厚さ約1100uの実
質的に無配向の未延伸フィルムを作った。この未延伸フ
ィルムを80℃に予熱しつつ、延伸温度90℃で長手方
向に3.0倍延伸した。延伸は2組のロールの周速差に
よって行なわれ、延伸速度は50.000%/分であっ
た。
At a winding speed with a draft ratio of 6, the melt sheet was wound onto a casting drum with a surface temperature of 20°C using the electrostatic crest method, and cooled and solidified to form a substantially unoriented, unstretched sheet with a thickness of about 1100 u. made a film. This unstretched film was preheated to 80°C and stretched 3.0 times in the longitudinal direction at a stretching temperature of 90°C. Stretching was performed using a difference in peripheral speed between two sets of rolls, and the stretching speed was 50.000%/min.

この−軸延伸フィルムを、ステンタを用いて90℃に予
熱しつつ、延伸温度95℃で幅方向に3゜2倍延伸した
。この場合の延伸速度は5,000%/分であった。さ
らにこの二軸延伸フィルムを210℃で定長下に15秒
間熱処理して、厚さ約11μmのフィルムを1qた。こ
のフィルムの比弾性率は1.2と良好であり、寸法安定
係数、耐衝撃性も良好であった。また、面配向係数0.
89、結晶サイズ52人であった。
This -axially stretched film was preheated to 90°C using a stenter and then stretched 3° in the width direction at a stretching temperature of 95°C. The stretching speed in this case was 5,000%/min. Further, this biaxially stretched film was heat-treated at 210° C. for 15 seconds at a constant length to obtain 1 q of film having a thickness of about 11 μm. The specific elastic modulus of this film was good at 1.2, and the dimensional stability coefficient and impact resistance were also good. Also, the plane orientation coefficient is 0.
89, crystal size 52 people.

実施例2〜4、比較例1.2 実施例1で得たエチレンテレフタレート−p−オキシベ
ンゾエート共重合体を第1表の実施例2゜3.4の割合
でPETにブレンドして、それぞれ次のような条件で製
膜した。
Examples 2 to 4, Comparative Example 1.2 The ethylene terephthalate-p-oxybenzoate copolymer obtained in Example 1 was blended with PET at the ratio of Example 2゜3.4 in Table 1, and the following were prepared. The film was formed under the following conditions.

まず、実施例1と同様にして作った厚さ約110μmの
実質的に無配向の未延伸フィルムを、フィルムストレッ
チャ(T、M、long社製)を用い、85℃で長手方
向及び幅方向にそれぞれ3゜5倍に同時2軸延伸した。
First, a substantially unoriented unstretched film with a thickness of about 110 μm produced in the same manner as in Example 1 was stretched at 85°C in the longitudinal and width directions using a film stretcher (manufactured by T, M, Long). Each film was simultaneously biaxially stretched at 3° and 5 times.

この場合の延伸速度は20.000%/分であった。さ
らにこの二軸延伸フィルムを210℃で定長下に15秒
間熱処理して厚さ約10μmのフィルムを得た。これら
のフィルムの物性値は第1表に示したとおり、いずれの
フィルムも弾性率が良好でしかも寸法安定係数、耐衝撃
性にもすぐれていることがわかる。しかし、溶融異方性
形成能をもつポリマの組成が本発明と同じであっても比
較1.2のようにブレンド率が本発明外であれば、同表
に示すように、弾性率、寸法安定係数、耐衝撃性の少な
くともいずれかが不良となる。ただし、比較例2の場合
は上記イ8率の延伸ができず、延伸倍率をフィルムの長
手方向1.5倍、幅方向145倍に変更して製膜した。
The stretching speed in this case was 20.000%/min. Further, this biaxially stretched film was heat-treated at 210° C. for 15 seconds under constant length to obtain a film having a thickness of about 10 μm. The physical properties of these films are shown in Table 1, and it can be seen that all the films have good elastic modulus, and are also excellent in dimensional stability coefficient and impact resistance. However, even if the composition of the polymer having the ability to form melt anisotropy is the same as that of the present invention, if the blend ratio is outside the scope of the present invention as in Comparison 1.2, the elastic modulus, dimensions, etc. At least one of the stability coefficient and impact resistance becomes poor. However, in the case of Comparative Example 2, it was not possible to stretch the film at the ratio A8, and the film was formed by changing the stretching ratios to 1.5 times in the longitudinal direction and 145 times in the width direction.

実茄例5,6、比較例3,4 PETとp−アセトキシ安息香酸の程合比率を変え、実
施例1と同じ方法で第1表の実施例5゜6、比較例3.
4に示すポリマ組成のエチレンテレフタレート−p−オ
キシベンゾエート共重合体を合成した。ここで、比較例
3のポリマだけでは溶融異方性形成能をもたなかった。
Fruit Examples 5 and 6, Comparative Examples 3 and 4 Examples 5 and 6 and Comparative Examples 3 and 4 in Table 1 were prepared in the same manner as in Example 1 by changing the proportions of PET and p-acetoxybenzoic acid.
An ethylene terephthalate-p-oxybenzoate copolymer having the polymer composition shown in 4 was synthesized. Here, the polymer of Comparative Example 3 alone did not have the ability to form melt anisotropy.

また、いずれのポリマの流動温度も350℃以下であっ
た。
Furthermore, the flow temperature of all polymers was 350°C or lower.

これらの共重合ポリエステルを、それぞれ第1表に示す
ブレンド率でPETに混合して、実施例2〜3と同様に
して二軸延伸フィルムを得た。これらのフィルムの物性
値は同表に示したとおり、共重合ポリエステルの組成、
ブレンド率が本発明内であればフィルムの特性は良好で
ある。しかし、ポリマ組成、ブレンド率のいずれかが本
発明外であれば、弾性率、耐衝撃性の欠点が認められる
These copolymerized polyesters were mixed with PET at the blend ratios shown in Table 1, and biaxially stretched films were obtained in the same manner as in Examples 2 and 3. As shown in the table, the physical properties of these films depend on the composition of the copolyester,
If the blend ratio is within the range of the present invention, the properties of the film are good. However, if either the polymer composition or the blend ratio is outside the scope of the present invention, defects in elastic modulus and impact resistance will be observed.

ただし、比較例3.4の場合は上記倍率の延伸ができず
、延伸倍率をフィルムの長手方向2.0倍、幅方向2.
0倍に変更して製膜した。
However, in the case of Comparative Example 3.4, it was not possible to stretch the film at the above-mentioned stretching ratio, and the stretching ratio was set to 2.0 times in the longitudinal direction of the film and 2.0 times in the width direction.
The film was formed by changing the magnification to 0 times.

比較例5 実施例1で得た未延伸フィルムをフィルムストレッチャ
を用いて、85℃で幅を固定して長手方向に4.0倍延
伸した。この場合の延伸速度は5゜000%/分であっ
た。さらに、この幅固定−軸延伸フィルムを210℃で
定長下に15秒間熱処理した。このフィルムの面配向係
数は0.5つ、結晶サイズは50人であり、耐衝撃性が
不良であった。
Comparative Example 5 The unstretched film obtained in Example 1 was stretched 4.0 times in the longitudinal direction using a film stretcher at 85° C. with the width fixed. The stretching speed in this case was 5.000%/min. Further, this fixed-width, axially stretched film was heat-treated at 210° C. for 15 seconds under constant length. This film had a planar orientation coefficient of 0.5, a crystal size of 50, and poor impact resistance.

比較例6 実施例1の二軸延伸フィルムを235℃で定長下に11
0011i熱処理した。このフィルムの面配向係数0.
97、結晶サイズ70人であり、寸法安定係数は良好で
あったが耐衝撃性は不良であった。
Comparative Example 6 The biaxially stretched film of Example 1 was stretched at a constant length of 11 at 235°C.
0011i heat treatment. Planar orientation coefficient of this film is 0.
97, the crystal size was 70, and the dimensional stability coefficient was good, but the impact resistance was poor.

実施例7、比較例7.8 PET粉粒体状物624重量部とβ−オキシ−6ナフト
工M1316重i部を混合して実施例1の条件で脱酢酸
重合し溶融異方性形成能をもつ共重合ポリエステルを合
成した。このポリマの流動温度は350℃以下であった
Example 7, Comparative Example 7.8 624 parts by weight of PET powder and 1 part by weight of β-oxy-6 Naphthotech M1316 were mixed and acetic acid depolymerized under the conditions of Example 1 to obtain the ability to form melt anisotropy. A copolymerized polyester with the following properties was synthesized. The flow temperature of this polymer was below 350°C.

次に、この共重合ポリエステルを第1表の実施例7、比
較例7,8に示した割合でPETにブレンドして、それ
ぞれ実施例1と同様な方法で未延伸フィルムを作成した
。さらに、実施例2〜4の方法で同時二輪延伸、熱処理
をして二輪延伸フィルムを得た。ただし、比較例8は延
伸できず、未延伸フィルムの特性を評圃した。これらの
フィルムの物性値は第1表に示したとおり、ブレンド率
が本発明内であれば、良好であるが、本発明外であれば
寸法安定係数又は耐衝撃性が不良となる。
Next, this copolymerized polyester was blended with PET in the proportions shown in Example 7 and Comparative Examples 7 and 8 in Table 1, and unstretched films were prepared in the same manner as in Example 1. Furthermore, simultaneous two-wheel stretching and heat treatment were performed using the methods of Examples 2 to 4 to obtain two-wheel stretched films. However, Comparative Example 8 could not be stretched, and the properties of the unstretched film were evaluated. As shown in Table 1, the physical properties of these films are good if the blend ratio is within the scope of the present invention, but if the blend ratio is outside the scope of the present invention, the dimensional stability coefficient or impact resistance is poor.

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式で表わされる(A)及び(B)成分か
らなる、350℃以下の流動温度をもち、かつ溶融異方
性形成能を有するポリエステル( I )をポリエチレン
テレフタレートにブレンドさせてなるフィルムであり、
該フィルムは、ポリエステル( I )中の(A)成分の
モル分率が40モル%以上で、その値をMf(モル%)
とすると、ポリエステル( I )のブレンド率X_b(
重量%)は1≦X_b≦−0.8M_f+90 の範囲から選ばれたブレンド物からなり、かつ、ポリエ
チレンテレフタレート結晶(100)面の面配向係数が
0.75〜0.97、該面方向の結晶サイズが35〜6
5Åであることを特徴とする二軸配向ポリエステルフィ
ルム。 ▲数式、化学式、表等があります▼(A) ▲数式、化学式、表等があります▼(B) (式中、nは2,4,6から選ばれる整数であり、R、
R′は1,3フェニレン、1,4フェニレン、2,6ナ
フタレン、2,7ナフタレン、▲数式、化学式、表等が
あります▼、▲数式、化学式、表等があります▼、▲数
式、化学式、表等があります▼の中から選ばれる)
(1) Polyester (I) consisting of components (A) and (B) represented by the following general formula, having a flow temperature of 350°C or less and having the ability to form melt anisotropy, is blended with polyethylene terephthalate. It is a film,
The film has a mole fraction of component (A) in polyester (I) of 40 mol% or more, and the value is expressed as Mf (mol%).
Then, the blend ratio of polyester (I) X_b(
% by weight) is a blend selected from the range of 1≦X_b≦-0.8M_f+90, and the plane orientation coefficient of the polyethylene terephthalate crystal (100) plane is 0.75 to 0.97, and the crystal in the plane direction Size 35-6
A biaxially oriented polyester film characterized by having a thickness of 5 Å. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(A) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(B) (In the formula, n is an integer selected from 2, 4, 6, R,
R' is 1,3 phenylene, 1,4 phenylene, 2,6 naphthalene, 2,7 naphthalene, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas, There are tables, etc. ▼Choose from the list)
JP20224484A 1984-09-27 1984-09-27 Biaxially oriented polyester film Pending JPS6178862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20224484A JPS6178862A (en) 1984-09-27 1984-09-27 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20224484A JPS6178862A (en) 1984-09-27 1984-09-27 Biaxially oriented polyester film

Publications (1)

Publication Number Publication Date
JPS6178862A true JPS6178862A (en) 1986-04-22

Family

ID=16454338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20224484A Pending JPS6178862A (en) 1984-09-27 1984-09-27 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPS6178862A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190325A (en) * 1984-10-09 1986-05-08 Polyplastics Co Magnetic tape material
JPS61289523A (en) * 1985-06-14 1986-12-19 Polyplastics Co Magnetic disk
JPS6375040A (en) * 1986-09-18 1988-04-05 Idemitsu Petrochem Co Ltd Polyester film
EP0310677A1 (en) * 1987-04-07 1989-04-12 Toray Industries, Inc. Polyester film
US4960812A (en) * 1987-11-20 1990-10-02 Sam Yang Co., Ltd. Polyester resin compound
US4963402A (en) * 1987-08-21 1990-10-16 Minnesota Mining And Manufacturing Company Films containing liquid crystalline polymers
US5124184A (en) * 1987-08-21 1992-06-23 Minnesota Mining And Manufacturing Co. Films containing liquid crystalline polymers
EP0778316A2 (en) * 1995-12-05 1997-06-11 Toray Industries, Inc. Polyester film and process for the preparation thereof
JPH09314631A (en) * 1996-03-26 1997-12-09 Toray Ind Inc Polyester film and manufacture thereof
US6140455A (en) * 1998-11-12 2000-10-31 Sumitomo Chemical Company, Limited Liquid crystalline polyester resin for extrusion molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190325A (en) * 1984-10-09 1986-05-08 Polyplastics Co Magnetic tape material
JPS61289523A (en) * 1985-06-14 1986-12-19 Polyplastics Co Magnetic disk
JPS6375040A (en) * 1986-09-18 1988-04-05 Idemitsu Petrochem Co Ltd Polyester film
EP0310677A1 (en) * 1987-04-07 1989-04-12 Toray Industries, Inc. Polyester film
EP0674988A3 (en) * 1987-04-07 1998-01-07 Toray Industries, Inc. Polyester film
US5124184A (en) * 1987-08-21 1992-06-23 Minnesota Mining And Manufacturing Co. Films containing liquid crystalline polymers
US4963402A (en) * 1987-08-21 1990-10-16 Minnesota Mining And Manufacturing Company Films containing liquid crystalline polymers
US5330697A (en) * 1987-08-21 1994-07-19 Minnesota Mining And Manufacturing Company Method of preparing films containing liquid crystalline polymers
US4960812A (en) * 1987-11-20 1990-10-02 Sam Yang Co., Ltd. Polyester resin compound
EP0778316A2 (en) * 1995-12-05 1997-06-11 Toray Industries, Inc. Polyester film and process for the preparation thereof
EP0778316A3 (en) * 1995-12-05 1997-12-03 Toray Industries, Inc. Polyester film and process for the preparation thereof
JPH09314631A (en) * 1996-03-26 1997-12-09 Toray Ind Inc Polyester film and manufacture thereof
US6140455A (en) * 1998-11-12 2000-10-31 Sumitomo Chemical Company, Limited Liquid crystalline polyester resin for extrusion molding

Similar Documents

Publication Publication Date Title
DE69919450T2 (en) Aromatic liquid crystalline polyesters and resin composition made therefrom
US4798875A (en) Biaxially oriented polyester film
JPS6178862A (en) Biaxially oriented polyester film
CA2372573A1 (en) Resin composition containing crystalline polyimide
US5091138A (en) Production of wholly aromatic polyester film
JPS6268884A (en) Production of cholesteric liquid crystal polyester film or sheet with monodomain
JPS5884821A (en) Copolyester fiber or film and preparation thereof
JP3409771B2 (en) Polyester film and method for producing the same
JP3227729B2 (en) Method for producing resin composition molded article
JPS6178863A (en) Biaxially oriented polyester film
JP3266264B2 (en) Polyester resin composition for producing high modulus fiber and film
JPH0296101A (en) Production of polarizable film
JPH08245811A (en) Polyester film
JPS6232029A (en) Polyester film and its preparation
JP2505436B2 (en) Biaxially oriented polyester film
JP3876509B2 (en) Polyester film and method for producing the same
JP4565800B2 (en) Biaxially oriented film
JPS61243826A (en) Polyester film and its production
JP3617215B2 (en) Transparent polyester film and method for producing the same
JPH0415729B2 (en)
JP3646435B2 (en) Polyphenylene sulfide film
JPH02263849A (en) Polyolefin molded product
JPH03188133A (en) Polyester film
JP2000336184A (en) Polyester film
JPS62223240A (en) Base film for magnetic recording medium