JPH0415729B2 - - Google Patents

Info

Publication number
JPH0415729B2
JPH0415729B2 JP60000245A JP24585A JPH0415729B2 JP H0415729 B2 JPH0415729 B2 JP H0415729B2 JP 60000245 A JP60000245 A JP 60000245A JP 24585 A JP24585 A JP 24585A JP H0415729 B2 JPH0415729 B2 JP H0415729B2
Authority
JP
Japan
Prior art keywords
film
polyester
shrinkage
refractive index
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60000245A
Other languages
Japanese (ja)
Other versions
JPS61160224A (en
Inventor
Shigeo Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP24585A priority Critical patent/JPS61160224A/en
Publication of JPS61160224A publication Critical patent/JPS61160224A/en
Publication of JPH0415729B2 publication Critical patent/JPH0415729B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は瞊暪共に収瞮率が小さくか぀波シワ等
のない平面性に優れたポリ゚ステルフむルムに関
する。曎に詳しくは、䜎収瞮か぀平面性に優れた
メンブレンスむツチの回路基板甚ポリ゚ステルフ
むルム及びその補造法に関する。 埓来の技術ず解決すべき問題点 ポリ゚ステル二軞延䌞フむルムは耐熱性、機械
的性質、耐薬品性等に優れおいるため、磁気蚘録
媒䜓甚途等皮々の甚途で䜿甚されおいる。 これらの甚途の䞭でも、電気電絶甚途、フロツ
ピヌデむスク甚途、垂盎磁気蚘録媒䜓甚途、液晶
パネル基板甚途、メンブレンスむツチの回路基板
甚途等においお、蚘録媒䜓、液晶パネル、メンブ
レンスむツチの補造工皋又は䜿甚時の熱、湿床に
よる倉圢を抑えるこずができるように、フむルム
の瞊暪共䜎収瞮化のものが芁請されおいる。 これらの芁請に察しお、ポリ゚ステルフむルム
の補造工皋䞭においお瞊及び又は暪方向に巟匛
緩を行な぀たり、瞊延䌞枩床を高くしお延䌞した
り、熱固定の枩床、時間を皮々倉曎したりするこ
ずによ぀お、぀たりむンラむンの工皋で改良が蚈
られおきた。これらの方法だけでは、特に厚番手
のフむルムにおいおは䜎収瞮化の効果が少ないた
め二軞延䌞フむルム補造埌、曎にオフラむンで䜎
テンシペン䞋で熱凊理するこずにより䜎収瞮化が
蚈られおきた。しかしながらオフラむンにおいお
䜎テンシペン䞋で熱凊理するず、通垞フむルムが
収瞮するため瞊方向に掗濯板状に波シワが圢成さ
れたり、カヌルが生じたりしおフむルムの平面性
が極めお悪化しおしたうため、この事が最倧の問
題点であ぀た。 それ故むンラむン凊理により䜎収瞮化する事及
びオフラむンで䜎収瞮化した際、平面性を良くす
るこずが芁望されおいた。 問題点の解決手段 本発明者は前蚘問題点を解決すべく鋭意怜蚎の
結果、二軞延䌞熱凊理埌のフむルムの物性をある
特定のものずするこずにより、むンラむン凊理で
も䜎収瞮化効果が倧きく、か぀オフラむンでの䜎
収瞮化凊理においお波シワ等がなく極めお平面性
の良いフむルムを埗るこずができるずの新知芋を
埗、前蚘問題点が解決出来るこずを芋出し本発明
に到達したものである。 すなわち本発明はフむルムの厚み方向の屈折率
n〓1.493以䞊でか぀平均屈折率が1.600以䞊、
1.610以䞋であ぀お、120℃、分の収瞮率が瞊暪
共に0.4以内であるこずを特城ずする平面性、
䜎収瞮性に優れたポリ゚ステルフむルム、及び未
延䌞フむルムを第䞀軞方向延䌞埌の耇屈折率が
0.070以䞋ずなるように䞀軞方向に延䌞し、次い
で該䞀軞方向ず盎角方向に延䌞し、熱固定し巻き
ず぀たフむルムを、Kgmm2以䞋のテンシペン䞋
で120℃〜170℃で熱凊理するこずを特城ずする䞊
蚘ポリ゚ステルフむルムの補造法に関するもので
ある。 本発明におけるポリ゚ステルずは、テレフタル
酞、む゜フタル酞、ナフタレン−−ゞカル
ボン酞のごずき芳銙族ゞカルボン酞又はその゚ス
テルず、゚チレングリコヌル、ゞ゚チレングリコ
ヌル、テトラメチレングリコヌル、ネオペンチル
グリコヌル等のゞオヌルずを重瞮合させお埗るこ
ずのできる結晶性芳銙族ポリ゚ステルである。該
ポリ゚ステルは芳銙族ゞカルボン酞ずグリコヌル
を盎接重瞮合させお埗られる他、芳銙族ゞカルボ
ン酞ゞアルキル゚ステルずグリコヌルずを゚ステ
ル亀換亀応させた埌、重瞮合せしめる。あるいは
芳銙族ゞカルボン酞のゞグリコヌル゚ステルを重
瞮合せしめる等の方法によ぀おも埗られる。 かかるポリマヌの代衚的なものずしおは、ポリ
゚チレンテレフタレヌト、ポリ゚チレン−
−ナフタレヌト、ポリテトラメチレンテレフタレ
ヌト、ポリテトラメチレン−−ナフタレヌ
ト等であり、そしおポリ゚チレンテレフタレヌ
ト、或いはポリ゚チレン−−ナフタレヌト
はテレフタル酞或いはナフタレン−−ゞカ
ルボン酞ず゚チレングリコヌルずが結合したポリ
゚ステルのみならず、繰り返し単䜍の80モル以
䞊が゚チレンテレフタレヌト、或いぱチレン−
−ナフタレヌト単䜍よりなり、繰り返し単
䜍の20モル以䞋が他の成分である共重合ポリ゚
ステル、たたはこれらのポリ゚ステルに他のポリ
マヌを添加、混合した混合ポリ゚ステルであ぀お
も良い。特にゞオヌル成分ずしおポリ゚チレング
リコヌル、ポリテトラメチレングリコヌル等ポリ
アルキレングリコヌルを共重合する事も必芁に応
じお奜たしい手段である。ポリ゚ステルに他のポ
リマヌを添加、混合する堎合はポリ゚ステルの性
質を本質的に倉化させない範囲内で添加、混合す
る必芁があり、ポリオレフむン、ポリアミド、ポ
リカヌボネヌトその他のポリ゚ステル等を15重量
未満の割合で添加するこずが出来る。 たた前蚘ポリ゚ステルには、必芁に応じお滑剀
等ずしお䜜甚する䞍掻性埮粒子を含有せしめおも
よい。䞍掻性埮粒子の添加量は通垞0.005〜2wt
含有せしめる事が奜たしい。又粒子の平均粒埄ず
しおは、0.005〜5.0ÎŒmの範囲である。 この目的に合臎した䞍掻性埮粒子ずしおは、ポ
リ゚ステル暹脂の溶融・補膜時に䞍溶な高融点有
機化合物、架橋化ポリマヌ及びポリ゚ステル合成
時に䜿甚する金属化合物觊媒、䟋えばアルカリ金
属化合物、アルカリ土類金属化合物などによ぀お
ポリ゚ステル補造時にポリマヌ内郚に圢成される
いわゆる内郚析出粒子、及び䟋えばMgOZnO
MgCO3CaCO3BaSO4Al2O3SiO2
TiO2SiCLiF、タルク、カオリン等の粘床鉱
物、セラむト、雲母等や、CaBaZnMnな
どのテレフタル酞塩等の䞍掻性倖郚添加粒子を挙
げるこずが出来る。 又、金属せ぀けん、デンプン、カルボキシメチ
ルセルロヌス等の䞍掻性有機化合物等も䞍掻性埮
粒子化合物の䟋ずしお挙げるこずが出来る。 もちろんこれらの粒子に加え、必芁に応じお染
料、顔料、垯電防止剀、導電性物質、磁性物質、
酞化防止剀、消泡剀等の化合物等の添加剀を含有
するこずができる。 本発明においお、フむルムの厚み方向の屈折率
n〓が1.493以䞊のフむルムにおいお120℃〜170℃
の枩床でか぀䜎テンシペン䞋で熱凊理するず極め
お良奜な䜎収瞮化が達成されるず同時に、波シワ
等のない平面性にすぐれたフむルムが埗られるの
である。 平均屈折率は厚み方向のの屈折率n〓、䞻配向
方向の屈折率n〓、䞻配向方向ず盎角な方向の屈折
率をn〓ずするず n〓n〓n〓 で䞎えられる。 ここで平均屈折率は1.600以䞊か぀1.610以䞋
であるこずが奜たしい。平均屈折率は1.600よ
り䜎い堎合には、䜎収瞮化凊理しおも効果が䜎い
ので奜たしくない。䞀方、平均屈折率が1.610
を超えるずフむルムの機械的匷床が䜎䞋しおした
うので奜たしくない。 驚くべきこずに、n〓が1.493以䞊のフむルムは
n〓が1.493未満のフむルムに比べ、むンラむンで
の凊理での䜎収瞮化効果が倧きい䞊に補膜埌オフ
ラむンで䜎テンシペン䞋で熱凊理する堎合も䜎収
瞮化の効果が倧きい䞊に波シワ等が少なく平面性
が良奜ずなる事が刀明した。 本発明においお䜎収瞮化工皋により達せらるべ
き収瞮率は120℃、分の熱凊理時間においお瞊
暪共に0.4以䞋である。奜たしくは0.2以䞋、
曎に奜たしくは0.1以䞋である。 䜎収瞮化凊方ずしおは前蚘のごずくフむルム補
膜時に皮々の収瞮工皋をおり蟌む事もできるが、
本発明においおはn〓が1.493以䞊ずなるよう二軞
延䌞熱固定した埌、䜎テンシペン䞋で熱凊理する
方法が最適である。該熱凊理においおフむルムの
テンシペンはmm2〜Kgmmが奜たしい。又
熱凊理枩床ずしおは120℃〜170℃、数秒〜数十秒
行なうこずが奜たしい。 該方法で埗られるフむルムの厚みは特に限定さ
れないが2Ό〜300Όが奜たしい。 䜿甚すべき甚途ずしおは特に限定されないが、
䜎収瞮である事が必芁な甚途、䟋えば電気電絶甚
途、ビデオ・オヌデむオ甚途、フロツピヌデむス
ク、垂盎磁気蚘録甚途、液晶パネル基材、倪陜電
池基板甚等あるが。特にメンブレンスむツチの回
路基板甚途ずしお有甚である。該メンブレンスむ
ツチの回路基板甚途ずしお甚いる堎合には、オリ
ゎマヌの析出を防止するためフむルムの䞡面にフ
むルム補造工皋䞭、又は工皋埌、シランカツプリ
ング剀等、氎溶性暹脂、゚マルゞペン暹脂を塗垃
する事も有甚である。 次に本発明のポリ゚ステルフむルムの補膜方法
を具䜓的に説明する。 重合䜓䞭に䞍掻性埮粒子を適切量含有せしめた
ポリマヌレゞンを垞法の手段で也燥し、抌出機を
通しお抌出しをし、回転冷华䜓ドラム䞊で冷华固
化し未延䌞ポリ゚ステルシヌトを圢成する。この
際、静電印加冷华法等公知の冷华手段をずるこず
ができる。このようにしお埗た未延䌞フむルム
は、たず第䞀軞方向、通垞は瞊方向にその耇屈折
率Δnが0.070以䞋ずなるよう延䌞し、次に䞀軞方
向ず盎角方向に90〜150℃の枩床で2.5〜4.5倍延
䌞し、二軞延䌞フむルムを䜜成し、200℃〜250℃
で秒から10分間熱固定する。䜆し必芁に応じお
熱固定前に再延䌞を行なう事も可胜である。 本発明においおは第䞀軞延䌞方向、通垞は瞊延
䌞埌のΔnを0.070以䞋ずするこずが必須である。
Δnが0.070を超えるずフむルムのn〓を1.493以䞊ず
するのは困難であり奜たしくない。又厚み斑を改
良するために第䞀軞延䌞を倚段にするこずも奜た
しい。又、収瞮率を䜎䞋させるべく瞊延䌞工皋に
スヌパヌドロヌ又はスヌパヌドロヌ近傍の延䌞を
適甚したり、瞊方向及び又は暪方向に瞊延䌞埌
及び又は暪延䌞埌、及び又は熱固定埌に匛緩
工皋を導入するこずも奜適である。 このようにしお埗られた二軞延䌞熱固定フむル
ムを䜎テンシペン䞋で熱凊理を行ない、曎に収瞮
率を䜎䞋させる。 かくしお瞊暪共に極めお収瞮率の小さいフむル
ムを埗るこずが出来た。 実斜䟋 以䞋に本発明を実斜䟋で曎に詳しく説明する
が、本発明はこれら実斜䟋に限定されるものでな
いこずは蚀うたでもない。 フむルムの各物性倀の枬定法を以䞋に瀺す。 (1) 耇屈折率 カヌルツアむス瀟補偏光顕埮鏡によりリタヌデ
ヌシペンを枬定し、次匏により耇屈折率Δn
を求めた。 Δn 䜆し リタヌデヌシペン フむルム厚さ (2) 収瞮率 枬定すべきフむルムを長手方向及び巟方向に長
さ50cmI0、巟15mmに切断し、オヌブン䞭に所
定枩床で所定時間、熱凊理した埌、フむルムの長
さ枬定し䞋蚘匏からその収瞮率を求めた。 収瞮率10−10×100(3) 屈折率 アツベ屈折蚈株匏䌚瀟アタゎ補により25℃
でのNa−線に察する倀を求めた。 (4) 平面性 フむルムの倖芳を芳察しお刀断した。 ×波シワの発生倧 △波シワはよく芋るず刀る皋床 ○波シワ発生なし 実斜䟋及び ポリ゚ステルチツプの補造法 ゞメチルテレフタレヌト100郚、゚チレングリ
コヌル70郚及び酢酞カルシりム䞀氎塩0.07郚を反
応噚にずり加熱昇枩するず共にメタノヌルを留去
させ゚ステル亀換反応を行ない、反応開始埌玄
時間半を芁しお230℃に達せしめ、実質的に゚ス
テル亀換反応を終了した。 次にリン酞0.04郚及び䞉酞化アンチモン0.035
郚を添加し、垞法に埓぀お重合した。即ち反応枩
床は埐々に昇枩し最終的に280℃ずし、䞀方、圧
力は埐々に枛じ最終的に0.5mmHgずした。時間
埌反応を終了し、垞法に埓いチツプ化しおポリ゚
ステル(A)を埗た。 䞀方ポリ゚ステル(A)の補造においお゚ステル亀
換終了埌、平均粒埄1.2Όの無定圢シリカ0.10郚を
添加する他は、ポリ゚ステル(A)の補造ず同様にし
お無定圢シリカ含有ポリ゚ステル(B)を埗た。 又、䞀方ポリ゚ステル(B)においお無定圢シリカ
の粒埄を30mΌ、添加量を0.05郚ずしお無定圢シ
リカ含有ポリ゚ステル(C)を埗た。 各ポリ゚ステル(A)(B)(C)は〔η〕0.63に調敎
した。 補膜法 䞊蚘のポリ゚ステル(A)ずポリ゚ステル(B)ずポリ
゚ステル(C)を5540にブレンドした埌、垞法
により也燥し、285℃で溶融抌出し冷华固化し無
定圢シヌトを埗た。 該無定圢シヌトをたずIRヒヌタヌを耇数個䜿
甚しお105℃で3.4倍に瞊方向に延䌞しΔnを0.040
ずしたのち、曎に105℃で×1.20倍及び×1.30倍
延䌞しおそれぞれΔn0.0590.068ずした。かく
しお埗られた瞊延䌞フむルムをテンタヌで145℃
で3.7倍に暪方向に延䌞し、235℃で熱固定したの
ち瞊暪に0.2ず぀匛緩を行な぀お巻き取り、50ÎŒ
の二軞配向フむルムサンプルNo.及びを
埗た。次にこのサンプルNo.の二軞延䌞フむル
ムを70mm2の匵力䞋においお150℃、秒間の
熱凊理ロヌル搬送により熱颚炉の䞭で行い、サン
プルフむルムサンプルNo.及びを埗た。 比范䟋及び 瞊延䌞枩床85℃、瞊延䌞倍率3.6倍、暪延䌞枩
床120℃、暪延䌞倍率3.9倍にした以倖は実斜䟋
ず同様の補膜を行ない、熱固定匛緩埌のフむルム
をサンプルNo.、サンプルNo.の熱凊理フむルム
をサンプルNo.ずした。 これらのフむルムの物性を第衚に瀺す。
FIELD OF INDUSTRIAL APPLICATION The present invention relates to a polyester film that has a small shrinkage rate in both the vertical and horizontal directions and has excellent flatness without wave wrinkles or the like. More specifically, the present invention relates to a polyester film for circuit boards of membrane switches that has low shrinkage and excellent flatness, and a method for producing the same. BACKGROUND ART AND PROBLEMS TO BE SOLVED Polyester biaxially stretched films have excellent heat resistance, mechanical properties, chemical resistance, etc., and are therefore used in various applications such as magnetic recording media. Among these uses, in electrical insulation applications, floppy disk applications, perpendicular magnetic recording media applications, liquid crystal panel substrate applications, membrane switch circuit board applications, etc., during the manufacturing process or use of recording media, liquid crystal panels, and membrane switches. In order to suppress deformation caused by heat and humidity, there is a need for films with low shrinkage in both the vertical and horizontal directions. In response to these demands, during the manufacturing process of polyester film, we have performed width relaxation in the longitudinal and/or transverse directions, stretched at a higher longitudinal stretching temperature, and variously changed the temperature and time of heat setting. Improvements have been made through in-line processes. Since these methods alone have little effect on reducing shrinkage, especially in thick films, attempts have been made to reduce shrinkage by further off-line heat treatment under low tension after producing a biaxially stretched film. However, when heat-treated off-line under low tension, the film usually shrinks, resulting in the formation of washboard-like wave wrinkles or curls in the vertical direction, and the flatness of the film is extremely deteriorated. was the biggest problem. Therefore, it has been desired to reduce shrinkage through in-line processing and to improve flatness when shrinkage is reduced offline. Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention found that by setting the physical properties of the film after biaxial stretching heat treatment to certain specific values, the shrinkage reduction effect is large even in in-line processing. In addition, we obtained new knowledge that it is possible to obtain a film with extremely good flatness without wave wrinkles etc. through off-line shrinkage reduction processing, and discovered that the above problems can be solved, and thus arrived at the present invention. In other words, the present invention focuses on the refractive index in the thickness direction of the film.
n=1.493 or more and the average refractive index is 1.600 or more,
1.610 or less, and the shrinkage rate for 3 minutes at 120°C is within 0.4% in both length and width;
A polyester film with excellent low shrinkage and an unstretched film with a birefringence after stretching in the first axial direction.
0.070 or less, and then heat-treating the film, which is stretched in a direction perpendicular to the uniaxial direction, heat-set, and wound, at 120°C to 170°C under a tension of 1 kg/mm 2 or less. The present invention relates to a method for producing the above-mentioned polyester film, which is characterized by the following. In the present invention, polyester refers to a polyester containing aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalene-2,6-dicarboxylic acid or esters thereof, and diols such as ethylene glycol, diethylene glycol, tetramethylene glycol, and neopentyl glycol. It is a crystalline aromatic polyester that can be obtained by condensation. The polyester can be obtained by direct polycondensation of aromatic dicarboxylic acid and glycol, or can be obtained by transesterification of aromatic dicarboxylic acid dialkyl ester and glycol, followed by polycondensation. Alternatively, it can also be obtained by a method such as polycondensation of diglycol ester of aromatic dicarboxylic acid. Typical examples of such polymers include polyethylene terephthalate, polyethylene-2,6
- naphthalate, polytetramethylene terephthalate, polytetramethylene-2,6-naphthalate, etc.; Not only the bonded polyester but also 80 mol% or more of the repeating units are ethylene terephthalate or ethylene-
It may be a copolyester consisting of 2,6-naphthalate units, in which 20 mol% or less of the repeating units are other components, or a mixed polyester obtained by adding and mixing other polymers to these polyesters. In particular, copolymerization of polyalkylene glycols such as polyethylene glycol and polytetramethylene glycol as a diol component is also a preferred means, if necessary. When adding or mixing other polymers to polyester, it is necessary to do so within a range that does not essentially change the properties of the polyester, and polyolefins, polyamides, polycarbonates, and other polyesters, etc. are added at a proportion of less than 15% by weight. You can. Further, the polyester may contain inert fine particles that act as a lubricant or the like, if necessary. The amount of inert fine particles added is usually 0.005-2wt%
It is preferable to include it. Further, the average particle size of the particles is in the range of 0.005 to 5.0 ÎŒm. Inert fine particles suitable for this purpose include high melting point organic compounds that are insoluble during melting and film formation of polyester resins, crosslinked polymers, and metal compound catalysts used during polyester synthesis, such as alkali metal compounds and alkaline earth metal compounds. So-called internal precipitated particles formed inside the polymer during polyester production due to
MgCO 3 , CaCO 3 , BaSO 4 , Al 2 O 3 , SiO 2 ,
Examples include clay minerals such as TiO 2 , SiC, LiF, talc, and kaolin, celite, mica, and inert externally added particles such as terephthalates such as Ca, Ba, Zn, and Mn. In addition, inert organic compounds such as metal soap, starch, and carboxymethyl cellulose can also be cited as examples of inert fine particle compounds. Of course, in addition to these particles, dyes, pigments, antistatic agents, conductive substances, magnetic substances,
It may contain additives such as compounds such as antioxidants and antifoaming agents. In the present invention, the refractive index in the thickness direction of the film
120°C to 170°C for films with n〓 of 1.493 or more
When the film is heat-treated at a temperature of 100 mL under low tension, extremely low shrinkage can be achieved, and at the same time, a film with excellent flatness and no corrugations or wrinkles can be obtained. The average refractive index is =1/3 (n〓+n〓+n〓) where the refractive index in the thickness direction is n〓, the refractive index in the main orientation direction is n〓, and the refractive index in the direction perpendicular to the main orientation direction is n〓. Given. Here, the average refractive index is preferably 1.600 or more and 1.610 or less. If the average refractive index is lower than 1.600, it is not preferable because even if the shrinkage reduction treatment is performed, the effect will be low. On the other hand, the average refractive index n is 1.610
Exceeding this is not preferable because the mechanical strength of the film decreases. Surprisingly, films with n〓 of 1.493 or more
Compared to a film with n〓 of less than 1.493, it has a greater effect of reducing shrinkage in in-line processing, and also has a greater effect of reducing shrinkage when heat-treated off-line under low tension after film formation. It was found that the flatness was improved with less. In the present invention, the shrinkage rate that should be achieved by the shrinkage reduction step is 0.4% or less in both length and width at 120° C. and heat treatment time of 3 minutes. Preferably 0.2% or less,
More preferably, it is 0.1% or less. As a low-shrinkage formulation, various shrinkage processes can be incorporated during film production as described above.
In the present invention, the most suitable method is to carry out biaxial stretching heat setting so that n〓 is 1.493 or more, and then heat treatment under low tension. In the heat treatment, the tension of the film is preferably 1 g/mm 2 to 1 Kg/mm. Further, the heat treatment temperature is preferably 120°C to 170°C for several seconds to several tens of seconds. The thickness of the film obtained by this method is not particularly limited, but is preferably 2ÎŒ to 300ÎŒ. There are no particular limitations on the usage, but
There are applications that require low shrinkage, such as electrical isolation applications, video/audio applications, floppy disks, perpendicular magnetic recording applications, liquid crystal panel substrates, and solar cell substrates. It is particularly useful as a circuit board for membrane switches. When using the membrane switch as a circuit board, a silane coupling agent, water-soluble resin, or emulsion resin may be applied to both sides of the film during or after the film manufacturing process to prevent oligomer precipitation. Useful. Next, the method for forming a polyester film of the present invention will be specifically explained. A polymer resin containing an appropriate amount of inert fine particles is dried by a conventional method, extruded through an extruder, and solidified by cooling on a rotating cooling drum to form an unstretched polyester sheet. At this time, a known cooling method such as an electrostatic application cooling method can be used. The unstretched film thus obtained is first stretched in the first axial direction, usually in the longitudinal direction, so that its birefringence Δn is 0.070 or less, and then in the direction perpendicular to the uniaxial direction at a temperature of 90 to 150°C. Stretch 2.5 to 4.5 times at 200℃ to 250℃ to create a biaxially stretched film.
Heat set for 1 second to 10 minutes. However, if necessary, it is also possible to perform re-stretching before heat setting. In the present invention, it is essential that Δn in the first axial stretching direction, usually after longitudinal stretching, be 0.070 or less.
If Δn exceeds 0.070, it is difficult to make the film's n〓 of 1.493 or more, which is not preferable. In order to improve thickness unevenness, it is also preferable to carry out the first axis stretching in multiple stages. In order to reduce the shrinkage rate, super draw or near super draw stretching may be applied to the longitudinal stretching process, or relaxation may be applied in the longitudinal and/or transverse directions after longitudinal stretching and/or transverse stretching and/or after heat setting. It is also suitable to introduce a process. The biaxially stretched heat-set film thus obtained is heat treated under low tension to further reduce the shrinkage rate. In this way, it was possible to obtain a film with extremely low shrinkage in both length and width. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the present invention is not limited to these Examples. The method for measuring each physical property value of the film is shown below. (1) Birefringence Measure the retardation using a Carl Zeiss polarizing microscope, and calculate the birefringence (Δn) using the following formula.
I asked for Δn=R/d where R: Retardation d: Film thickness (2) Shrinkage rate The film to be measured was cut into lengths of 50 cm (I 0 ) and widths of 15 mm in the longitudinal and width directions, and placed in a predetermined oven. After being heat-treated at a certain temperature for a predetermined time, the length (I) of the film was measured and its shrinkage rate was determined from the following formula. Shrinkage rate = 1 0 -1/1 0 × 100 (%) (3) Refractive index 25℃ measured by Atsbe refractometer (manufactured by Atago Co., Ltd.)
The value for the Na-D line was determined. (4) Flatness This was determined by observing the appearance of the film. ×: Severe occurrence of wave wrinkles △: Wave wrinkles are noticeable when looked closely ○: No wave wrinkles Examples 1, 2, 3, and 4 (Production method of polyester chips) 100 parts of dimethyl terephthalate, 70 parts of ethylene glycol, and acetic acid 0.07 part of calcium monohydrate was placed in a reactor, heated to raise the temperature, and methanol was distilled off to carry out the transesterification reaction.
It took an hour and a half to reach 230°C, and the transesterification reaction was substantially completed. Then 0.04 part of phosphoric acid and 0.035 part of antimony trioxide
part was added, and polymerization was carried out according to a conventional method. That is, the reaction temperature was gradually increased to a final value of 280°C, while the pressure was gradually decreased to a final value of 0.5 mmHg. After 4 hours, the reaction was completed and the mixture was made into chips according to a conventional method to obtain polyester (A). On the other hand, in the production of polyester (A), amorphous silica-containing polyester (B) was obtained in the same manner as in the production of polyester (A), except that 0.10 parts of amorphous silica with an average particle size of 1.2ÎŒ was added after the transesterification. Ta. On the other hand, polyester (C) containing amorphous silica was obtained by changing the particle size of amorphous silica to 30 mÎŒ and adding amount to 0.05 part in polyester (B). Each polyester (A), (B), and (C) was adjusted to [η] 0.63. (Film forming method) After blending the above polyester (A), polyester (B), and polyester (C) in a ratio of 55:5:40, drying by a conventional method, melt-extruding at 285°C, cooling and solidifying to form an amorphous sheet. Obtained. The amorphous sheet was first stretched 3.4 times in the longitudinal direction at 105°C using multiple IR heaters, and Δn was 0.040.
After that, they were further stretched at 105° C. by 1.20 times and 1.30 times to give Δn=0.059 and 0.068, respectively. The longitudinally stretched film thus obtained was heated to 145℃ using a tenter.
Stretch it 3.7 times in the transverse direction, heat set it at 235℃, relax it by 0.2% in the length and width, and roll it up to 50ÎŒ.
Biaxially oriented films (Samples No. 1 and 2) were obtained. Next, this sample No. The biaxially stretched film of No. 1 was heat-treated at 150° C. under a tension of 70 g/mm 2 for 5 seconds by conveying rolls in a hot air oven to obtain sample films (Samples Nos. 3 and 4). Comparative Examples 1 and 2 Example 1 except that the longitudinal stretching temperature was 85°C, the longitudinal stretching ratio was 3.6 times, the transverse stretching temperature was 120°C, and the transverse stretching ratio was 3.9 times.
Film formation was carried out in the same manner as above, and the film after heat setting and relaxation was designated as Sample No. 5, and the heat-treated film of Sample No. 5 was designated as Sample No. 6. The physical properties of these films are shown in Table 1.

【衚】 オフラむン䜎収瞮化凊理の有無
第衚から分る様に本発明法によれば、収瞮率
が極めお䜎く、平面性に優れたフむルムを埗られ
るこずが分る。 発明の効果 本発明のフむルムの厚み方向の屈折率n〓が
1.493以䞊、平均屈折率1.600以䞊、1.610以䞋、
120℃、分の収瞮率が瞊暪共に0.4以内のポリ
゚ステルフむルムは平面性及び䜎収瞮性においお
すぐれたものであり、メンブレンスむツチの回路
基板ずしお有甚なフむルムである。
[Table] *: Presence or absence of off-line shrinkage reduction treatment As can be seen from Table 1, according to the method of the present invention, a film with extremely low shrinkage rate and excellent flatness can be obtained. Effects of the Invention The refractive index n〓 in the thickness direction of the film of the present invention is
1.493 or more, average refractive index 1.600 or more, 1.610 or less,
A polyester film with a shrinkage rate of 0.4% or less in both the vertical and horizontal directions at 120°C for 3 minutes has excellent flatness and low shrinkage, and is useful as a circuit board for membrane switches.

Claims (1)

【特蚱請求の範囲】  フむルムの厚み方向の屈折率n〓が1.493以䞊
でか぀平均屈折率が1.600以䞊、1.610以䞋であ
぀お、120℃、分の収瞮率が瞊暪共に0.4以内
であるこずを特城ずする平面性、䜎収瞮性にすぐ
れたポリ゚ステルフむルム。  未延䌞フむルムを第䞀軞方向延䌞埌の耇屈折
率が0.070以䞋ずなるように䞀軞方向に延䌞し、
次いで該䞀軞方向ず盎角方向に延䌞し、熱固定し
巻きず぀たフむルムを、Kgmm2以䞋のテンシペ
ン䞋で120℃〜170℃で熱凊理するこずを特城ずす
る、フむルムの厚み方向の屈折率n〓が1.493以䞊
でか぀平均屈折率が1.600以䞊、1.610以䞋であ
぀お、120℃、分の収瞮率が瞊暪共に0.4以内
である平面性、䜎収瞮性にすぐれたポリ゚ステル
フむルムの補造法。
[Scope of Claims] 1. The refractive index n〓 in the thickness direction of the film is 1.493 or more, the average refractive index is 1.600 or more and 1.610 or less, and the shrinkage rate at 120°C for 3 minutes is within 0.4% in both length and width. A polyester film with excellent flatness and low shrinkage. 2 Stretch the unstretched film in the uniaxial direction so that the birefringence index after stretching in the first axial direction is 0.070 or less,
The refractive index in the thickness direction of the film is then heat-treated at 120°C to 170°C under a tension of 1 Kg/mm 2 or less. A method for producing a polyester film with excellent flatness and low shrinkage, which has an n〓 of 1.493 or more, an average refractive index of 1.600 or more and 1.610 or less, and a shrinkage rate of 0.4% in both length and width at 120°C for 3 minutes. .
JP24585A 1985-01-07 1985-01-07 Low shrinkage polyester film and manufacture thereof Granted JPS61160224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24585A JPS61160224A (en) 1985-01-07 1985-01-07 Low shrinkage polyester film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24585A JPS61160224A (en) 1985-01-07 1985-01-07 Low shrinkage polyester film and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61160224A JPS61160224A (en) 1986-07-19
JPH0415729B2 true JPH0415729B2 (en) 1992-03-18

Family

ID=11468565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24585A Granted JPS61160224A (en) 1985-01-07 1985-01-07 Low shrinkage polyester film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61160224A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064276B2 (en) * 1985-12-10 1994-01-19 ダむアホむルヘキスト株匏䌚瀟 Polyester film for membrane switch
JPS63177015U (en) * 1987-05-08 1988-11-16
JPH0824008B2 (en) * 1989-11-09 1996-03-06 垝人株匏䌚瀟 Insulation film for flyback transformer
US5290835A (en) * 1991-10-01 1994-03-01 Teijin Limited Electrical and electronic parts formed of polybutylene naphthalenedicarboxylate
JPH07285173A (en) * 1994-04-20 1995-10-31 Toray Ind Inc Electric insulating biaxially oriented polyethylene naphthalate film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396072A (en) * 1977-02-02 1978-08-22 Teijin Ltd Preparation of polyester film with excellent dimensional stability
JPS5749377A (en) * 1980-09-05 1982-03-23 Hitachi Ltd Starting circuit for refrigerant compressor
JPS5874324A (en) * 1981-10-30 1983-05-04 Toray Ind Inc Heat treatment of polyester film
JPS58215722A (en) * 1982-06-08 1983-12-15 Diafoil Co Ltd Polyester film for use in magnetic recording material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396072A (en) * 1977-02-02 1978-08-22 Teijin Ltd Preparation of polyester film with excellent dimensional stability
JPS5749377A (en) * 1980-09-05 1982-03-23 Hitachi Ltd Starting circuit for refrigerant compressor
JPS5874324A (en) * 1981-10-30 1983-05-04 Toray Ind Inc Heat treatment of polyester film
JPS58215722A (en) * 1982-06-08 1983-12-15 Diafoil Co Ltd Polyester film for use in magnetic recording material

Also Published As

Publication number Publication date
JPS61160224A (en) 1986-07-19

Similar Documents

Publication Publication Date Title
USRE34727E (en) Low-shrinkage polyester film and preparation thereof
JPH0550376B2 (en)
JP2001319825A (en) Heat-resistant capacitor polyester film, its metallized film, and heat-resistant film capacitor formed thereof
US5545364A (en) Process for the preparation of heat resistant polyester film
KR100462641B1 (en) Biaxially oriented film
JPH0415729B2 (en)
JP2004035720A (en) Biaxially oriented polyester film
US6124031A (en) Thermoplastic polyester composition and film made therefrom
JP2692269B2 (en) Low shrinkage polyester film
JPH0324936A (en) Biaxial oriented polyester film
JPH0369295B2 (en)
JPH03258835A (en) Oriented polyester film
JP2003082199A (en) Biaxially oriented polyester film
JPH054218B2 (en)
JPH03134052A (en) Orientated polyester film
JPH01256558A (en) Polyester composition and film prepared from the same
JPH02163155A (en) Polyester film
JPH0450890B2 (en)
KR101375706B1 (en) Polyester base film for release film and preparation method thereof
KR20140000598A (en) Polyester base film for release film of green sheet
KR0129828B1 (en) Complex thermoplastic resin film
JPH06143409A (en) Polyester composition
JP3149546B2 (en) Biaxially oriented polyester film
US6258921B1 (en) Easily dyeable polyester film and preparation thereof
JP2505436B2 (en) Biaxially oriented polyester film