JPS6177691A - Apparatus for manufacturing pyrolytic boron nitride formed body - Google Patents

Apparatus for manufacturing pyrolytic boron nitride formed body

Info

Publication number
JPS6177691A
JPS6177691A JP18807584A JP18807584A JPS6177691A JP S6177691 A JPS6177691 A JP S6177691A JP 18807584 A JP18807584 A JP 18807584A JP 18807584 A JP18807584 A JP 18807584A JP S6177691 A JPS6177691 A JP S6177691A
Authority
JP
Japan
Prior art keywords
reaction chamber
gas
boron nitride
pyrolytic boron
introduction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18807584A
Other languages
Japanese (ja)
Other versions
JPH0116310B2 (en
Inventor
哲郎 川井
勝彦 古城
久雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP18807584A priority Critical patent/JPS6177691A/en
Publication of JPS6177691A publication Critical patent/JPS6177691A/en
Publication of JPH0116310B2 publication Critical patent/JPH0116310B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、m−v族化合物半導体単結晶を引き上げるル
ツボ等の成形体を熱分解窒化硼素(p−BN)により製
造する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to an apparatus for manufacturing a molded body such as a crucible for pulling an m-v group compound semiconductor single crystal using pyrolytic boron nitride (p-BN).

「従来の技術」 従来、熱分解窒化硼素成形体を製造する方法として反応
ガスに、NH3ガスとBCl3又はBF3ガスとを使用
するCVD法による方法が知られている。このCVD法
により得られた成形体は高密度、高純度であり、例えば
、単結晶引上げ炉用ルツボとして優れていた。このCV
D法は、第1図に示すように外周をヒータaに囲まれた
反応室す内にグラファイト製の基体Cを保持し、反応室
上方からB C13又はBF3ガスとNH3ガスとを独
立に導入管を介して導入して1両ガスを高温で反応させ
ることにより熱分解窒化硼l!:成形体を製造するもの
であった、なお、この従来技術は1例えばH,0,Xe
rsan、J−Composite  Matsria
ls、9  (1975)22Bに開示されている。
"Prior Art" Conventionally, a CVD method using NH3 gas and BCl3 or BF3 gas as a reaction gas is known as a method for manufacturing a pyrolytic boron nitride molded body. The compact obtained by this CVD method had high density and high purity, and was excellent as a crucible for a single crystal pulling furnace, for example. This CV
In method D, as shown in Figure 1, a graphite substrate C is held in a reaction chamber surrounded by a heater a on the outer periphery, and B C13 or BF3 gas and NH3 gas are introduced independently from above the reaction chamber. Pyrolytic boron nitride is produced by introducing the two gases through a tube and reacting them at high temperatures! : This conventional technology was used to produce molded bodies.
rsan, J-Composite Matsria
ls, 9 (1975) 22B.

「発明が解決しようとする問題点」 CVD法により熱分解窒化硼素成形体を製造するときは
、互いに反応しゃすいB C13とNH3とを反応室の
上部から導入していたため、未反応のB G13やNH
3が反応室の下方に流れに<<、成形体は上部のみが成
形され、下部はほとんど成形できないという問題があっ
た。
"Problems to be Solved by the Invention" When producing a pyrolytic boron nitride molded body by the CVD method, unreacted B G13 and NH3, which tend to react with each other, were introduced from the upper part of the reaction chamber. YaNH
3 flows downward into the reaction chamber, there was a problem in that only the upper part of the molded body could be molded, and the lower part could hardly be molded.

このため本発明者は本発明に先だちBOhガスとNH3
ガスを独立に、反応室の下方から基体の外周に導入する
ことを試みたが、反応室内に導入された反応ガスのうち
比重の軽いNH3は反応室上部の空所に上昇してしまっ
た。そして製造される成形体の下部の肉厚はやはり薄く
、しかも成形体はBが過剰になり褐色になってしまった
。さらに反応ガス導入管としてグチファイトを使用する
と、1400℃以上の高温ではNH3ガスとグラファイ
トとが反応すること、あるいは導入管外周にBNが付着
し、グラファイトと熱膨張係数が異なるため熱応力で破
損するという問題点があった。
Therefore, prior to the present invention, the inventors of the present invention
An attempt was made to introduce the gas independently from the bottom of the reaction chamber to the outer periphery of the substrate, but among the reaction gases introduced into the reaction chamber, NH3, which has a light specific gravity, rose into the void above the reaction chamber. The wall thickness of the lower part of the molded product produced was still thin, and the molded product contained too much B and turned brown. Furthermore, if Gutiphite is used as the reaction gas introduction tube, NH3 gas and graphite will react at high temperatures of 1400°C or higher, or BN will adhere to the outer periphery of the introduction tube, causing damage due to thermal stress due to its thermal expansion coefficient being different from that of graphite. There was a problem with that.

「問題点を解決するための手段」 本発明は上記問題点を解消するものであり、回転可能な
基体保持台を反応室内に配置し1反応室の外周にヒータ
を設けるとともに、反応室の上部にM蔽板を設けてNH
3ガスの上昇を阻止し、基体保持台の外周にBCl3又
はBF)ガス導入管とNH3ガス導入管とを配置して、
BCl3又はBF3とNH3とを反応させることにより
基体外周面に熱分解窒化硼素を付着させて成形体を製造
できるようにした。またガス導入管は、BN焼結体で形
成してNH3に腐食されないようにするとともに、破損
を防止した。
"Means for Solving the Problems" The present invention solves the above problems, and includes a rotatable substrate holder placed in the reaction chamber, a heater provided around the outer periphery of one reaction chamber, and Install an M shield plate on the NH
A BCl3 or BF) gas introduction pipe and an NH3 gas introduction pipe are arranged around the outer periphery of the substrate holding table to prevent the rise of the three gases.
By reacting BCl3 or BF3 with NH3, pyrolytic boron nitride was deposited on the outer circumferential surface of the substrate, thereby making it possible to produce a molded body. Further, the gas introduction pipe was formed of a BN sintered body to prevent corrosion by NH3 and to prevent damage.

B (lxガスの導入管がマツフル上部を通るようにし
たときは、BOhガスが予備加熱されて反応室に導入さ
れるので、その分解が一層活発に行なわれる。BClx
ガスの導入管とNHtガスの導入管とをともに反応室の
下部から導入するときは、各導入管の取外しが容易であ
り、導入管の交換等に便利である。
B (When the lx gas introduction tube passes through the upper part of Matsufuru, the BOh gas is preheated and introduced into the reaction chamber, so its decomposition is more active.BClx
When both the gas introduction tube and the NHt gas introduction tube are introduced from the lower part of the reaction chamber, each introduction tube can be easily removed, which is convenient for replacing the introduction tube.

次に本発明を第2図と第3を参照してより詳細に説明す
る0反応室lを円筒状マツフル2の中央部に形成し、反
応室1の下部に保持台3を配置する。保持台3は、上面
にグラファイト類の基体4を保持し、この保持台は軸5
を介して図示を省略した回転装置により回転可能に形成
される。
Next, the present invention will be explained in more detail with reference to FIGS. 2 and 3. A reaction chamber 1 is formed in the center of the cylindrical matuffle 2, and a holding table 3 is placed in the lower part of the reaction chamber 1. The holding table 3 holds a graphite base 4 on its upper surface, and this holding table has a shaft 5.
It is formed to be rotatable by a rotating device (not shown) via the.

反応室1の上部にグラファイト類の遮蔽板6を設けてマ
ツフル2内を区画し、保持台3の外周位置にN Hxガ
スの導入管7とB (lx又はBFxガスの導入管8と
を反応室1の上下方向に配置する、MHIガスの導入管
7は窒化硼素(B N)の焼結体により形成して、高温
になったときにNH3におかされないようにし、BCl
3又はBF3の導入管8はグラファイト類でもよいが、
導入管7と同様にBN製とするのが望ましい、導入管8
をグラファイト類にすると、導入管にCVDによりBN
厚膜が密着性良く生成し、グラファイトとBNとの熱膨
張係数が異なるため温度サイクルによりパイプが破場1
.めすい力)ら〒ある一各4人管7゜8の先端部には上
下方向に多数の注入孔7a、8aがそれぞれ設けられる
。NH3の導入管7は、注入孔7aから反応室1内にN
 Hxガスを10’O〜2500cc/分の割合で注入
できるようになっている本発明の場合、保持台3が回転
するのでB C13の導入管8をNH3の導入管7の両
側に2本設けて両ガスが反応室内を良好に行きわたるよ
うにしたが、保持台を回転させないときは、導入管7゜
8を保持台の回りに多数説ければよい。
A shielding plate 6 made of graphite is provided at the top of the reaction chamber 1 to partition the inside of the Matsufuru 2, and an N Hx gas introduction pipe 7 and a B (lx or BFx gas introduction pipe 8) are connected to the outer peripheral position of the holding table 3. The MHI gas introduction pipe 7, which is arranged in the vertical direction of the chamber 1, is formed of a sintered body of boron nitride (BN) to prevent it from being exposed to NH3 when the temperature rises, and to
3 or the introduction pipe 8 of BF3 may be made of graphite,
Introductory tube 8, which is preferably made of BN like introductory tube 7
When graphite is used, BN is added to the inlet pipe by CVD.
A thick film is formed with good adhesion, and because the thermal expansion coefficients of graphite and BN are different, the pipe will break due to temperature cycles1.
.. A large number of injection holes 7a and 8a are provided in the vertical direction at the tip of each of the four tubes 7.8. The NH3 introduction pipe 7 supplies N into the reaction chamber 1 from the injection hole 7a.
In the case of the present invention, in which Hx gas can be injected at a rate of 10'O to 2500 cc/min, since the holding table 3 rotates, two B C13 inlet pipes 8 are provided on both sides of the NH3 inlet pipe 7. Although both gases were made to circulate well in the reaction chamber, when the holding table is not rotated, it is sufficient to install a large number of inlet pipes 7.8 around the holding table.

B Ch又はBF3の導入管8は、上部が遮蔽板6に設
けた通口9を介してマツフル上部の後記する保温材で囲
まれた通孔10を貫通し、BCh又はBF3は通孔10
の部分で十分予備加熱されてその分解が、より一層活発
に行なわれるようにされて、反応室1内にB C13が
20〜500cc/分の割合で導入できるようになって
いる。またB C10の導入管8には、キャリアガスと
してH2またはA「が導入され、B C13とともに注
入孔8aから100〜IQOOcc/分の割合で反応室
内に注入できるようになっている、なお、NHI 、B
Gh 、H2またはAtが導入される反応室l内の圧力
は、l■■Hg〜20 mmHgにされ、熱分解窒化硼
素成形体を製造するのに望ましい状態とする。キャリア
ガスを導入するのは、NH3に比しB C13が少ない
ため反応室内全域に8013ガスを均一に導入するため
である。
The introduction pipe 8 for BCh or BF3 passes through a through hole 10 surrounded by a heat insulating material (described later) in the upper part of Matsuful through a through hole 9 provided in the shielding plate 6;
This section is sufficiently preheated so that its decomposition is carried out even more actively, so that BC13 can be introduced into the reaction chamber 1 at a rate of 20 to 500 cc/min. In addition, H2 or A'' is introduced as a carrier gas into the introduction tube 8 of B C10, and can be injected into the reaction chamber from the injection hole 8a at a rate of 100 to IQOOcc/min together with B C13. , B
The pressure in the reaction chamber 1 into which Gh, H2, or At is introduced is set to 1 to 20 mmHg, which is a desirable state for producing a pyrolytic boron nitride compact. The reason for introducing the carrier gas is to uniformly introduce 8013 gas throughout the reaction chamber since B C13 is less than NH3.

反応室1を形成するマツフルの外周にグラファイト製の
ヒータ11が設(すられ1反応室内を1600〜200
0℃に加熱できるようになっている。ヒータ11の外周
およびマー、フル上部、下部の外周を保温材12で覆い
、さらにマツフル内であって、反応室上部にも保温材1
3が設けられ、それら全体の外周が耐熱ケース14で覆
われる。
A graphite heater 11 is installed around the outer periphery of the Matsufuru that forms the reaction chamber 1.
It can be heated to 0°C. The outer periphery of the heater 11 and the outer periphery of the mer, upper and lower parts of the heater 11 are covered with a heat insulating material 12, and a heat insulating material 1 is also provided inside the mats full and at the upper part of the reaction chamber.
3 are provided, and the entire outer periphery thereof is covered with a heat-resistant case 14.

1記説明では、 BCl3又はBFxガスの導入管8は
遮蔽板6を貫通させて、反応室の上部からBCh又はB
Ftガスを導入したが、第4図に示すものは、B C1
3ガスの導入管8が遮蔽板6を貫通することなく、反応
室1の下方から導くようにした。この場合も導入管8の
先端部に多数の注入孔8aを設けて、基体4に向ってB
 CIxガスを流す、この構成の場合、第3図の場合と
異ってマツフル下方の低温部での結合部で、導入管7.
8の取りはずしが容易であり、導入管に付着したBN膜
   ゛の除去や、導入管が破損したときに導入管の交
換が容易である。
In the explanation in Section 1, the introduction pipe 8 for BCl3 or BFx gas is passed through the shielding plate 6, and BCh or Bx is introduced from the upper part of the reaction chamber.
Although Ft gas was introduced, the one shown in Fig. 4 is B C1
The introduction pipe 8 for the three gases was introduced from below the reaction chamber 1 without penetrating the shielding plate 6. In this case as well, a large number of injection holes 8a are provided at the tip of the introduction tube 8, and B
In the case of this configuration in which CIx gas flows, unlike the case shown in FIG. 3, the inlet pipe 7.
8 is easy to remove, it is easy to remove the BN film attached to the introduction tube, and it is easy to replace the introduction tube when it is damaged.

「作用」 基体保持台3を回転しつつB C1xガスとNH3ガス
とをそれぞれの導入管7.8から反応室1内に導入する
と、NH3ガスは反応室内を上昇するが上部上遮蔽板6
があるので反応室1の上部はすぐにNH3で満たされ、
NHzは反応室の下部にも十分に行きわたる、そのため
、ヒータ11により高温にされた反応室内で2つのガス
が反応し。
"Function" When B C1x gas and NH3 gas are introduced into the reaction chamber 1 from the respective introduction pipes 7.8 while rotating the substrate holding table 3, the NH3 gas rises inside the reaction chamber, but the upper shielding plate 6
Because of this, the upper part of reaction chamber 1 is immediately filled with NH3,
NHz sufficiently spreads to the lower part of the reaction chamber, so the two gases react in the reaction chamber heated to high temperature by the heater 11.

基体4の外周面全域に熱分解窒化硼素が付着して成形体
が製造される。製造された成形体はB OhガスとNH
yガスとが反応室1内の上から下まで行きわたっている
ため、はぼ均一肉厚の成形体となる。
Pyrolytic boron nitride adheres to the entire outer circumferential surface of the base 4 to produce a molded body. The produced molded body is B Oh gas and NH
Since the y gas is distributed from the top to the bottom of the reaction chamber 1, the molded body has a substantially uniform thickness.

「実施例」 次に本発明の製造装置を使用して熱分解窒化硼素成形体
を実際に製造した実施例を説明する。内径753履、深
さ75mm、厚さ0.5 m+*c7)ルツボを作成す
る目的で、グラファイトで作成したルツボ形状の基体4
を、その外側にグラファイトヒータ11が配置しである
内径150 IIrmのグラファイト製マツフルz内に
置き、まず真空排気を行なった後、1800℃までヒー
タ11により加熱した。 1800℃に保持したままB
N膜を合成するためBCl3又はBF3ガス(200c
c/分)とNH3ガス(1000cc/分)とを反応室
1へ流し、同時にキャリアとしてBCl3ガスとともに
H2ガス(IHOcc/分)を流した。圧力は真空ポン
プの排気量を調整し10Torrに保持した。マツフル
内の反応室1へのBOhガス及びNH3ガスの導入方法
は次に記す方法で行なった。第3図に示したようにBO
hガスはマツフル2上方から、基体4の外周へ内径6m
mのグラファイト製導入管8で導かれ、導入管に空けら
れた直径1.5 IIImの注入孔8aから基体4に向
って流された。BOhガスをマツフル2上部から導入す
る目的は、B C1zガスを充分予熱してから反応室l
へ浣し、その分解をより一層活発に行なわせるためであ
る。NH3ガスはマツフル下方から内径6rxmのBN
製導入管7で基体4の外周に導かれ、導入管に空(すら
れた直径1.5 mmの注入孔7aから基体へ向って流
された。Ba1lガスの導入管8とNH3ガスの導入管
7とは約30°離して設置した。
"Example" Next, an example in which a pyrolytic boron nitride molded body was actually manufactured using the manufacturing apparatus of the present invention will be described. Inner diameter 753 mm, depth 75 mm, thickness 0.5 m + *c7) A crucible-shaped base 4 made of graphite for the purpose of creating a crucible.
was placed in a graphite Matsufuru Z with an inner diameter of 150 IIrm and a graphite heater 11 was placed on the outside thereof, and after first performing vacuum evacuation, it was heated to 1800° C. by the heater 11. B while keeping it at 1800℃
BCl3 or BF3 gas (200c
c/min) and NH3 gas (1000 cc/min) were flowed into the reaction chamber 1, and at the same time, H2 gas (IHOcc/min) was flowed together with BCl3 gas as a carrier. The pressure was maintained at 10 Torr by adjusting the displacement of the vacuum pump. BOh gas and NH3 gas were introduced into the reaction chamber 1 in the Matsufuru in the following manner. As shown in Figure 3, BO
h gas is applied from above Matsuful 2 to the outer circumference of base 4 with an inner diameter of 6 m.
The mixture was introduced into a graphite introduction tube 8 having a diameter of 1.5 mm and flowed toward the substrate 4 through an injection hole 8a having a diameter of 1.5 m. The purpose of introducing BOh gas from the top of Matsufuru 2 is to sufficiently preheat BClz gas before introducing it into the reaction chamber l.
This is to make the decomposition more active. NH3 gas is supplied from below Matsuful through BN with an inner diameter of 6rxm.
The gas was introduced to the outer periphery of the substrate 4 through an inlet tube 7, and flowed toward the substrate through an injection hole 7a with a diameter of 1.5 mm. It was installed approximately 30 degrees apart from tube 7.

5時間CVDを行ない、室温まで冷却した後基体4を取
り出した。基体外周面に付着した乳白色のBN膜の厚さ
は、基体の上面で0.6曹■、基体周壁の上部で0.7
 IIm、基体周壁の下部で0.8  IImと、はぼ
均一となった。
CVD was carried out for 5 hours, and after cooling to room temperature, the substrate 4 was taken out. The thickness of the milky white BN film attached to the outer peripheral surface of the base is 0.6 mm on the upper surface of the base and 0.7 mm on the upper part of the peripheral wall of the base.
IIm and 0.8 IIm at the lower part of the substrate peripheral wall, which was almost uniform.

ここで第4図の製造装置を使用して熱分解窒化硼素成形
体を実際に製造した実施例を説明する。
Here, an example in which a pyrolytic boron nitride molded body was actually manufactured using the manufacturing apparatus shown in FIG. 4 will be described.

内径100 ta層、深さ100 mm、厚さ1mmの
ルツボを作成する目的で、ルツボ形状の基体4を内径1
50 mmのグラファイト製マツフル内の反応室1に置
き、1950℃まで加熱しCVDを行なった0反応ガス
の導入方法は第4図に示すようにマツフル下方から内径
4鵬層の導入管7.8で基体外周に導びき、導入管に設
けた内径1.5 armの注入孔7a、8aから基体4
に向ってガスが流された。1木のNH3ガスの導入管7
の両側に円周方向に約30’離してBCl3又はBF3
ガスの導入管8を2本設置した、20時間CVDを行な
った。このときの反応ガス流量は、B C13ガスを2
50 cc/分、NH3ガスを1500cc/分、キャ
リアとしてH2を1000cc/分とし、反応圧力は5
Torrに設定した。基体4の外周面に付着した乳白色
のBN膜の厚さは、基体の上面で1.0 ms+、基体
周壁の上部で1.2 mIl、基体周壁の下部で0.θ
amと、はぼ均一となった。
In order to create a crucible with an inner diameter of 100 ta layers, a depth of 100 mm, and a thickness of 1 mm, a crucible-shaped base 4 was prepared with an inner diameter of 1 mm.
The reaction gas was placed in the reaction chamber 1 in a 50 mm graphite Matsufuru, heated to 1950°C, and subjected to CVD. The injection holes 7a and 8a having an inner diameter of 1.5 arms provided in the introduction tube lead to the outer periphery of the base body 4.
Gas was flowed towards. 1 wooden NH3 gas introduction pipe 7
BCl3 or BF3 approximately 30' apart circumferentially on either side of
Two gas introduction pipes 8 were installed, and CVD was performed for 20 hours. The reaction gas flow rate at this time is 2
50 cc/min, NH3 gas at 1500 cc/min, H2 as carrier at 1000 cc/min, and the reaction pressure was 5
It was set to Torr. The thickness of the milky white BN film attached to the outer peripheral surface of the base 4 is 1.0 ms+ on the upper surface of the base, 1.2 ml on the upper part of the peripheral wall of the base, and 0.0 ml on the lower part of the peripheral wall of the base. θ
am, it became almost uniform.

「発明の効果」 本発明の装置によれば1反応室内に導入されたNH3は
上部の遮蔽板により上昇が阻止されるので、基体の下部
にまで十分に行きわたり、NHzと反応して全体がほぼ
均一肉厚の熱分解窒化硼素成形体が形成される。またB
 C1z及びNHJの導入管は、窒化硼素製であるので
高温になっても腐食されることはない。
"Effects of the Invention" According to the apparatus of the present invention, NH3 introduced into one reaction chamber is prevented from rising by the upper shielding plate, so that it sufficiently reaches the lower part of the substrate, reacts with NH, and is completely absorbed. A pyrolytic boron nitride molded body having a substantially uniform wall thickness is formed. Also B
Since the C1z and NHJ inlet pipes are made of boron nitride, they will not corrode even at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

ft51図は従来の熱分解窒化硼素成形体の製造装置の
概略図、第2図は本発明の熱分解窒化硼素成形体の製造
装置の断面図、第3図は第2図の要部を拡大した断面図
、第4図は第2実施例の要部断面図である。 1;反応室      3;保持台 4;基体       6;遮蔽板 7;導入管      8;導入管 11;ヒータ
ft51 is a schematic diagram of a conventional apparatus for producing a pyrolytic boron nitride compact, FIG. 2 is a sectional view of the apparatus for producing a pyrolytic boron nitride compact of the present invention, and FIG. 3 is an enlarged view of the main parts of FIG. 2. FIG. 4 is a sectional view of a main part of the second embodiment. 1; reaction chamber 3; holding table 4; base 6; shielding plate 7; introduction tube 8; introduction tube 11; heater

Claims (4)

【特許請求の範囲】[Claims] (1)回転可能な基体保持台を反応室内に配置し、反応
室外周にヒータを設けるとともに反応室の上部に遮蔽板
を設け、基体保持台の外周位置にNH_3ガスの導入管
とBCl_3又はBF_3ガスの導入管とをそれぞれ反
応室の上下方向に配置した熱分解窒化硼素成形体の製造
装置。
(1) A rotatable substrate holder is placed inside the reaction chamber, a heater is provided around the outer periphery of the reaction chamber, a shielding plate is provided at the top of the reaction chamber, and an NH_3 gas introduction pipe and BCl_3 or BF_3 are placed on the outer periphery of the substrate holder. This is a production device for pyrolytic boron nitride molded bodies, in which gas inlet pipes and gas inlet pipes are arranged in the upper and lower directions of a reaction chamber, respectively.
(2)NH_3ガスの導入管は反応室の下方から反応室
内に導入し、BCl_3又はBF_3ガスの導入管は遮
蔽板の上方から反応室内に導入した特許請求の範囲第1
項に記載の熱分解窒化硼素成形体の製造装置。
(2) The NH_3 gas introduction pipe is introduced into the reaction chamber from below the reaction chamber, and the BCl_3 or BF_3 gas introduction pipe is introduced into the reaction chamber from above the shielding plate.
An apparatus for producing a pyrolytic boron nitride molded body according to 2.
(3)NH_3ガスの導入管とBCl_3又はBF_3
ガスの導入管とは、ともに反応室の下方から反応室内に
導入した特許請求の範囲第1項に記載の熱分解窒化硼素
成形体の製造装置。
(3) NH_3 gas introduction pipe and BCl_3 or BF_3
The apparatus for producing a pyrolytic boron nitride molded body according to claim 1, wherein the gas introduction pipe is introduced into the reaction chamber from below the reaction chamber.
(4)NH_3ガスとBCl_3又はBF_3ガスの各
導入管をBN焼結体により形成した特許請求の範囲第1
項に記載の熱分解窒化硼素成形体の製造装置。
(4) Claim 1 in which each introduction pipe for NH_3 gas and BCl_3 or BF_3 gas is formed of a BN sintered body.
An apparatus for producing a pyrolytic boron nitride molded body according to 2.
JP18807584A 1984-09-10 1984-09-10 Apparatus for manufacturing pyrolytic boron nitride formed body Granted JPS6177691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18807584A JPS6177691A (en) 1984-09-10 1984-09-10 Apparatus for manufacturing pyrolytic boron nitride formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18807584A JPS6177691A (en) 1984-09-10 1984-09-10 Apparatus for manufacturing pyrolytic boron nitride formed body

Publications (2)

Publication Number Publication Date
JPS6177691A true JPS6177691A (en) 1986-04-21
JPH0116310B2 JPH0116310B2 (en) 1989-03-23

Family

ID=16217263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18807584A Granted JPS6177691A (en) 1984-09-10 1984-09-10 Apparatus for manufacturing pyrolytic boron nitride formed body

Country Status (1)

Country Link
JP (1) JPS6177691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369972A (en) * 1986-09-09 1988-03-30 Sumitomo Electric Ind Ltd Production of cubic boron nitride film
CN102443778A (en) * 2011-12-06 2012-05-09 刘汝强 Hollow graphite die and applications thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369972A (en) * 1986-09-09 1988-03-30 Sumitomo Electric Ind Ltd Production of cubic boron nitride film
CN102443778A (en) * 2011-12-06 2012-05-09 刘汝强 Hollow graphite die and applications thereof

Also Published As

Publication number Publication date
JPH0116310B2 (en) 1989-03-23

Similar Documents

Publication Publication Date Title
US3916822A (en) Chemical vapor deposition reactor
JPH02186622A (en) Susceptor
JPH03150293A (en) Vapor phase growing device
JPS62500624A (en) Reactor equipment for semiconductor wafer processing
TWI825173B (en) A showerhead assembly and a method of introducing precursors through a segmented showerhead
JPS61201607A (en) Product consisting of pyrolytically prepared boron nitride and its preparation
EP0164928A3 (en) Vertical hot wall cvd reactor
JPH07300666A (en) Production of molecular beam source for silicon evaporation and crucible used for the same
US4058579A (en) Process for producing an improved boron nitride crucible
JPS6177691A (en) Apparatus for manufacturing pyrolytic boron nitride formed body
JPH09219369A (en) Equipment and method for manufacturing semiconductor device
JP3638345B2 (en) Pyrolytic boron nitride container
JPS6018638B2 (en) Silicon single crystal pulling equipment
JP2504489B2 (en) Chemical vapor deposition
JP2762576B2 (en) Vapor phase growth equipment
JPS632442Y2 (en)
JPH0982695A (en) Semiconductor manufacturing equipment and manufacture of semiconductor device
JPS6151629B2 (en)
JPS6225256B2 (en)
JPS6147039B2 (en)
JP2642829B2 (en) Semiconductor manufacturing equipment
JPS61291484A (en) Graphite crucible
JPH0456446B2 (en)
JPH0126105Y2 (en)
KR940007175Y1 (en) Low pressure cvd apparatus of wafer