JPS6177358A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6177358A
JPS6177358A JP59198839A JP19883984A JPS6177358A JP S6177358 A JPS6177358 A JP S6177358A JP 59198839 A JP59198839 A JP 59198839A JP 19883984 A JP19883984 A JP 19883984A JP S6177358 A JPS6177358 A JP S6177358A
Authority
JP
Japan
Prior art keywords
layer
pat
electrical connection
polycrystalline
adhered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59198839A
Other languages
Japanese (ja)
Inventor
Kazutoshi Miyao
宮尾 和利
Sadaaki Takagi
高木 貞昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59198839A priority Critical patent/JPS6177358A/en
Publication of JPS6177358A publication Critical patent/JPS6177358A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To contrive to increase the integration and reliability by reducing the fusing power for writing by enabling microstructure by a method wherein the title device has a conductive layer adhered to the stepwise difference pat of the insulation layer formed on a substrate and memorizes information by disconnecting the conductive layer. CONSTITUTION:The first polycrystalline Si layer of 2,000-5,000Angstrom thickness is adhered on the stepwise difference pat of the first insulation layer formed on the substrate, and then patterned into the first fusion pat 3A and the first electrical connection part 3B. This pat 3B is provided with the first electricity lead-out 3C so that the part 3A may have a polycrystalline Si layer remaining only at the stepwise difference pat. Further, the second insulation layer is adhered thereon, and the second polycrystalline Si layer of 2000-5000Angstrom thickness is adhered by covering the stepwise difference part of the second insulation layer; then, they are patterned into the second fusion part 5A and the second electrical connection part 5B. This part 5B is provided with the second electricity lead-out 5C so that the part 5A may have a polycrystalline Si layer remaining only at the stepwise difference part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電層の溶断の有無により情報を記憶する続出
専用メモリ、所謂フユーズROMの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a so-called fuse ROM, a read-only memory that stores information depending on whether or not a conductive layer is fused.

フユーズROMは、プログラマブルROMの1種で、集
積回路(IC)の製造に使うフォトマスクに情報を固定
したマスクROMに比べ、ユーザが簡易にプログラムで
きるため、装置の開発段階等で広く利用されている。
Fuse ROM is a type of programmable ROM, and compared to mask ROM, which has information fixed on a photomask used in integrated circuit (IC) manufacturing, it can be easily programmed by the user, so it is widely used in the development stage of equipment. There is.

〔従来の技術〕[Conventional technology]

第4図は従来例によるフユーズROMの平面図である。 FIG. 4 is a plan view of a fuse ROM according to a conventional example.

図において、基板上に形成された絶縁層上に厚さ200
0〜5000人の多結晶珪素層を被着し、パターニング
して熔融部3八と電気接続部3Bを形成する。
In the figure, the insulating layer formed on the substrate has a thickness of 200 mm.
A layer of 0-5000 polycrystalline silicon is deposited and patterned to form fused portions 38 and electrical connections 3B.

−電気接続部3Bに電気取出部3Cを設ける。- An electrical connection section 3B is provided with an electrical outlet section 3C.

熔融部3Aの幅は、パターニングの精度上最小で1μm
程度で、従って熔融部3Aの断面積は、(2000〜5
000人)  X100OOÅ以上となる。
The width of the melted part 3A is at least 1 μm for patterning accuracy.
Therefore, the cross-sectional area of the melting part 3A is (2000 to 5
000 people) X100OOÅ or more.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のフユーズROMにおいては、微細化が難しく、従
って書込のための溶断に高電力を必要とし、高集積化、
高信転化が困難であった。
Conventional fuse ROMs are difficult to miniaturize, and therefore require high power to fuse for writing.
It was difficult to convert to high confidence.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、基板上に形成された絶縁層の段差
部に被着された導電層を有し、該導電層の断続により情
報を記憶する本発明による半導体記憶装置により達成さ
れる。
The above problems are solved by a semiconductor memory device according to the present invention, which has a conductive layer deposited on the stepped portion of an insulating layer formed on a substrate, and stores information by discontinuing the conductive layer.

〔実施例〕〔Example〕

第1図(al、 (blはそれぞれ本発明によるフユー
ズROMの平面図と熔融部の断面図である。
FIG. 1 (al) and (bl) are a plan view and a sectional view of a fuse ROM according to the present invention, respectively.

第1図(a)において、基板上に形成された絶縁層の段
差上に厚さ2000〜5000人の多結晶珪素層を被着
し、パターニングして熔融部3Aと電気接続部3Bを形
成する。熔融部3Aは段差部にのみ多結晶珪素層が残る
ようにする。
In FIG. 1(a), a polycrystalline silicon layer with a thickness of 2,000 to 5,000 layers is deposited on the step of the insulating layer formed on the substrate and patterned to form a melted part 3A and an electrical connection part 3B. . In the melted part 3A, the polycrystalline silicon layer remains only in the step part.

電気接続部3Bに電気取出部3Cを設ける。An electrical connection section 3B is provided with an electrical outlet section 3C.

この場合、熔融部3Aの断面積は、 (2000〜5000人)X (2000〜5000人
’) X (1/2)  人となり、従来例の174〜
1/10となる。
In this case, the cross-sectional area of the melting section 3A is (2000-5000 people) x (2000-5000 people') x (1/2) people, which is 174 -
It becomes 1/10.

第2図(a)、(ト)l、 (C1は熔融部を製造工程
順に示す断面図、(d)は電気接続部の断面図である。
2(a), (g)l, (C1 is a cross-sectional view showing the melting part in the order of manufacturing steps, and (d) is a cross-sectional view of the electrical connection part.

第2図(a)において、基板1の上に第1の絶縁層とし
て熱酸化による二酸化珪素(SiOz)層2を被着し、
2000人の段差を設ける。
In FIG. 2(a), a silicon dioxide (SiOz) layer 2 is deposited as a first insulating layer on a substrate 1 by thermal oxidation,
There will be a gap of 2,000 people.

第2図01)において、段差を覆って厚さ2000人の
多結晶珪素層3を被着する。
In FIG. 2 01), a polycrystalline silicon layer 3 having a thickness of 2000 wafers is deposited over the step.

多結晶珪素層3の被着は、化学気相成長(CVD)法を
用い、0.2〜I Torrに減圧して、800℃でモ
ノシラン(S i Ha)を熱分解して行う。
The polycrystalline silicon layer 3 is deposited using chemical vapor deposition (CVD) by thermally decomposing monosilane (S i Ha) at 800° C. under reduced pressure from 0.2 to I Torr.

第2 図(C)において、パターニングして熔融部3A
を形成する。
In FIG. 2 (C), patterning is performed to melt the melted part 3A.
form.

パターニングはりアクティブ・イオン・エツチング(R
IE)により、エツチングガスとして四塩化炭素(CC
14)を用い0.5Torrに減圧して、周波数13.
56MIIZの電力300Wを印加して異方性エツチン
グを行う。
Patterning beam active ion etching (R
IE), carbon tetrachloride (CC) was used as an etching gas.
14) to reduce the pressure to 0.5 Torr and set the frequency to 13.
Anisotropic etching is performed by applying a power of 300 W of 56 MIIZ.

第2図((f)において、パターニングして電気接続部
3Bを形成し、その上に第2の絶縁層としてCVDによ
るSin2層4を被着し、電気取出部3Cを開口する。
In FIG. 2(f), an electrical connection part 3B is formed by patterning, and a CVD Sin2 layer 4 is deposited thereon as a second insulating layer, and an electrical lead-out part 3C is opened.

Sin、層(7)CVD条件は、SiH4と酸素(0□
)を用いて0.5Torr、 425℃で行う。
Sin, layer (7) CVD conditions are SiH4 and oxygen (0□
) at 0.5 Torr and 425°C.

第3図(al、 (bl、 (C1はそれぞれ本発明に
よる積層構造のフユーズROMの平面図と、第1熔融部
の断面図と、第2熔融部の断面図である。
FIGS. 3 (al, bl, (C1) are a plan view, a cross-sectional view of the first melting part, and a cross-sectional view of the second melting part, respectively, of a fuse ROM having a laminated structure according to the present invention.

第3図+alにおいて、基板上に形成された第1の絶縁
層の段差上に厚さ2000〜5000人の第1の多結晶
珪素層を被着し、パターニングして第1の熔融部3Aと
第1の電気接続部3Bを形成する。第1の熔融部3^は
段差部にのみ多結晶珪素層が残るようにする。
In FIG. 3+al, a first polycrystalline silicon layer with a thickness of 2,000 to 5,000 layers is deposited on the step of the first insulating layer formed on the substrate, and patterned to form a first melted part 3A. A first electrical connection 3B is formed. In the first melted part 3^, the polycrystalline silicon layer remains only in the stepped part.

第1の電気接続部3Bに第1の電気取出部3Cを設ける
A first electrical connection section 3B is provided with a first electrical extraction section 3C.

さらにその上に第2の絶縁層を被着し、第2の絶縁層の
段差を覆って厚さ2000〜5000人の第2の多結晶
珪素層を被着し、パターニングして第2の熔融部5Aと
第2の電気接続部5Bを形成する。第2の熔融部5Aは
段差部にのみ多結晶珪素層が残るようにする。
Furthermore, a second insulating layer is deposited thereon, and a second polycrystalline silicon layer with a thickness of 2,000 to 5,000 is deposited to cover the steps of the second insulating layer, patterned, and a second polycrystalline silicon layer is deposited to cover the steps of the second insulating layer. A portion 5A and a second electrical connection portion 5B are formed. In the second melted portion 5A, the polycrystalline silicon layer remains only at the step portion.

第2の電気接続部5Bに第2の電気取出部5Cを設ける
A second electrical connection section 5B is provided with a second electrical connection section 5C.

第3図(b)はA−A断面図、第3図(C)はB−B断
面図である。
FIG. 3(b) is a sectional view taken along the line AA, and FIG. 3(C) is a sectional view taken along the line BB.

基板1の上に第1の絶縁層として熱酸化によるSi02
層2を被着し、2000人の段差を設ける。
Si02 is deposited as a first insulating layer on the substrate 1 by thermal oxidation.
Layer 2 is applied and a step of 2000 is provided.

つぎに段差を覆って厚さ2000人の第1の多結晶珪素
層3を被着する。
A first polycrystalline silicon layer 3 having a thickness of 2000 layers is then applied over the steps.

つぎにパターニングして第1の熔融部3A、第1の電気
接続部3Bを形成し、その上に第2の絶縁層としてCV
DによるSin、層4を被着し、第10電気取出部3C
を開口する。
Next, patterning is performed to form a first melting part 3A and a first electrical connection part 3B, and a CVV is formed as a second insulating layer thereon.
D by Sin, layer 4 is deposited, and the 10th electrical outlet part 3C
Open.

つぎに第2の絶縁層4の段差を覆ってIさ2000人の
第2の多結晶珪素層5を被着する。
A second polycrystalline silicon layer 5 of 2,000 layers is then deposited over the step of the second insulating layer 4.

つぎにパターニングして第2の熔融部5八、第2の電気
接続部5Bを形成し、その上に第3の絶縁層としてCV
DによるSi02層6を被着し、第2の電気取出部5C
を開口する。
Next, patterning is performed to form a second melted part 58 and a second electrical connection part 5B, and a third insulating layer is formed on the CV
A Si02 layer 6 is deposited by D, and the second electrical lead-out portion 5C is formed.
Open.

配線層7,8はアルミニウム(A1)を蒸着して形成す
る。
The wiring layers 7 and 8 are formed by vapor depositing aluminum (A1).

この積層構造は原理的には何層でも形成可能である。In principle, this laminated structure can be formed with any number of layers.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、フユーズR
OMにおいては、微細化が可能となり、従って書込のた
めの溶断電力を低減し、高集積化、高信頼化に寄与でき
る。
As explained in detail above, according to the present invention, fuse R
In OM, it becomes possible to miniaturize the device, thereby reducing the fusing power for writing and contributing to higher integration and higher reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図181. (b)はそれぞれ本発明によるフユー
ズROMの平面図と熔融部の断面図、 第2図+a)、 (b)、 (C)は熔融部を製造工程
順に示す断面図、+d+は電気接続部の断面図、第3図
(al、 (b)、 (C1はそれぞれ本発明による積
層構造のフユーズROMの平面図と、第1熔融部の断面
図と、第2熔融部の断面図、 第4図は従来例によるフユーズROMの平面図である。 図において、 1は基板、 2は第1の絶縁層(SiCh層)、 3は第1の多結晶珪素層、 3^は第1の熔融部、 3Bは第1の電気接続部、 3Cは第1の電気取出部、 4は第2の絶縁層(CV DSi(h層)、5は第2の
多結晶珪素層、 5Aは第2の熔融部、 5Bは第2の電気接続部、 5Cは第2の電気取出部、 6は第3の絶5till (CV D Si0g層)、
7.8は配線層(At層) を示す。 昇3図 第4図 B−B訴面
Figure 1 181. (b) is a plan view and a sectional view of the melting part of the fuse ROM according to the present invention, Figure 2 +a), (b), and (C) are sectional views showing the melting part in the order of manufacturing steps, +d+ is the electrical connection part. (C1 is a plan view of a fuse ROM having a laminated structure according to the present invention, a cross-sectional view of the first melting part, a cross-sectional view of the second melting part, and FIG. 4, respectively. is a plan view of a fuse ROM according to a conventional example. In the figure, 1 is a substrate, 2 is a first insulating layer (SiCh layer), 3 is a first polycrystalline silicon layer, 3^ is a first melting part, 3B is the first electrical connection part, 3C is the first electricity extraction part, 4 is the second insulating layer (CV DSi (h layer)), 5 is the second polycrystalline silicon layer, 5A is the second melting part , 5B is the second electrical connection part, 5C is the second electricity extraction part, 6 is the third isolation part (CVD Si0g layer),
7.8 indicates the wiring layer (At layer). Figure 3 Figure 4 B-B Complaint

Claims (1)

【特許請求の範囲】[Claims]  基板上に形成された絶縁層の段差部に被着された導電
層を有し、該導電層の断続により情報を記憶することを
特徴とする半導体記憶装置。
A semiconductor memory device comprising a conductive layer deposited on a stepped portion of an insulating layer formed on a substrate, and storing information by discontinuing the conductive layer.
JP59198839A 1984-09-21 1984-09-21 Semiconductor memory device Pending JPS6177358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198839A JPS6177358A (en) 1984-09-21 1984-09-21 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198839A JPS6177358A (en) 1984-09-21 1984-09-21 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS6177358A true JPS6177358A (en) 1986-04-19

Family

ID=16397771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198839A Pending JPS6177358A (en) 1984-09-21 1984-09-21 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6177358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140550A (en) * 1986-12-01 1988-06-13 Mitsubishi Electric Corp Elecric fuse for redundant circuit
JP2004266165A (en) * 2003-03-03 2004-09-24 Sharp Corp Nonvolatile memory element, nonvolatile memory circuit, nonvolatile memory card, and recorder/reproducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140550A (en) * 1986-12-01 1988-06-13 Mitsubishi Electric Corp Elecric fuse for redundant circuit
JP2004266165A (en) * 2003-03-03 2004-09-24 Sharp Corp Nonvolatile memory element, nonvolatile memory circuit, nonvolatile memory card, and recorder/reproducer

Similar Documents

Publication Publication Date Title
JPH05235170A (en) Semiconductor device
JPS6177358A (en) Semiconductor memory device
TWI323001B (en) Semiconductor device and method of fabricating semiconductor device
JPH04348032A (en) Semiconductor device and its manufacture
JPH04355951A (en) Semiconductor device and manufacture thereof
JP2001284458A (en) Semiconductor device and method of manufacturing it
JPH065707A (en) Fuse for semiconductor integrated circuit
JPH0368170A (en) Manufacture of thin film semiconductor element
JPS58173847A (en) Manufacture of element
JPS6142861B2 (en)
JP2602574B2 (en) Method for manufacturing semiconductor device
JPS6056291B2 (en) Manufacturing method of dielectric insulation isolation substrate
JPS63258044A (en) Formation of wiring for semiconductor
JPH01198061A (en) Manufacture of semiconductor device
JPH0783055B2 (en) Method for manufacturing semiconductor device
JPH0611044B2 (en) Method for manufacturing semiconductor device
JPH03149818A (en) Semiconductor device and manufacture thereof
JPS5966125A (en) Manufacture of semiconductor device
JPS5892234A (en) Semiconductor device and manufacture thereof
JP2581542B2 (en) Semiconductor nonvolatile memory and method of manufacturing the same
JPH03112151A (en) Active layer stacked element
JPS63100750A (en) Semiconductor device
JPS6144447A (en) Manufacture of semiconductor device
JPH0290616A (en) Through-hole forming method for interlayer insulating film
JPH03159157A (en) Semiconductor device and manufacture thereof