JPS6176925A - Infrared image pickup device - Google Patents

Infrared image pickup device

Info

Publication number
JPS6176925A
JPS6176925A JP59197889A JP19788984A JPS6176925A JP S6176925 A JPS6176925 A JP S6176925A JP 59197889 A JP59197889 A JP 59197889A JP 19788984 A JP19788984 A JP 19788984A JP S6176925 A JPS6176925 A JP S6176925A
Authority
JP
Japan
Prior art keywords
infrared
camera
visible
infrared imaging
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59197889A
Other languages
Japanese (ja)
Other versions
JPH0476062B2 (en
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59197889A priority Critical patent/JPS6176925A/en
Publication of JPS6176925A publication Critical patent/JPS6176925A/en
Publication of JPH0476062B2 publication Critical patent/JPH0476062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Abstract

PURPOSE:To measure an absolute temperature of an object, by switching a device to a state that an infrared ray from the object is made incident on an infrared image pickup camera, and a state that an infrared ray from a reference blackbody furnace is made incident on the infrared image pickup camera, and also a light from the object is made incident on a visible television camera. CONSTITUTION:Focusing is executed by moving forward and backward a visible lens 10 of a visible television camera by a rotation of a gear 14, and also focusing an infrared lens 5 of an infrared ray image pickup camera 1 is executed by a gear 13 engaged to the gear 14. Also, as for a movable both face reflecting mirror 19 being in front of the lens 5, its base part is supported by a shaft 20 so as to be turntable, a cam is rotated by driving of a motor, and the reflecting mirror 19 is movable to an open state being parallel to an optical axis of the camera 1, and a closed state in the direction being diagonal to the optical axis of the camera 1. Accordingly, focusing is executed easily by the camera 2, and at the same time, an infrared and visible image having no parallax is obtained. Subsequently, an infrared ray from a reference blackbody furnace 17 is made incident on the camera 1 by the reflecting mirror 19, and an absolute temperature of an object is measured.

Description

【発明の詳細な説明】 産業上の利用分身 本発明は、被写体の二次元温度分布を非接触で睨測する
ことができ、サーモグラフィー、二次元赤外放射分布計
等の機能を何する装置として工場での熱管理、湿度管理
、防災等に利用することができる赤外撮像装置に関する
ものである。
[Detailed Description of the Invention] Industrial Applications The present invention is capable of measuring the two-dimensional temperature distribution of a subject without contact, and can be used as a device that functions as a thermography, two-dimensional infrared radiation distribution meter, etc. This invention relates to an infrared imaging device that can be used for heat management, humidity management, disaster prevention, etc. in factories.

従来例の構成とその問題点 従来、この種の装置に用いる赤外撮像カメラは、焦電型
赤外検出素子をビンコン管に組み込み、赤外分布(染を
電子ビーム走査で1読み収り、テレビ18号を出力する
J二うにな−ている。このように焦電型赤外検出素子を
使用しているので、カメラの首振りにより視野方向を走
査するか、若しくは赤外人、身十光を断続させないとン
示外両(東が得られない。
Conventional configuration and its problems Traditionally, infrared imaging cameras used in this type of device incorporate a pyroelectric infrared detection element into a bincon tube, and detect the infrared distribution (color) in one reading by scanning an electron beam. The J2 unit outputs TV No. 18. Since a pyroelectric infrared detection element is used in this way, the field of view can be scanned by swinging the camera, or infrared light can be detected. If you don't make it intermittent, you won't be able to get the east side.

視野を走査すると、被写(ドが移動するので、一般((
1ではなく、腸殊な被写←にの温変分布覗測にのみ限定
される。従って通常はカメラ内に赤外線特命−S+を断
続するためのチffツバを設置して赤外人射光を断続さ
せている。しかしながらこのチ517パは室温とほぼ同
等の温度であるので、得られる赤外信号は、室温と被写
体温度の差となり、室温が変動すれば、その信号は変動
する。従って相対的な被写体の温度分布は計測できるが
、絶対温度は、計測できない。また赤外撮1象カメラは
、被写体の温度分布像を出力するが、観測している赤外
線の波長は、通常10μm近傍であり、可視像に較べる
とその画像のピント合せはかなり困難である。また赤外
撮像カメラによる画像は可視像とは大巾に異なる画像で
あるので、観測後、温度分布データとして解析する時、
実際に何を観測したのか、どの部分を観測したのかを明
確にするため、可視テレビカメラを隣接して設置し、赤
外画像と可視画像を同時に観測する場合があるが、被写
体が比較的近距離の場合、視差のために微妙に両画像に
差異が生ずるという問題がある。
When scanning the field of view, the subject (do) moves, so the general ((
1, but is limited only to observation of the temperature change distribution in the intestines. Therefore, normally, a switch is installed in the camera to cut off the infrared light -S+ to cut off the infrared human radiation. However, since the temperature of this chip 517 is approximately the same as the room temperature, the obtained infrared signal is the difference between the room temperature and the subject temperature, and if the room temperature changes, the signal changes. Therefore, although the relative temperature distribution of the object can be measured, the absolute temperature cannot be measured. In addition, infrared cameras output temperature distribution images of the subject, but the wavelength of the infrared rays they observe is usually around 10 μm, making it much more difficult to focus the images than with visible images. . In addition, since the image taken by an infrared imaging camera is vastly different from the visible image, when analyzing it as temperature distribution data after observation,
In order to clarify what was actually observed and what part of it was observed, visible television cameras are sometimes installed adjacent to each other to simultaneously observe infrared and visible images. In the case of distance, there is a problem in that there is a slight difference between the two images due to parallax.

発明の目的 本発明の目的は、上記従来の問題点を解決し、被写体の
絶対温度測定を可能とし、また可視カメラの画像により
ピント合せを容易に行うことができ、可視画像と赤外画
像に視差を生じないようにした赤外撮像装置を提供する
ことにある。
Purpose of the Invention The purpose of the present invention is to solve the above-mentioned conventional problems, to make it possible to measure the absolute temperature of a subject, to easily perform focusing using images from a visible camera, and to be able to distinguish between visible images and infrared images. An object of the present invention is to provide an infrared imaging device that does not cause parallax.

発明の構成 本発明は、ト記目的を達成するため、被写体の赤外分布
(争を読み収って出力するための赤外撮像カメラと、被
写体の可視像を読み取って出力するための9現テレビカ
メラと、これら赤外撮像カメラ叉び可視テレビカメラの
焦点を連動させて調整する焦点連Ul調整手段と、被写
体温度に応じて任意の温度に設定し得る基準黒体炉と、
上記赤外撮咳カメラの前方で可動し得るように設置され
、被写体からの赤外線が赤外撮像カメラに入射し得る・
伏態及び基1%黒体炉からの赤外線が赤外撮像カメラに
入射すると共に被写体からの光線が可視テレビカメラに
入射する状唇に選択的に切替えられる可動両面反射鏡と
を備えたことを特徴とするものである。
Structure of the Invention In order to achieve the above objects, the present invention provides an infrared imaging camera for reading and outputting the infrared distribution of an object, and an infrared imaging camera for reading and outputting a visible image of the object. A current television camera, a focal length adjustment unit that adjusts the focus of the infrared imaging camera or visible television camera in conjunction with each other, and a reference blackbody furnace that can be set to an arbitrary temperature depending on the temperature of the subject.
It is movably installed in front of the infrared imaging camera, and infrared rays from the subject can enter the infrared imaging camera.
It is equipped with a movable double-sided reflector that can be selectively switched to a state in which the infrared rays from the base 1% black body reactor enter the infrared imaging camera and the light rays from the subject enter the visible television camera. This is a characteristic feature.

実施例の説明 以下、本発明の実施例を図面に基いて詳細に説明する。Description of examples Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に示すように赤外撮像カメラ1と可視テレビカメ
ラ2が隣接して設置されている。
As shown in FIG. 1, an infrared imaging camera 1 and a visible television camera 2 are installed adjacent to each other.

赤外撮像カメラ1は構体3内に焦電型赤外検出素子を組
込んだ赤外ビジコン管4が内蔵され、構体3の前側には
赤外レンズ5を保持した筒体6の基部が前進、後退可能
に螺合されている。従って筒体6を構体3に対し回転さ
せることにより赤外レンズ5の焦点合せを行うことがで
きる。この赤外撮像カメラ1の赤外レンズ5及び赤外ビ
ジコン管4の光学窓板等は被写体からの赤外線のみを透
過させ、可視光は入射しないようになっており、赤外レ
ンズ5はその一例としてゲルマニウムレンズが用いられ
、反射防止膜の蒸着により8〜14μmの波長帯を透過
するように形成されている。而してこの赤外撮像カメラ
1は被写体の赤外分布像を読み取って出力端子7より出
力することができる。
The infrared imaging camera 1 has an infrared vidicon tube 4 incorporating a pyroelectric infrared detection element built into the structure 3, and the base of a cylinder 6 holding an infrared lens 5 moves forward on the front side of the structure 3. , are retractably screwed together. Therefore, by rotating the cylinder 6 with respect to the structure 3, the infrared lens 5 can be focused. The infrared lens 5 of the infrared imaging camera 1 and the optical window plate of the infrared vidicon tube 4 transmit only the infrared rays from the subject and prevent visible light from entering, and the infrared lens 5 is an example of this. A germanium lens is used as the lens, and is formed by vapor-depositing an anti-reflection film so as to transmit a wavelength band of 8 to 14 μm. The infrared imaging camera 1 can read the infrared distribution image of the subject and output it from the output terminal 7.

可視テレビカメラ2は構体8内に可視ビジコン管9が内
蔵され、構体8の前側に可視レンズ1oを保持した筒体
11の基部が前進、後退可能に螺合されている。従って
筒体11を構体8に対し回転させることにより可視レン
ズ1oの焦点合せを行うことができる。5示外撮像カメ
ラ1の構体3と可視テレビカメラ2の構体8の前側部間
には支持部材12が取付けられ、この支持部材12には
一対の歯車13.14が軸支されている。各歯車13゜
14同士は互(C噛合わされると共に各歯車13゜14
は筒体6,11の前側部に形成された外歯6a、11a
に噛合わされている。而して歯車14の回転により可視
テレビカメラ2の可視レンズ10のif1進、後退によ
り焦点合せを行うことにより歯車13によりこれと連動
して赤外撮像カメラ1の赤外し/ズ5が前進、後退して
焦点合せが行われるように設定されている。この可視テ
レビカメラ2は被写1本の可視像を読み収って出力する
ようになっており、項次画像メモリ15及びモニタ16
に接続されている。赤外撮像カメラ1の前b゛の側方に
その光軸と直角方向に基準黒体炉17が−e置されてい
る。この基準黒体炉17の温度は被写体温度に応じて任
意に設定することができ、その温度をモニタできるよう
に温度信号出力端子18が設けられている。赤外撮(象
カメラ1の赤外レンズ6の前方には可動両面反射鏡19
が設けられている。この可動両面反射鏡19はその基部
が軸2oにより回動可能に支持され、その基端が第2図
に示すようにカム21に対し弾性体(図示省略)等によ
り付勢されている。カム21はモータ(図示省略)に連
結されている。而してモータの、駆動によりカム21を
回転させ、これに1半い可動両面反射鏡19を赤外撮像
カメラ1の光軸と平行な開状態(第1図の鎖線及び第3
図@照)と、赤外撮像カメラ1の光軸を斜め方向の閉状
態(第1図実線参照)となるように45度の角度範囲で
交互に可動するようになっている。可視テレビカメラ2
の可視レンズ10の前方には45度の角度に煩斜された
反射鏡22が配置されている。而して上記のように可動
両面反射鏡19が開状態のとき被写体の赤外線を赤外撮
像カメラ1に入射させ、可動両面反射鏡19が閉状態の
とき被写体からの光線を可動両面反射鏡19により直角
方向に反射させ、更に反射鏡22iCより直角方向に反
射させ、i=J’ j見テレビカメラ2に入射させると
共に基準黒体炉17からの赤外線を可動両面反射鏡19
により直角方向に反射させ、赤外撮像カメラ1に入射さ
せることができる。
The visible television camera 2 has a visible vidicon tube 9 built into a structure 8, and the base of a cylindrical body 11 holding a visible lens 1o is screwed into the front side of the structure 8 so as to be able to move forward and backward. Therefore, by rotating the cylinder 11 with respect to the structure 8, the visible lens 1o can be focused. A support member 12 is attached between the front side portions of the structure 3 of the 5-infrared imaging camera 1 and the structure 8 of the visible television camera 2, and a pair of gears 13 and 14 are pivotally supported on this support member 12. Each gear 13゜14 is meshed with each other (C), and each gear 13゜14
are external teeth 6a, 11a formed on the front side of the cylinders 6, 11.
are interlocked with. The rotation of the gear 14 causes the visible lens 10 of the visible television camera 2 to advance if 1, and the infrared lens 10 of the infrared imaging camera 1 advances by the gear 13 in conjunction with this by focusing. The setting is such that focusing is performed by moving backwards. This visible television camera 2 is designed to read and output a visible image of one subject, and is equipped with a sequential image memory 15 and a monitor 16.
It is connected to the. A reference blackbody furnace 17 is placed on the front side of the infrared imaging camera 1 in a direction perpendicular to its optical axis. The temperature of this reference blackbody furnace 17 can be arbitrarily set according to the temperature of the subject, and a temperature signal output terminal 18 is provided so that the temperature can be monitored. Infrared photography (There is a movable double-sided reflector 19 in front of the infrared lens 6 of the elephant camera 1.
is provided. The movable double-sided reflecting mirror 19 has its base rotatably supported by a shaft 2o, and its base end is biased against a cam 21 by an elastic body (not shown) or the like, as shown in FIG. The cam 21 is connected to a motor (not shown). Then, the cam 21 is rotated by the drive of the motor, and the movable double-sided reflector 19 is placed in the open state parallel to the optical axis of the infrared imaging camera 1 (the chain line in FIG.
The optical axis of the infrared imaging camera 1 can be alternately moved within an angular range of 45 degrees so that the optical axis of the infrared imaging camera 1 is in an obliquely closed state (see the solid line in FIG. 1). Visible TV camera 2
A reflecting mirror 22 tilted at an angle of 45 degrees is arranged in front of the visible lens 10. As described above, when the movable double-sided reflector 19 is in the open state, the infrared rays from the subject are incident on the infrared imaging camera 1, and when the movable double-sided reflector 19 is in the closed state, the light rays from the subject are directed into the movable double-sided reflector 19. The infrared rays from the reference blackbody furnace 17 are reflected in the right angle direction by the reflector 22iC, and then reflected in the right angle direction by the reflector 22iC, and the infrared rays from the reference blackbody furnace 17 are reflected by the movable double-sided reflector 19.
It is possible to reflect the light in the right angle direction and make it incident on the infrared imaging camera 1.

次に上記実;:+E列の作用について説明する。モータ
の駆動によりカム21を回転させ、可動両面反射′r#
、19を上記の如く45°の角度範囲で開、閉の状態に
往復回転させる。而して可動両面反射鏡19が開状態の
とき第3図に示すように被写体の赤外線を赤外撮)イ豪
カメラ1に入射させ、ビジコン・IW4により赤外分布
像を読み収り、出力端子7より出力する。これとは逆に
可動両面反射鏡19が閉状店のとき被写体からの光線を
可視テレビカメラ2に入射させ、可視ビジコン管9によ
り可視像を読み収り出力する。その画像信号は断続する
が、画:象メモリ15に記憶され、モニタ16に対し常
に連続し−C画像ra号を出すようになっている。今可
動両面反射鏡19の開閉、li!iJ1g′lをKとす
ると、約S4秒各々開、閉の状態で、慝秒間はその中間
の状暫になる。可視ビジコン管9の走査速度に、′/6
゜秒で1枚の画面を読み圧すので、1問用で開の時に約
4枚分のフレーム信号が読み出せる。亘し、−2のテレ
ビカメラであるから、インターレス方式で、2枚のフレ
ームで1枚分の画像になり、その意味では、2画像分で
ある。画像メモリは、%秒毎に2画像のうち安定した1
画像、例えば、第2、第3フレームをメモリし、即ち、
テレビ吋号モードで、常時メモリ信号を出力する。これ
により、Z秒毎に改新された可視画(象を常時、モニタ
することができる。従ってこれにより歯車14を操作し
て可視レンズ1oの焦点合せ七行い、これに伴い連動さ
せて自動的に赤外撮像カメラ1の赤外レンズ5の焦点合
せを行うことがまた可動両面反射鏡19が開状態のとき
赤外撮像カメラ1には、基準黒体炉17からの赤外線が
入射し、これを赤外ビジコン管4により走査して出力す
る。而して基準黒体炉17の温度は被写体温度に応じて
任意に設定できるので、これにより被写体の部体温度測
定を行うことができる。この基準黒体炉1了の設定温度
は、被写体温度に近い温度に設定することにより測定精
度を高く維持できる。このように基準黒体炉17の設置
により絶対温度測定が可能になり、常温付近での最大感
度で、比較的高い温度の被写体も観測できるようになっ
た。例えば、2o○℃の被写体を従来の方式で観測する
と、常品のチクツバとの温度差(〜180℃)を検出す
ることになり、赤外信号出力が飽和しないよう、レンズ
を校−て観測しなければならない。その時の感度は、3
2階調として、1階調当り、約6℃1.ζなる。一方、
基t’s黒体炉17を有する本発明装置においては堰準
黒体炉17を160℃に設定す九ば、160℃−190
’C間で、1階調1℃の感度で観測できる。必要であれ
(ブ、最大感度o、s’;’ 1階調も可能である。口
しその場今、被写体の温度範囲は16℃以内でなければ
ならない。
Next, the effect of the above real ;:+E sequence will be explained. The cam 21 is rotated by the drive of the motor, and the movable double-sided reflection 'r#
, 19 are reciprocated in the open and closed states within an angle range of 45° as described above. When the movable double-sided reflector 19 is in the open state, the infrared rays of the subject are made incident on the infrared camera 1 as shown in FIG. Output from terminal 7. On the contrary, when the movable double-sided reflective mirror 19 is in a closed state, the light rays from the subject are incident on the visible television camera 2, and the visible image is read and output by the visible television camera tube 9. Although the image signal is intermittent, it is stored in the image memory 15 and is always continuously displayed on the monitor 16 as -C image ra. Now open and close the movable double-sided reflector 19, li! If iJ1g'l is K, the opening and closing state will be approximately S4 seconds each, and the state will be in the middle for 2 seconds. The scanning speed of the visible vidicon tube 9 is set to '/6.
Since one screen is read in ° seconds, frame signals for about 4 screens can be read out for one question when open. However, since it is a -2 television camera, two frames make up one image using the interlace method, and in that sense, it is two images. Image memory is stable 1 of 2 images every % seconds
Memorize images, e.g. second and third frames, i.e.
Always outputs memory signals in TV No. 1 mode. As a result, it is possible to constantly monitor the visible image (elephant) that is updated every Z seconds.Therefore, by operating the gear 14, the visible lens 1o is focused 7 times, and in conjunction with this, it is automatically When the movable double-sided reflector 19 is in the open state, the infrared lens 5 of the infrared imaging camera 1 is focused, and the infrared rays from the reference blackbody furnace 17 are incident on the infrared imaging camera 1. It is scanned and outputted by the infrared vidicon tube 4.The temperature of the reference blackbody furnace 17 can be set arbitrarily according to the temperature of the subject, so that the body temperature of the subject can be measured.This standard High measurement accuracy can be maintained by setting the set temperature of the black body furnace 17 to a temperature close to the subject temperature.In this way, the installation of the reference black body furnace 17 makes it possible to measure absolute temperature, and With the maximum sensitivity, it is now possible to observe objects with relatively high temperatures.For example, when observing a subject at 2o○℃ using the conventional method, it will detect a temperature difference (~180℃) from the regular Chikutsuba. The lens must be calibrated and observed so that the infrared signal output does not become saturated.At that time, the sensitivity is 3.
As two gradations, each gradation is approximately 6°C1. It becomes ζ. on the other hand,
In the apparatus of the present invention having the base T's blackbody furnace 17, the weir quasi-blackbody furnace 17 is set at 160°C, 160°C-190°C.
It can be observed with a sensitivity of 1°C per gradation between 'C. Even if necessary (maximum sensitivity o, s';') one gradation is also possible.The temperature range of the subject must be within 16 degrees Celsius at the moment.

第4図はべた明における可動両面反射鏡19の繋ぜJ方
式の池の実施例を示すものである。本実施例にあっては
、5月の両面反射鏡190基部側を永久磁石19aによ
り形成し、この永久磁石19aを2購所に設置した電磁
石23により交互に吸首、若しくは反発させて可動両面
反射鏡19を回転させるようにしたものであり、これに
より聞及び閉の時間を1秒保つことができ、開から閉又
はその迷の移動に要する時間は1/40沙で済ませるこ
とができる。開又は閉の時間が1秒とすることができる
ので、その間に読み出せる信号は6フレ一ム分となる。
FIG. 4 shows an embodiment of a J-type pond in which movable double-sided reflecting mirrors 19 are connected in solid light. In this embodiment, the base side of the double-sided reflector 190 of May is formed by a permanent magnet 19a, and this permanent magnet 19a is alternately sucked or repelled by electromagnets 23 installed at two positions, so that the movable double-sided mirror 190 The reflecting mirror 19 is rotated, so that the opening and closing time can be maintained at 1 second, and the time required to move from opening to closing or vice versa can be reduced to 1/40 seconds. Since the opening or closing time can be set to 1 second, the signal that can be read out during that time is 6 frames.

なお、上記実施例にあっては両カメラ1,2を並列して
全体の寸法を小さくすると共に焦点連動調整手段として
単純な組合わせの@東13.14を用いているので、反
射鏡221必要としているが、全体の寸法及び、焦点連
動調整手段の機構の複雑さを問題にしなければ、可視テ
レビカメラ2′を、赤外撮像カメラ1と直角に設置すれ
ば反射鏡22は不要である。
In the above embodiment, both cameras 1 and 2 are arranged in parallel to reduce the overall size, and a simple combination of @Higashi 13.14 is used as the focus interlocking adjustment means, so the reflector 221 is not necessary. However, if the overall size and the complexity of the mechanism of the focus interlocking adjustment means are not a problem, the reflecting mirror 22 is not necessary if the visible television camera 2' is installed at right angles to the infrared imaging camera 1.

発明の効果 以上の説明より明らかなように本発明によれば、赤外撮
像カメラと可視テレビカメラの焦点を連動調整手段によ
り連動させて調整するようにし、また可動両面反射鏡に
より被写体からの赤外線が赤外撮像カメラに入射する状
態及び基準黒体炉からの赤外線が赤外撮像カメラに入射
すると共に被写体からの光線が可視テレビカメラに入射
する状聾に選択的に切替えるようにしている。従って可
視テレビカメラにより容易に焦点きせを行うことができ
、R11局に睨庄のない赤外及び可視画像を得ることが
でさ、示外画像データ管理を容易に行うことができる。
Effects of the Invention As is clear from the above description, according to the present invention, the focal points of an infrared imaging camera and a visible television camera are adjusted in conjunction with each other by an interlocking adjustment means, and a movable double-sided reflector is used to adjust the focus of an infrared imaging camera and a visible television camera. The system is configured to selectively switch between a state in which the infrared rays from the reference black body furnace enter the infrared imaging camera and a state in which the light rays from the subject enter the visible television camera. Therefore, the visible television camera can be easily focused, and the R11 station can obtain unobtrusive infrared and visible images, making it possible to easily manage out-of-range image data.

また基準黒体炉を用いているので、被写体の動体温度測
定が町蜆となる等の利点がある。
Furthermore, since a reference blackbody furnace is used, there are advantages such as the fact that the temperature of the moving object can be measured without any fuss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明による赤外撮像装置の一実施
例を示し、第1図は一部破断全体概略図、第2図はその
可動両面反射鏡の@妨説明図、第3図は作動説明図、第
4図は可すJ両面反射鏡の池の駆動方式の説り1図であ
る。 1・・・・赤外(最1象カメラ、2・・・・・・可視テ
レビカメラ、4・・・・・赤外ビジコン管、5・・・・
・・赤外レンズ、9・・・・・・可視ビジコン管、10
・・・・・・可視レンズ、13゜14・・・・・・歯車
(焦点連動R整手段)、15・・・・・・画像メモリ、
16・・・・・・モニタ、17・・・・・・基準黒体炉
、19・・・・・・可動両面反射鏡、22・・・・・・
反射鏡。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図
1 to 3 show an embodiment of an infrared imaging device according to the present invention, in which FIG. 1 is a partially cutaway overall schematic diagram, FIG. 2 is an explanatory diagram of its movable double-sided reflector, and FIG. The figure is an explanatory diagram of the operation, and Figure 4 is a diagram illustrating the driving method of the double-sided reflective mirror. 1...Infrared (the first elephant camera, 2...Visible television camera, 4...Infrared vidicon tube, 5...
...Infrared lens, 9...Visible vidicon tube, 10
...Visible lens, 13°14...Gear (focus interlocking R adjustment means), 15...Image memory,
16...Monitor, 17...Reference blackbody furnace, 19...Movable double-sided reflector, 22...
Reflector. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)被写体の赤外分布像を読み取って出力するための
赤外撮像カメラと、被写体の可視像を読み取って出力す
るための可視テレビカメラと、これら赤外撮像カメラ及
び可視テレビカメラの焦点を連動させて調整する焦点連
動調整手段と、被写体温度に応じて任意の温度に設定し
得る基準黒体炉と、上記赤外撮像カメラの前方で可動し
得るように装置され、被写体からの赤外線が赤外撮像カ
メラに入射する状態及び基準黒体炉からの赤外線が赤外
撮像カメラに入射すると共に被写体からの光線が可視テ
レビカメラに入射する状態に選択的に切替えられる可動
両面反射鏡とを備えたことを特徴とする赤外撮像装置。
(1) An infrared imaging camera for reading and outputting an infrared distribution image of the subject, a visible television camera for reading and outputting the visible image of the subject, and the focal point of these infrared imaging cameras and visible television cameras. a reference blackbody furnace that can be set to any temperature depending on the temperature of the subject; a movable double-sided reflector that can be selectively switched to a state in which the light from the reference blackbody furnace enters the infrared imaging camera, and a state in which the light from the subject enters the visible television camera; An infrared imaging device comprising:
(2)焦点連動調整手段として歯車機構を用い、可視テ
レビカメラの焦点が合わせることにより赤外撮像カメラ
の焦点を自動的に合わせ得るようにした特許請求の範囲
第1項記載の赤外撮像装置。
(2) The infrared imaging device according to claim 1, wherein a gear mechanism is used as the focus-linked adjustment means, and when the visible television camera is focused, the infrared imaging camera can be automatically focused. .
JP59197889A 1984-09-21 1984-09-21 Infrared image pickup device Granted JPS6176925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197889A JPS6176925A (en) 1984-09-21 1984-09-21 Infrared image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197889A JPS6176925A (en) 1984-09-21 1984-09-21 Infrared image pickup device

Publications (2)

Publication Number Publication Date
JPS6176925A true JPS6176925A (en) 1986-04-19
JPH0476062B2 JPH0476062B2 (en) 1992-12-02

Family

ID=16381975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197889A Granted JPS6176925A (en) 1984-09-21 1984-09-21 Infrared image pickup device

Country Status (1)

Country Link
JP (1) JPS6176925A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246638A (en) * 1987-04-01 1988-10-13 Tokyo Gas Co Ltd Method for wide area monitor of fluid leakage
JPS63170729U (en) * 1987-04-27 1988-11-07
FR2971335A1 (en) * 2011-02-09 2012-08-10 Armines Device for measuring temperature field of analysis area of microelectromechanical system, in local multiphysics analysis assembly, has processing unit for deducting processed reference flux from object flux to obtain temperature field
CN108254331A (en) * 2018-04-24 2018-07-06 中国科学院合肥物质科学研究院 A kind of new infrared spectrometer
JP2018189841A (en) * 2017-05-09 2018-11-29 日本電気株式会社 Black body plate and infrared radiation measurement device
WO2020039605A1 (en) * 2018-08-20 2020-02-27 コニカミノルタ株式会社 Gas detection device, information processing device, and program
CN111879414A (en) * 2020-08-04 2020-11-03 银河水滴科技(北京)有限公司 Infrared temperature measurement method and device, computer equipment and medium
WO2021188524A1 (en) * 2020-03-17 2021-09-23 Seek Thermal, Inc. Cost effective, mass producible system for rapid detection of fever conditions based on thermal imaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145356U (en) * 1974-09-30 1976-04-03
JPS53144787A (en) * 1977-05-23 1978-12-16 Chino Works Ltd System for correcting focus of radiation thermometer
JPS5975130A (en) * 1982-10-22 1984-04-27 Fujitsu Ltd Generation system for reference temperature signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145356U (en) * 1974-09-30 1976-04-03
JPS53144787A (en) * 1977-05-23 1978-12-16 Chino Works Ltd System for correcting focus of radiation thermometer
JPS5975130A (en) * 1982-10-22 1984-04-27 Fujitsu Ltd Generation system for reference temperature signal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246638A (en) * 1987-04-01 1988-10-13 Tokyo Gas Co Ltd Method for wide area monitor of fluid leakage
JPS63170729U (en) * 1987-04-27 1988-11-07
FR2971335A1 (en) * 2011-02-09 2012-08-10 Armines Device for measuring temperature field of analysis area of microelectromechanical system, in local multiphysics analysis assembly, has processing unit for deducting processed reference flux from object flux to obtain temperature field
JP2018189841A (en) * 2017-05-09 2018-11-29 日本電気株式会社 Black body plate and infrared radiation measurement device
CN108254331A (en) * 2018-04-24 2018-07-06 中国科学院合肥物质科学研究院 A kind of new infrared spectrometer
WO2020039605A1 (en) * 2018-08-20 2020-02-27 コニカミノルタ株式会社 Gas detection device, information processing device, and program
US11012656B2 (en) 2018-08-20 2021-05-18 Konica Minolta, Inc. Gas detection device, information processing device, and program
WO2021188524A1 (en) * 2020-03-17 2021-09-23 Seek Thermal, Inc. Cost effective, mass producible system for rapid detection of fever conditions based on thermal imaging
US11625828B2 (en) 2020-03-17 2023-04-11 Seek Thermal, Inc. Cost effective, mass producible system for rapid detection of fever conditions based on thermal imaging
CN111879414A (en) * 2020-08-04 2020-11-03 银河水滴科技(北京)有限公司 Infrared temperature measurement method and device, computer equipment and medium

Also Published As

Publication number Publication date
JPH0476062B2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
JP5704699B2 (en) Rear focus adjustment system for infrared camera and rear focus adjustment method for infrared camera
JPS6176925A (en) Infrared image pickup device
KR101387863B1 (en) Passive three-field optronic system
KR100440983B1 (en) Adapter for 3-Dimensional Photographing Device
JP3478686B2 (en) Compound eye imaging device
JP2005148265A (en) Camera apparatus
JPS63194237A (en) Camera
JP2009080003A (en) Imaging apparatus and lens failure diagnosis system
JP2003101830A (en) Photographing device
KR960015008B1 (en) Prevention apparatus of disasters having fire detection means
JP2005106642A (en) Infrared imaging device
JPS5915379A (en) Heat infrared image pickup camera
JPS63298127A (en) Image sensing camera using thermal infrared rays
US5438386A (en) Coaxial master-slave lens photographing apparatus
JPH08254750A (en) Photographing device
JPS62161338A (en) Illumination light supply apparatus used in electronic endoscope
JP2747426B2 (en) Temperature display video camera
JP2009150843A (en) Lens abnormality self-diagnosis method, imaging device, lens abnormality self-diagnosis system, and vehicle
JP2000131149A (en) Infrared temperature measuring apparatus
JPH1096981A (en) Real image type finder
JP2015226078A (en) Imaging apparatus
KR920005038B1 (en) Auto focus controlling method and apparatus for a camera
JPS62208789A (en) Stereo photographing device
JPS63144337A (en) Photographing device for crt image
JPS5984230A (en) Photographic device