JP2005106642A - Infrared imaging device - Google Patents

Infrared imaging device Download PDF

Info

Publication number
JP2005106642A
JP2005106642A JP2003340643A JP2003340643A JP2005106642A JP 2005106642 A JP2005106642 A JP 2005106642A JP 2003340643 A JP2003340643 A JP 2003340643A JP 2003340643 A JP2003340643 A JP 2003340643A JP 2005106642 A JP2005106642 A JP 2005106642A
Authority
JP
Japan
Prior art keywords
infrared
temperature
imaging
heat sources
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003340643A
Other languages
Japanese (ja)
Inventor
Akira Tarukawa
昌 樽川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003340643A priority Critical patent/JP2005106642A/en
Publication of JP2005106642A publication Critical patent/JP2005106642A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared imaging device, capable of presenting two or more temperature standard heat sources and further shortening of the lowering image quality of the image at temperature controlling of a temperature standard heat source. <P>SOLUTION: The infrared imaging device comprises two or more temperature standard heat sources 40 to 43 set at mutually different temperatures, established in plural and mutually different directions on the intermediate image formation plane intersecting perpendicularly with an optical axis at the intermediate image forming point position on the optical axis from the object for an imaging to an infrared detector; a collection mirror 30 moving on the intermediate image formation plane and according to the moving position, capable of reflecting the infrared images from the different temperature standard heat sources toward the infrared detector of the optical axis direction; and a sensitivity calibration means 50 for rectifying the sensitivity variations of two or more infrared detecting elements of the infrared detector, on the basis of the result of imaging two or more temperature standard heat sources with the infrared detector. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、赤外線撮像装置に関し、特に、複数の赤外線検知素子から構成される検知器を使用した赤外線撮像装置に関する。   The present invention relates to an infrared imaging device, and more particularly to an infrared imaging device using a detector composed of a plurality of infrared detection elements.

複数の赤外線検知素子から構成される赤外線検知器が使用されている赤外線撮像装置では、各赤外線検知素子に感度ばらつきがあり、補正無しの状態では均一温度の物体を見せても均一の画像が得られない。また、赤外線検知素子の感度ばらつきには経時変化が存在するため、定期的もしくは指定されたタイミングで感度補正データを更新するために、全ての赤外線検知素子に複数の一定温度の温度基準を見せる感度補正機構を持つことが必要となる。   In an infrared imaging device that uses an infrared detector composed of multiple infrared detectors, the sensitivity of each infrared detector varies, and a uniform image can be obtained even when an object of uniform temperature is shown without correction. I can't. In addition, the sensitivity variation of infrared detectors varies with time, so the sensitivity of all infrared detectors to show multiple temperature references at regular intervals in order to update the sensitivity correction data at regular or specified timings. It is necessary to have a correction mechanism.

従来、このような感度補正機構を持つ赤外線撮像装置として、例えば特許文献1〜4に記載のものがある。   Conventionally, as an infrared imaging device having such a sensitivity correction mechanism, for example, there are those described in Patent Documents 1 to 4.

特許文献1のものは、第1、第2の温度に設定された第1、第2の熱源を備え、撮像対象の温度が第1、第2の温度付近に変化したとき、第1、第2の熱源からの熱情報を熱情報伝達手段によって赤外線検知素子に伝達し、この熱情報を受けて赤外線検知素子が出力した信号を補正するよう構成されている。   The thing of patent document 1 is equipped with the 1st, 2nd heat source set to the 1st, 2nd temperature, and when the temperature of imaging object changes to the 1st, 2nd temperature vicinity, the 1st, 1st The heat information from the two heat sources is transmitted to the infrared detecting element by the heat information transmitting means, and the signal output from the infrared detecting element is corrected by receiving the heat information.

特許文献2のものは、撮像対象からの赤外線を赤外線検知器に入射させる走査鏡の一部に基準熱源を設置し、基準熱源と走査鏡を結ぶ光軸上に光遮断性の異なる複数のフィルタが順次挿入されるようにして、赤外線検知器の複数の赤外線検知素子の補正を行う。   Patent Document 2 discloses that a reference heat source is installed in a part of a scanning mirror that causes infrared rays from an imaging target to enter an infrared detector, and a plurality of filters having different light blocking properties on an optical axis connecting the reference heat source and the scanning mirror. Are sequentially inserted to correct the plurality of infrared detection elements of the infrared detector.

特許文献3のものは、赤外レンズと、上記赤外レンズを透過した光を通過できる窓と通過する光を拡散させる拡散レンズを有して光路内で切り替えできるシャッタと、2次元配列の複数個の画素からなるIRCCDを含む赤外検知器と、上記赤外検知器を冷却する手段と、上記赤外検知器を制御し、その出力信号を処理する手段を有する制御信号処理部と、上記制御信号処理部から出力される赤外検知器の出力信号をデジタル信号に変換するA/Dコンバータと、上記A/Dコンバータの出力信号を加算または減算できる加減算器と、上記シャッタの拡散レンズが光路内にある場合、上記加減算器を加算動作させて得る信号を蓄積できる第1のメモリと、この第1のメモリの情報を処理して感度補正データとして第2のメモリに蓄積処理し、上記シャッタが上記窓の状態で、外部を撮影するときに上記加減算器を減算器として動作させ上記第2のメモリの信号と外部を撮影した時の信号を減算させる補正演算回路と、補正された信号をアナログ信号に変換するD/Aコンバータとからなる赤外線撮像装置において、上記シャッタと赤外検知器の間に配置した分波器からの赤外光を検出する赤外センサと赤外センサからの信号をデジタル信号に変換するA/Dコンバータと、上記シャッタの拡散レンズが光路内にある場合に上記赤外センサで検出されデジタル信号に変換された信号を蓄積できる第3のメモリと、外部を撮影する時に上記赤外センサで検出され、得られる信号と上記第3のメモリの信号を除算して補正係数を計算する補正係数演算回路と、上記第1のメモリの情報と上記補正係数を乗算する乗算器を具備している。   Patent Document 3 discloses an infrared lens, a window that can pass light transmitted through the infrared lens, a diffusion lens that diffuses light passing therethrough, and a shutter that can be switched in an optical path, and a plurality of two-dimensional arrays. An infrared detector including an IR CCD composed of a plurality of pixels, a means for cooling the infrared detector, a control signal processing unit having means for controlling the infrared detector and processing the output signal; and An A / D converter that converts an output signal of the infrared detector output from the control signal processing unit into a digital signal, an adder / subtractor that can add or subtract an output signal of the A / D converter, and a diffusion lens of the shutter When in the optical path, the first memory that can store the signal obtained by the addition operation of the adder / subtractor, and the information of the first memory is processed and stored in the second memory as sensitivity correction data, A correction operation circuit that operates the adder / subtractor as a subtracter when photographing the outside with the shutter in the window state, and subtracts the signal of the second memory and the signal when the outside is photographed. In an infrared imaging device including a D / A converter that converts a signal into an analog signal, an infrared sensor and an infrared sensor that detect infrared light from a duplexer disposed between the shutter and the infrared detector An A / D converter that converts the above signal into a digital signal, a third memory that can store a signal detected by the infrared sensor and converted into a digital signal when the diffusing lens of the shutter is in the optical path, and an external A correction coefficient calculation circuit that calculates a correction coefficient by dividing the signal obtained by the infrared sensor when the image is taken and the signal of the third memory, and the information of the first memory And comprising a multiplier for multiplying the correction coefficient.

特許文献4のものは、被写体より放射される赤外線を検出して、該赤外線に対応した熱温度を計測する様に成した赤外線撮像装置に於いて、上記入射赤外光を制限する赤外線フィルタ切換機構に赤外線検出器の感度を調整するための基準黒体を配設し、該赤外線フィルタ機構を駆動することで赤外線撮像光路に該感度調整用基準黒体を介在可能と成している。
特開平9−130679号公報 特開昭57−100326号公報 特開平6−62320号公報 特開平9−264794号公報
Patent Document 4 discloses an infrared imaging device configured to detect an infrared ray emitted from a subject and measure a thermal temperature corresponding to the infrared ray, and to switch an infrared filter for limiting the incident infrared light. A reference black body for adjusting the sensitivity of the infrared detector is disposed in the mechanism, and the sensitivity adjustment reference black body can be interposed in the infrared imaging optical path by driving the infrared filter mechanism.
Japanese Patent Laid-Open No. 9-130679 Japanese Patent Laid-Open No. 57-100436 JP-A-6-62320 JP-A-9-264794

赤外線撮像装置では、感度補正用の温度基準熱源を光学系に内蔵することが必要となる。2次元赤外線検知素子を使用した赤外線撮像装置においては、感度補正機構が2次元赤外線検知素子に複数の温度基準を提示する際には、外界からの赤外線の光路内へ円板等に取り付けられた温度基準熱源を挿入機構により挿入する方法がとられるが、温度基準熱源を複数持たせたり、他の補正手段と集約しようとする場合には、取り付けられている円板等の保持部分が寸法的に大きくなり、被駆動部分の慣性が大きくなるために、複数の温度基準を高速に提示することができないという問題があった。   In an infrared imaging device, it is necessary to incorporate a temperature reference heat source for sensitivity correction in an optical system. In an infrared imaging device using a two-dimensional infrared detection element, when the sensitivity correction mechanism presents a plurality of temperature references to the two-dimensional infrared detection element, it is attached to a disk or the like into the optical path of infrared rays from the outside. The method of inserting the temperature reference heat source with an insertion mechanism is used, but if you want to have multiple temperature reference heat sources or consolidate with other correction means, the attached part such as a disc is dimensionally However, since the inertia of the driven part increases, there is a problem that a plurality of temperature references cannot be presented at high speed.

通常、温度基準熱源は、2点補正のために代表的シーン温度の上下±数°Cに制御されたものを2つ持つが、装置運用上、代表的シーン温度が高温シーンと低温シーンというような、かけ離れた温度の間を往復する必要がある場合には、高温シーンから低温シーンに(または低温シーンから高温シーンに)温度基準を変更するとき、新たな代表的シーン温度の上下±数°Cに制御されるまで数十秒〜数分待たねばならず、その間は撮像画質が低下するという問題があった。   Normally, there are two temperature reference heat sources that are controlled to +/- several degrees C above and below the typical scene temperature for two-point correction. If you need to reciprocate between distant temperatures, change the temperature reference from a high temperature scene to a low temperature scene (or from a low temperature scene to a high temperature scene). There is a problem that the image quality of the image is deteriorated during the period of several tens of seconds to several minutes until it is controlled by C.

本発明は、上記の点に鑑みなされたものであり、高速に複数の温度基準熱源を提示でき、温度基準熱源の温度制御時の撮像画質低下をより短くできる赤外線撮像装置を提供することを目的とする。   The present invention has been made in view of the above points, and it is an object of the present invention to provide an infrared imaging device capable of presenting a plurality of temperature reference heat sources at high speed and further shortening image quality degradation during temperature control of the temperature reference heat source. And

請求項1に記載の発明は、撮像対象からの赤外線を複数の赤外線検知素子で構成された赤外線検知器に結像入力して赤外線画像を撮像する赤外線撮像装置において、
前記撮像対象から前記赤外線検知器に至る光軸中の中間結像点位置において前記光軸と直交する中間結像平面上で互いに異なる複数の方向に設けられ互いに異なる温度に設定された複数の温度基準熱源と、
前記中間結像平面上を移動し移動位置に応じて異なる温度基準熱源からの赤外線像を前記光軸方向の前記赤外線検知器に向けて反射可能な集合ミラーと、
前記複数の温度基準熱源を前記赤外線検知器で撮像した結果に基づき前記赤外線検知器の複数の赤外線検知素子の感度ばらつきを補正する感度補正手段を有することにより、
被駆動部分である集合ミラーの慣性を小さくでき、高速に複数の温度基準熱源を提示でき、温度基準熱源の温度制御時の撮像画質低下をより短くできる。
The invention according to claim 1 is an infrared imaging device that captures an infrared image by inputting an infrared ray from an imaging target into an infrared detector configured by a plurality of infrared detection elements.
A plurality of temperatures provided at a plurality of different directions on the intermediate imaging plane orthogonal to the optical axis at different positions at an intermediate imaging point position in the optical axis from the imaging target to the infrared detector. A reference heat source,
A collective mirror that moves on the intermediate imaging plane and reflects infrared images from different temperature reference heat sources according to the moving position toward the infrared detector in the optical axis direction;
By having sensitivity correction means for correcting the sensitivity variation of the plurality of infrared detection elements of the infrared detector based on the result of imaging the plurality of temperature reference heat sources with the infrared detector,
The inertia of the collective mirror, which is the driven part, can be reduced, a plurality of temperature reference heat sources can be presented at high speed, and the image quality degradation during temperature control of the temperature reference heat source can be further shortened.

請求項2に記載の発明は、集合ミラーを駆動して前記中間結像平面上を移動させる集合ミラー駆動手段を有することにより、複数の温度基準熱源からの赤外線像を順次赤外線検知器に提示することができる。   According to the second aspect of the present invention, the infrared image from the plurality of temperature reference heat sources is sequentially presented to the infrared detector by including the collective mirror driving unit that drives the collective mirror to move on the intermediate imaging plane. be able to.

請求項3に記載の発明では、複数の温度基準熱源は、温度を可変設定する温度設定手段を有することにより、代表的シーン温度が変更となった場合に対応することができる。   In the third aspect of the invention, the plurality of temperature reference heat sources have temperature setting means for variably setting the temperature, so that it is possible to cope with a case where the representative scene temperature is changed.

請求項5に記載の発明では、温度基準熱源は、1または複数のシーン温度それぞれに対応して1または複数対が設けられ、各温度基準熱源対に前記シーン温度の前後の温度を設定することにより、
代表的シーン温度が急激に大幅な変動を生じても、撮像画質低下時間を短くすることができる。
In the invention according to claim 5, one or a plurality of pairs of temperature reference heat sources are provided corresponding to each of the one or more scene temperatures, and the temperature before and after the scene temperature is set in each temperature reference heat source pair. By
Even if the representative scene temperature suddenly changes greatly, the imaging image quality degradation time can be shortened.

請求項1に記載の発明によれば、被駆動部分である集合ミラーの慣性を小さくでき、高速に複数の温度基準熱源を提示でき、温度基準熱源の温度制御時の撮像画質低下をより短くできる。   According to the first aspect of the present invention, the inertia of the collective mirror that is the driven part can be reduced, a plurality of temperature reference heat sources can be presented at high speed, and the image quality degradation at the time of temperature control of the temperature reference heat source can be further shortened. .

また、請求項2に記載の発明によれば、複数の温度基準熱源からの赤外線像を順次赤外線検知器に提示することができる。   According to the second aspect of the present invention, infrared images from a plurality of temperature reference heat sources can be sequentially presented to the infrared detector.

また、請求項3に記載の発明によれば、代表的シーン温度が変更となった場合に対応することができる。   Further, according to the third aspect of the invention, it is possible to cope with a case where the representative scene temperature is changed.

また、請求項5に記載の発明によれば、代表的シーン温度が急激に大幅な変動を生じても、撮像画質低下時間を短くすることができる。   According to the fifth aspect of the present invention, it is possible to shorten the imaging image quality degradation time even if the representative scene temperature is drastically changed greatly.

以下、図面に基づいて本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1、図2は、本発明の赤外線撮像装置の一実施形態の感度補正を行わない状態と感度補正を行う状態それぞれの横断面図を示す。また、図3は図2のA−A線に沿った縦断面図を示す。   1 and 2 are cross-sectional views of a state in which sensitivity correction is not performed and a state in which sensitivity correction is performed according to an embodiment of the infrared imaging device of the present invention. FIG. 3 is a longitudinal sectional view taken along line AA in FIG.

図1において、光学系鏡筒10の一端には赤外線レンズ11が設けられ、他端には赤外線レンズ12,13が設けられている。撮像対象からの赤外線は赤外線レンズ11で集光され中間結像点14を通過したのち再び赤外線レンズ12,13で集光されて2次元赤外線検知器15に結像入力される。   In FIG. 1, an infrared lens 11 is provided at one end of the optical system barrel 10, and infrared lenses 12 and 13 are provided at the other end. Infrared rays from the object to be imaged are collected by the infrared lens 11, pass through the intermediate image forming point 14, collected again by the infrared lenses 12 and 13, and imaged and input to the two-dimensional infrared detector 15.

光学系鏡筒10内部のほぼ中央位置には、光学系鏡筒10の光軸16と直交するように移動レール18が固定されている。図3に示すように、移動レール18には長方形の開口部19が設けられている。移動レール18の開口部19より外側には駆動及び検出機構20が固定され、開口部19には集合ミラー30が摺動自在に設けられている。開口部19は集合ミラー30が矢印A,B方向に移動する際のガイドとして働く。また、集合ミラー30が矢印B方向に移動し開口部19の端面に当接した状態、つまり、図1に示す感度補正を行わない状態では、赤外線レンズ11で集光された赤外線は開口部19を通過して赤外線レンズ12に至る。   A moving rail 18 is fixed at a substantially central position inside the optical system barrel 10 so as to be orthogonal to the optical axis 16 of the optical system barrel 10. As shown in FIG. 3, the moving rail 18 is provided with a rectangular opening 19. A drive and detection mechanism 20 is fixed outside the opening 19 of the moving rail 18, and a collective mirror 30 is slidably provided in the opening 19. The opening 19 serves as a guide when the collective mirror 30 moves in the directions of arrows A and B. Further, in a state where the collective mirror 30 moves in the direction of the arrow B and contacts the end face of the opening 19, that is, in a state where the sensitivity correction shown in FIG. 1 is not performed, the infrared light collected by the infrared lens 11 is the opening 19. To the infrared lens 12.

駆動及び検出機構20は、例えばモータ21の駆動で回転する図示しないピニオンを有し、集合ミラー30の基台部31で駆動及び検出機構20と接触する始点位置にはラックが固定されており、上記ラックとピニオンは噛合している。このため、モータ21の回転駆動によって集合ミラー30が矢印A,B方向に移動する。また、駆動及び検出機構20の回転検出器22は、上記ピニオンの回転位置を検出することで集合ミラー30が始点位置から矢印A方向にどれだけ移動したかを検知する。   The drive and detection mechanism 20 has, for example, a pinion (not shown) that is rotated by the drive of the motor 21, and a rack is fixed at a starting point position that contacts the drive and detection mechanism 20 at the base portion 31 of the collective mirror 30. The rack and pinion mesh with each other. For this reason, the collective mirror 30 is moved in the directions of arrows A and B by the rotational drive of the motor 21. The rotation detector 22 of the drive and detection mechanism 20 detects how much the collective mirror 30 has moved in the direction of arrow A from the starting point position by detecting the rotational position of the pinion.

集合ミラー30は、基台部31に4つのミラー32,33,34,35を矢印A,B方向に一列に並べた状態で固定して構成されている。図1において、集合ミラー30が始点位置から矢印A方向に移動したとき、ミラー32,33,34,35は光軸16位置で中間結像点14を通るように位置決めされている。   The collective mirror 30 is configured by fixing four mirrors 32, 33, 34, and 35 to the base portion 31 in a state where they are arranged in a line in the directions of arrows A and B. In FIG. 1, when the collective mirror 30 is moved in the direction of arrow A from the starting position, the mirrors 32, 33, 34, and 35 are positioned so as to pass through the intermediate imaging point 14 at the optical axis 16 position.

また、ミラー32,33,34,35それぞれは光軸16に直交する平面に対して角度45°をなし、反射方向が光軸16を中心として90°ずつ回転させて設けられており、図3において、ミラー32は紙面と垂直に上方から入射した光を矢印A方向に反射し、ミラー33は紙面と垂直に上方から入射した光を矢印C方向に反射し、ミラー34は紙面と垂直に上方から入射した光を矢印D方向に反射し、ミラー35は紙面と垂直に上方から入射した光を矢印B方向に反射するように調整されている。   Each of the mirrors 32, 33, 34, and 35 is provided with an angle of 45 ° with respect to a plane orthogonal to the optical axis 16, and the reflection direction is rotated by 90 ° about the optical axis 16 as shown in FIG. , The mirror 32 reflects light incident from above perpendicular to the paper surface in the direction of arrow A, the mirror 33 reflects light incident from above perpendicular to the paper surface in the direction of arrow C, and the mirror 34 upwards perpendicular to the paper surface. Is reflected in the direction of arrow D, and the mirror 35 is adjusted to reflect light incident from above in the direction of arrow B perpendicular to the paper surface.

中間結像点14位置において光軸16に直交する平面である中間結像平面上で、互いに直交する光軸37,38それぞれが光学系鏡筒10に交わる位置には温度基準熱源40,41,42,43が設けられている。   On the intermediate imaging plane, which is a plane orthogonal to the optical axis 16 at the intermediate imaging point 14 position, the temperature reference heat sources 40, 41, 41 are provided at positions where the optical axes 37, 38 orthogonal to each other intersect the optical system barrel 10. 42 and 43 are provided.

温度基準熱源40,41,42,43それぞれは、熱源筐体45とヒートシンク46に囲まれる空間内に収納され、ヒートシンク46に固定されたペルチェ素子47と、ペルチェ素子47に固定された銅またはアルミニューム等の熱伝導性の良い温度基準板48と、温度基準板48の放射する赤外線を中間結像点14に集光する赤外線レンズ49で構成されている。温度基準板48はペルチェ素子47によって所望の温度に設定される。   Each of the temperature reference heat sources 40, 41, 42, 43 is housed in a space surrounded by the heat source housing 45 and the heat sink 46, and a Peltier element 47 fixed to the heat sink 46 and copper or aluminum fixed to the Peltier element 47. A temperature reference plate 48 having a good thermal conductivity such as a pneumatic, and an infrared lens 49 for condensing infrared rays emitted from the temperature reference plate 48 at the intermediate image forming point 14 are configured. The temperature reference plate 48 is set to a desired temperature by the Peltier element 47.

例えば、2点補正のために代表的シーン温度として、低温シーン=−7°C、高温シーン=+67°Cそれぞれの上下±2°Cに制御する場合、温度基準熱源40の温度基準板48は−9°C、温度基準熱源41の温度基準板48は−5°C、温度基準熱源42の温度基準板48は+65°C、温度基準熱源43の温度基準板48は+69°Cと設定される。   For example, when controlling a typical scene temperature for two-point correction to ± 2 ° C above and below each of a low temperature scene = −7 ° C. and a high temperature scene = + 67 ° C., the temperature reference plate 48 of the temperature reference heat source 40 is The temperature reference plate 48 of the temperature reference heat source 41 is set to −5 ° C., the temperature reference plate 48 of the temperature reference heat source 42 is set to + 65 ° C., and the temperature reference plate 48 of the temperature reference heat source 43 is set to + 69 ° C. The

前述のように、図1に示す感度補正を行わない状態では、集合ミラー30は、始点位置、つまり、中間結像点14から離れた位置にあり、赤外線レンズ11で集光された赤外線は開口部19を通過して赤外線レンズ12に至り、2次元赤外線検知素子10は外界の被写体を撮像する。   As described above, in the state where the sensitivity correction shown in FIG. 1 is not performed, the collective mirror 30 is located at the start point position, that is, at a position away from the intermediate imaging point 14, and the infrared light collected by the infrared lens 11 is opened. The two-dimensional infrared detection element 10 passes through the unit 19 and reaches the infrared lens 12, and images an external subject.

感度補正時には、駆動及び検出機構20によって集合ミラー30は始点位置から矢印B方向に移動し、図2,図3に示すように中間結像点12の位置に挿入される。集合ミラー30の矢印A方向の移動につれて、温度基準熱源40,41,42,43の温度基準板48の赤外線像が順次、2次元赤外線検知器15に提示される。これにより、温度基準の温度変化と安定化を待たずに迅速な感度補正が可能となる。   At the time of sensitivity correction, the collective mirror 30 is moved in the direction of arrow B from the starting position by the drive and detection mechanism 20, and is inserted at the position of the intermediate image point 12 as shown in FIGS. As the collective mirror 30 moves in the direction of arrow A, infrared images of the temperature reference plate 48 of the temperature reference heat sources 40, 41, 42, 43 are sequentially presented to the two-dimensional infrared detector 15. As a result, it is possible to quickly perform sensitivity correction without waiting for temperature-based temperature change and stabilization.

図4は、本発明の赤外線撮像装置の一実施形態のブロック図を示す。同図中、感度補正制御回路50は、温度基準熱源40,41,42,43それぞれのペルチェ素子47を駆動するペルチェ素子駆動回路51,52,53,54それぞれに温度データを設定することにより、温度基準熱源40,41,42,43それぞれの温度基準板48の温度を所望の値に設定する。   FIG. 4 shows a block diagram of an embodiment of an infrared imaging device of the present invention. In the figure, the sensitivity correction control circuit 50 sets temperature data in each of the Peltier element driving circuits 51, 52, 53, 54 for driving the Peltier elements 47 of the temperature reference heat sources 40, 41, 42, 43, respectively. The temperature of the temperature reference plate 48 of each of the temperature reference heat sources 40, 41, 42, 43 is set to a desired value.

また、感度補正制御回路50は駆動及び検出機構20のモータ21を制御して、感度補正を行わないときは集合ミラー30を始点位置に移動させ、感度補正時には集合ミラー30を矢印A方向に移動させ、駆動及び検出機構20の回転検出器22で集合ミラー30の移動位置を検出しつつ、2次元赤外線検知器15で温度基準熱源40,41,42,43それぞれの温度基準板48を撮像し、2次元赤外線検知器15を構成する複数の赤外線検知素子それぞれについての検知温度を取り込んで、複数の赤外線検知素子それぞれの感度補正を行う。   Further, the sensitivity correction control circuit 50 controls the motor 21 of the drive and detection mechanism 20 to move the collective mirror 30 to the start position when sensitivity correction is not performed, and to move the collective mirror 30 in the direction of arrow A during sensitivity correction. The two-dimensional infrared detector 15 images the temperature reference plates 48 of the temperature reference heat sources 40, 41, 42, and 43 while detecting the movement position of the collective mirror 30 with the rotation detector 22 of the drive and detection mechanism 20. The detection temperature for each of the plurality of infrared detection elements constituting the two-dimensional infrared detector 15 is taken in, and sensitivity correction for each of the plurality of infrared detection elements is performed.

このように、複数の温度基準熱源を撮像対象から赤外線検知器に至る光軸中の中間結像点位置において光軸と直交する中間結像平面上で互いに異なる複数の方向に設け、集合ミラーを中間結像平面上を移動させ、中間結像点位置にて複数の温度基準熱源からの赤外線像を順次前記光軸方向の前記赤外線検知器に向けて反射することで、被駆動部分である集合ミラーの慣性を小さくでき、高速に複数の温度基準熱源を提示でき、温度基準熱源の温度制御時の撮像画質低下をより短くできる。   In this way, a plurality of temperature reference heat sources are provided in a plurality of directions different from each other on the intermediate imaging plane orthogonal to the optical axis at the intermediate imaging point position in the optical axis from the imaging target to the infrared detector, and the collective mirror is provided. A set which is a driven part by moving on an intermediate imaging plane and sequentially reflecting infrared images from a plurality of temperature reference heat sources toward the infrared detector in the optical axis direction at the position of the intermediate imaging point The inertia of the mirror can be reduced, a plurality of temperature reference heat sources can be presented at high speed, and the image quality degradation during temperature control of the temperature reference heat source can be further shortened.

また、1または複数のシーン温度それぞれに対応して1または複数対の温度基準熱源を設け、各温度基準熱源対にシーン温度の前後の温度を設定することにより、代表的シーン温度が急激に大幅な変動を生じても、撮像画質低下時間を短くすることができる。   Also, by providing one or more pairs of temperature reference heat sources corresponding to each of one or more scene temperatures, and setting the temperature before and after the scene temperature for each temperature reference heat source pair, the typical scene temperature drastically increases. Even if such fluctuations occur, it is possible to shorten the imaging image quality degradation time.

なお、上記実施形態では、集合ミラー30はミラー32〜35の4面であり、温度基準熱源40〜43もそれと対応して4つあるが、ミラー及び温度基準熱源の数を6または8のように、もっと多くしても良い。ただし、ペアをつくる場合は、ミラー面数と温度基準熱源数は2の倍数である必要がある。   In the above embodiment, the collective mirror 30 has four surfaces of the mirrors 32 to 35, and there are four corresponding temperature reference heat sources 40 to 43, but the number of mirrors and temperature reference heat sources is six or eight. You can do more. However, when forming a pair, the number of mirror surfaces and the number of temperature reference heat sources need to be a multiple of two.

なお、感度補正制御回路50が請求項記載の感度補正手段に対応し、駆動及び検出機構20が集合ミラー駆動手段に対応し、ペルチェ素子47が温度設定手段に対応する。
(付記1)
撮像対象からの赤外線を複数の赤外線検知素子で構成された赤外線検知器に結像入力して赤外線画像を撮像する赤外線撮像装置において、
前記撮像対象から前記赤外線検知器に至る光軸中の中間結像点位置において前記光軸と直交する中間結像平面上で互いに異なる複数の方向に設けられ互いに異なる温度に設定された複数の温度基準熱源と、
前記中間結像平面上を移動し移動位置に応じて異なる温度基準熱源からの赤外線像を前記光軸方向の前記赤外線検知器に向けて反射可能な集合ミラーと、
前記複数の温度基準熱源を前記赤外線検知器で撮像した結果に基づき前記赤外線検知器の複数の赤外線検知素子の感度ばらつきを補正する感度補正手段を
有することを特徴とする赤外線撮像装置。
(付記2)
付記1記載の赤外線撮像装置において、
前記集合ミラーを駆動して前記中間結像平面上を移動させる集合ミラー駆動手段を
有することを特徴とする赤外線撮像装置。
(付記3)
付記1または2記載の赤外線撮像装置において、
前記複数の温度基準熱源は、温度を可変設定する温度設定手段を
有することを特徴とする赤外線撮像装置。
(付記4)
付記3記載の赤外線撮像装置において、
前記複数の温度基準熱源は、前記温度設定手段で所望の温度に設定される温度基準板と、
前記温度基準板から放射される赤外線を前記中間結像点位置に集光する赤外線レンズを
有することを特徴とする赤外線撮像装置。
(付記5)
付記3記載の赤外線撮像装置において、
前記温度基準熱源は、1または複数のシーン温度それぞれに対応して1または複数対が設けられ、各温度基準熱源対に前記シーン温度の前後の温度を設定することを特徴とする赤外線撮像装置。
(付記6)
付記1記載の赤外線撮像装置において、
前記集合ミラーは、中間結像平面に対して角度45°をなし、反射方向が前記光軸を中心として所定角度ずつ回転させて一列に並べられた複数のミラーを
有することを特徴とする赤外線撮像装置。
The sensitivity correction control circuit 50 corresponds to the sensitivity correction means described in the claims, the drive and detection mechanism 20 corresponds to the collective mirror drive means, and the Peltier element 47 corresponds to the temperature setting means.
(Appendix 1)
In an infrared imaging device for imaging an infrared image by inputting an infrared ray from an imaging target to an infrared detector configured by a plurality of infrared detection elements,
A plurality of temperatures provided at a plurality of different directions on the intermediate imaging plane orthogonal to the optical axis at different positions at an intermediate imaging point position in the optical axis from the imaging target to the infrared detector. A reference heat source,
A collective mirror that moves on the intermediate imaging plane and reflects infrared images from different temperature reference heat sources according to the moving position toward the infrared detector in the optical axis direction;
An infrared imaging apparatus, comprising: a sensitivity correction unit that corrects sensitivity variations of the plurality of infrared detection elements of the infrared detector based on a result of imaging the plurality of temperature reference heat sources by the infrared detector.
(Appendix 2)
In the infrared imaging device according to attachment 1,
An infrared imaging apparatus, comprising: a collecting mirror driving unit that drives the collecting mirror to move on the intermediate imaging plane.
(Appendix 3)
In the infrared imaging device according to appendix 1 or 2,
The infrared imaging device, wherein the plurality of temperature reference heat sources have temperature setting means for variably setting the temperature.
(Appendix 4)
In the infrared imaging device according to attachment 3,
The plurality of temperature reference heat sources include a temperature reference plate set to a desired temperature by the temperature setting means,
An infrared imaging device comprising an infrared lens for condensing infrared rays radiated from the temperature reference plate at the intermediate imaging point position.
(Appendix 5)
In the infrared imaging device according to attachment 3,
One or more pairs of the temperature reference heat sources are provided corresponding to one or more scene temperatures, respectively, and the temperature before and after the scene temperature is set for each temperature reference heat source pair.
(Appendix 6)
In the infrared imaging device according to attachment 1,
The collective mirror has an angle of 45 ° with respect to an intermediate imaging plane, and has a plurality of mirrors arranged in a line with a reflection direction rotated by a predetermined angle around the optical axis. apparatus.

本発明の赤外線撮像装置の一実施形態の感度補正を行わない状態の横断面図である。It is a cross-sectional view of a state where sensitivity correction of an embodiment of the infrared imaging device of the present invention is not performed. 本発明の赤外線撮像装置の一実施形態の感度補正を行う状態の横断面図である。It is a cross-sectional view in a state where sensitivity correction is performed in an embodiment of the infrared imaging device of the present invention. 図2のA−A線に沿った縦断面図である。It is a longitudinal cross-sectional view along the AA line of FIG. 本発明の赤外線撮像装置の一実施形態のブロック図である。It is a block diagram of one embodiment of an infrared imaging device of the present invention.

符号の説明Explanation of symbols

10 光学系鏡筒
11,12,13,49 赤外線レンズ
14 中間結像点
15 2次元赤外線検知器
16 光軸
18 移動レール
19 開口部
20 駆動及び検出機構
21 モータ
22 回転検出器
30 集合ミラー
31 基台部
32,33,34,35 ミラー
37,38 光軸
40,41,42,43 温度基準熱源
45 熱源筐体
46 ヒートシンク
47 ペルチェ素子
48 温度基準板
50 感度補正制御回路
51,52,53,54 ペルチェ素子駆動回路
DESCRIPTION OF SYMBOLS 10 Optical system barrel 11, 12, 13, 49 Infrared lens 14 Intermediate image point 15 Two-dimensional infrared detector 16 Optical axis 18 Moving rail 19 Opening 20 Drive and detection mechanism 21 Motor 22 Rotation detector 30 Collective mirror 31 Base Base unit 32, 33, 34, 35 Mirror 37, 38 Optical axis 40, 41, 42, 43 Temperature reference heat source 45 Heat source housing 46 Heat sink 47 Peltier element 48 Temperature reference plate 50 Sensitivity correction control circuit 51, 52, 53, 54 Peltier device drive circuit

Claims (5)

撮像対象からの赤外線を複数の赤外線検知素子で構成された赤外線検知器に結像入力して赤外線画像を撮像する赤外線撮像装置において、
前記撮像対象から前記赤外線検知器に至る光軸中の中間結像点位置において前記光軸と直交する中間結像平面上で互いに異なる複数の方向に設けられ互いに異なる温度に設定された複数の温度基準熱源と、
前記中間結像平面上を移動し移動位置に応じて異なる温度基準熱源からの赤外線像を前記光軸方向の前記赤外線検知器に向けて反射可能な集合ミラーと、
前記複数の温度基準熱源を前記赤外線検知器で撮像した結果に基づき前記赤外線検知器の複数の赤外線検知素子の感度ばらつきを補正する感度補正手段を
有することを特徴とする赤外線撮像装置。
In an infrared imaging device for imaging an infrared image by inputting an infrared ray from an imaging target to an infrared detector configured by a plurality of infrared detection elements,
A plurality of temperatures provided at a plurality of different directions on the intermediate imaging plane orthogonal to the optical axis at different positions at an intermediate imaging point position in the optical axis from the imaging target to the infrared detector. A reference heat source,
A collective mirror that moves on the intermediate imaging plane and reflects infrared images from different temperature reference heat sources according to the moving position toward the infrared detector in the optical axis direction;
An infrared imaging apparatus, comprising: a sensitivity correction unit that corrects sensitivity variations of the plurality of infrared detection elements of the infrared detector based on a result of imaging the plurality of temperature reference heat sources by the infrared detector.
請求項1記載の赤外線撮像装置において、
前記集合ミラーを駆動して前記中間結像平面上を移動させる集合ミラー駆動手段を
有することを特徴とする赤外線撮像装置。
The infrared imaging device according to claim 1,
An infrared imaging apparatus, comprising: a collecting mirror driving unit that drives the collecting mirror to move on the intermediate imaging plane.
請求項1または2記載の赤外線撮像装置において、
前記複数の温度基準熱源は、温度を可変設定する温度設定手段を
有することを特徴とする赤外線撮像装置。
The infrared imaging device according to claim 1 or 2,
The infrared imaging device, wherein the plurality of temperature reference heat sources have temperature setting means for variably setting the temperature.
請求項3記載の赤外線撮像装置において、
前記複数の温度基準熱源は、前記温度設定手段で所望の温度に設定される温度基準板と、
前記温度基準板から放射される赤外線を前記中間結像点位置に集光する赤外線レンズを
有することを特徴とする赤外線撮像装置。
The infrared imaging device according to claim 3.
The plurality of temperature reference heat sources include a temperature reference plate set to a desired temperature by the temperature setting means,
An infrared imaging device comprising an infrared lens for condensing infrared rays radiated from the temperature reference plate at the intermediate imaging point position.
請求項3記載の赤外線撮像装置において、
前記温度基準熱源は、1または複数のシーン温度それぞれに対応して1または複数対が設けられ、各温度基準熱源対に前記シーン温度の前後の温度を設定することを特徴とする赤外線撮像装置。
The infrared imaging device according to claim 3.
One or more pairs of the temperature reference heat sources are provided corresponding to one or more scene temperatures, respectively, and the temperature before and after the scene temperature is set for each temperature reference heat source pair.
JP2003340643A 2003-09-30 2003-09-30 Infrared imaging device Pending JP2005106642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340643A JP2005106642A (en) 2003-09-30 2003-09-30 Infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340643A JP2005106642A (en) 2003-09-30 2003-09-30 Infrared imaging device

Publications (1)

Publication Number Publication Date
JP2005106642A true JP2005106642A (en) 2005-04-21

Family

ID=34535478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340643A Pending JP2005106642A (en) 2003-09-30 2003-09-30 Infrared imaging device

Country Status (1)

Country Link
JP (1) JP2005106642A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024685A (en) * 2005-07-15 2007-02-01 Fujitsu Ltd Infrared imaging device
DE102007009664B3 (en) * 2007-02-22 2008-04-10 Jena-Optronik Gmbh Line camera calibrating device for e.g. remote sensing of ground from flight path, has calibration plate provided for repeatedly providing defined radiation intensity, which partially shades image beam path of one of image acquisition units
JP2013047667A (en) * 2011-08-18 2013-03-07 Raytheon Co Calibration system for detector
WO2014043406A1 (en) * 2012-09-14 2014-03-20 Flir Systems, Inc. Illuminator for wafer prober
US8888379B2 (en) 2012-02-17 2014-11-18 Fujitsu Limited Electronic device
CN114815128A (en) * 2022-05-19 2022-07-29 中国科学院长春光学精密机械与物理研究所 Micro-nano remote sensing camera on-orbit real-time imaging adjusting system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024685A (en) * 2005-07-15 2007-02-01 Fujitsu Ltd Infrared imaging device
JP4672470B2 (en) * 2005-07-15 2011-04-20 富士通株式会社 Infrared imaging device
DE102007009664B3 (en) * 2007-02-22 2008-04-10 Jena-Optronik Gmbh Line camera calibrating device for e.g. remote sensing of ground from flight path, has calibration plate provided for repeatedly providing defined radiation intensity, which partially shades image beam path of one of image acquisition units
EP1962488A1 (en) * 2007-02-22 2008-08-27 Jena-Optronik GmbH Device for calibrating line scan cameras
JP2013047667A (en) * 2011-08-18 2013-03-07 Raytheon Co Calibration system for detector
US8716651B2 (en) 2011-08-18 2014-05-06 Raytheon Company Calibration system for detector
US8888379B2 (en) 2012-02-17 2014-11-18 Fujitsu Limited Electronic device
WO2014043406A1 (en) * 2012-09-14 2014-03-20 Flir Systems, Inc. Illuminator for wafer prober
US9897645B2 (en) 2012-09-14 2018-02-20 Flir Systems, Inc. Illuminator for wafer prober and related methods
CN114815128A (en) * 2022-05-19 2022-07-29 中国科学院长春光学精密机械与物理研究所 Micro-nano remote sensing camera on-orbit real-time imaging adjusting system

Similar Documents

Publication Publication Date Title
EP2401860B1 (en) Imaging apparatus, image display apparatus, imaging method, method of displaying image and method of correcting position of focusing-area frame
JP4874668B2 (en) Autofocus unit and camera
JP4846004B2 (en) Imaging system and lens apparatus
US7483056B2 (en) Image capturing apparatus with blur compensation
EP2493174A1 (en) Infrared lens unit and infrared camera system provided with the infrared lens unit
JP2006162991A (en) Stereoscopic image photographing apparatus
US20080080848A1 (en) Camera focusing system and method thereof
JP2009089138A (en) Infrared ray camera
JP2001272708A (en) Image pickup device for both of visible ray and ir ray
JP4334784B2 (en) Autofocus device and imaging device using the same
JP2005106642A (en) Infrared imaging device
JP2007166494A (en) Camera and imaging unit
JPH09211308A (en) Mechanism for detecting object of automatic focusing image pickup unit
JP2021005860A (en) Imaging apparatus and method for controlling imaging apparatus
US8243187B2 (en) Photographing apparatus and photographing method
JP2008158028A (en) Electronic still camera
JP2004282299A (en) Infrared camera
JP4905048B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND CONTROL PROGRAM
JP2006157617A (en) Image pickup device
JPH04373371A (en) Video camera system with thermal picture detecting means
JP2004279684A (en) Image input device
JPH1195092A (en) Electronic still camera
JP3207169B2 (en) Imaging device
JP5938268B2 (en) Imaging apparatus and control method thereof
JPH11242152A (en) Image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027