JPS6176622A - Build-up welding method of subjecting thick-walled structural member - Google Patents

Build-up welding method of subjecting thick-walled structural member

Info

Publication number
JPS6176622A
JPS6176622A JP59198559A JP19855984A JPS6176622A JP S6176622 A JPS6176622 A JP S6176622A JP 59198559 A JP59198559 A JP 59198559A JP 19855984 A JP19855984 A JP 19855984A JP S6176622 A JPS6176622 A JP S6176622A
Authority
JP
Japan
Prior art keywords
build
residual stress
thick
welding
structural member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59198559A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamashita
山下 鐵生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59198559A priority Critical patent/JPS6176622A/en
Publication of JPS6176622A publication Critical patent/JPS6176622A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To relieve high residual stress produced in a thick-walled structural member when the member is subjected to a build-up welding by keeping the build-up surface of the member at a low temp. and heating the other side. CONSTITUTION:Corrosion resistant clad steel is joined to one side (inside) of a thick-walled structural member for a nuclear reactor container, etc. by the build-up welding. The build-up surface of the member is kept at a relatively low temp. by cooling, and the other side (outside) is heated to relieve high residual stress produced in the member during the build-up of the clad.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、PWR原子炉容器などの厚肉構造部材の溶接
肉盛方法に関し、特に該部材のクラッド肉盛時に発生し
ている高残留応力を減少させる方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for welding and overlaying thick structural members such as PWR reactor vessels, and in particular to a method for welding and overlaying thick structural members such as PWR reactor vessels. Regarding how to reduce

〔従来の技術〕[Conventional technology]

例えば、PWR原子炉容器は、その内表面を耐食性とす
るだめに、一般に耐食材料としてSUSのクラツド鋼が
溶接肉盛されている。このクラッド部においては、クラ
ッド溶接によって溶接後、非常に高い引張残留応力が発
生している。従来、この高残留応力除去法として内面か
らの加熱による焼どんが行われているが、クラツド材(
SVS )と母材(A553)との材料物性値の違いに
よって、クラッド部の高残留応力減少にあまり効果がな
い。
For example, in order to make the inner surface of a PWR reactor vessel corrosion-resistant, SUS clad steel is generally welded overlay as a corrosion-resistant material. In this clad part, very high tensile residual stress is generated by clad welding after welding. Conventionally, quenching by heating from the inner surface has been used as a method to remove this high residual stress, but cladding materials (
Due to the difference in material properties between SVS) and the base material (A553), it is not very effective in reducing high residual stress in the cladding part.

クラッド部における高残留応力については、最近、クラ
ツド材と母材との境界におけるアンダークラックの問題
として、クローズアップされて来ておシ、クラッド部の
高残留応力は、クラック進展に対し非常に地検であると
いう事で、関係各方面で研究がなされている。従って、
クラッド部の残留応力の減少は、クラックの問題に対し
非常に重要である。
High residual stress in the cladding has recently been brought into focus as a problem of undercrack at the boundary between the cladding material and the base material. As such, research is being conducted in various related fields. Therefore,
Reducing residual stress in the cladding is very important for cracking problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述の高残留応力を減少させる溶接肉盛方法
を提供するものであシ、詳細には、クラツド鋼を内表面
に溶接肉盛されているPWR原子炉容器等の厚肉構造部
材のクラッド肉盛時に発生している高残留応力を減少さ
せる方法を提供するものである。
The present invention provides a weld overlay method for reducing the above-mentioned high residual stress, and more specifically, a thick structural member such as a PWR reactor vessel whose inner surface is welded overlaid with clad steel. The present invention provides a method for reducing the high residual stress that occurs during cladding.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

そして本発明は、上記問題点を解決する手段として、原
子炉容器等の厚内構造部材の肉盛面を冷却、同時に他面
を加熱する点にある。すなわち、本発明は厚内構造部材
の片面に被覆鋼材を溶接肉盛をするに際し、溶接肉盛が
完了した後、肉盛面を相対的に低温に保持しつつ該構造
部材を他面から加熱し、次に全体を冷却することを特徴
とする厚肉構造部材の溶接肉盛方法でちる。
The present invention, as a means to solve the above-mentioned problems, consists in cooling the built-up surface of a thick internal structural member such as a nuclear reactor vessel and simultaneously heating the other surface. That is, when welding and overlaying a coated steel material on one side of a thick structural member, after the welding is completed, the structural member is heated from the other side while keeping the overlay surface at a relatively low temperature. Then, the method is used for welding overlay of thick-walled structural members, which is characterized by cooling the entire body.

以下、本発明の一実施態様例等を示す第1〜5図に基づ
いて、本発明を従来手段と対比して詳細に説明する。な
お、第1図は原子炉容器の断面図、第2図■〜■はクラ
ッド部高引張残留応力発生のメカニズムを説明するだめ
の図でちって、第1図の原子炉容器の軸方向一部である
X、−X、  を取9出した図である。第3図は温度変
化に対する全店カー全ひずみの推移を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below in comparison with conventional means based on FIGS. 1 to 5 showing an example of an embodiment of the present invention. Note that Figure 1 is a cross-sectional view of the reactor vessel, and Figures 2 to 2 are only diagrams for explaining the mechanism of high tensile residual stress generation in the cladding. It is a diagram in which the parts X, -X, are taken out. Figure 3 shows the changes in the total strain of all the stores with respect to temperature changes.

第4図■〜■は本発明による残留応力減少メカニズムを
説明するための図であって、第1図の原子炉容器の軸方
向一部であるXl−X、を取シ出した図である。第5図
は本発明による温度変化に対する全店カー全ひずみの推
移を示す。
FIGS. 4 - 4 are diagrams for explaining the residual stress reduction mechanism according to the present invention, and are views taken from Xl-X, which is a part of the reactor vessel in the axial direction of FIG. 1. . FIG. 5 shows the change in the total strain of all stores with respect to temperature changes according to the present invention.

第1図に示すように、P、W、R原子炉容器1の内表面
には、母材3の耐食防止からクラツド鋼2が内表面−周
ごとに軸方向へ順次母材3に肉盛溶接されて、母材5の
内表面全面を覆っている。ある容器を例にとると、母材
3の材質はA355材、クラツド鋼2の材質はSO3材
である。
As shown in Fig. 1, clad steel 2 is applied to the inner surfaces of the P, W, and R reactor vessels 1 in order to prevent corrosion of the base metal 3. Clad steel 2 is sequentially overlaid on the base metal 3 in the axial direction for each inner surface circumference. It is welded to cover the entire inner surface of the base material 5. Taking a certain container as an example, the material of the base material 3 is A355 material, and the material of the clad steel 2 is SO3 material.

また、板厚は、母材部の約200鱈に対し、クラッド部
はその1/40の5瓢でアシ、クラッドの肉盛幅は約4
0.である。このクラッド肉盛溶接によるクラッド部高
引張残留応力発生のメやニズムについて説明する。第2
図■に示すように、原子炉容器1の軸方向一部X、 −
X、を取シ出して考えると、まずクラッド肉盛によって
内面部4は非常な高温域に達する。この内面高温部を母
材部5と切り離して考えると、■のように内面高温部が
母材部よシ大きな変形δを生ずる。内面高温部は、母材
部と連続体の為、■に示すように、高温時において内面
部は圧縮の塑性ひずみを発生するようになる。肉盛後の
冷却過程では、内面部と母材部の変形は両者を切り離し
て考えると■のようになり、As Wela状態では、
内面部は■に示すように母材部に引張られ、高引張残留
応力が発生するようになる。伺りラツドク・・1け、大
体SaS材が用いられるので、母材A335材より、腺
膨張係数が大きい為、圧縮、収縮の度合いが大きく、残
留応力は余計大きくなる。内面部のこの一連の全店カー
全ひずみ推移を示すと、第5図のようになる。本発明は
クラッド肉盛終了後、外表面をある温度域に加熱或いは
同時に内面冷却させる事により、内面部の高引張残留応
力を減少させる。
In addition, the thickness of the plate is approximately 200 mm for the base material, while the cladding is approximately 1/40 of that thickness, and the cladding width is approximately 4 mm.
0. It is. The mechanism of generating high tensile residual stress in the cladding due to cladding welding will be explained. Second
As shown in Figure ■, part of the reactor vessel 1 in the axial direction
Considering X, first of all, the inner surface 4 reaches a very high temperature range due to the cladding. If this inner surface high temperature portion is considered separately from the base material portion 5, the inner surface high temperature portion causes a larger deformation δ than the base material portion, as shown in (2). Since the inner surface high temperature part is a continuous body with the base metal part, the inner surface part generates compressive plastic strain at high temperatures, as shown in (2). In the cooling process after overlaying, the deformation of the inner surface and the base material is as shown in ■ when the two are considered separately, and in the As Wela state,
The inner surface is pulled by the base material as shown in ■, and a high tensile residual stress is generated. Since SaS materials are generally used, the coefficient of glandular expansion is larger than that of the base material A335, so the degree of compression and contraction is large, and the residual stress is even larger. Figure 5 shows the series of changes in the total strain on the inner surface of the entire car. The present invention reduces the high tensile residual stress on the inner surface by heating the outer surface to a certain temperature range or simultaneously cooling the inner surface after the cladding is completed.

本発明の外面加熱或いは同時内面冷却する事による残留
応力減少のメカニズムについて説明する。第4図■に示
すように、外面加熱する事によシ、板厚内では、■に示
すように母材部で温度話、内面部では温匹低となる。内
面同時冷却すると更に両者の温度差は大きくなる。この
温度分布において、両者を第2図のクラッド肉盛時と同
様に切り離して考えると、■に示すように、母材部の半
径方向変形が大きくなる。内面部と母材部の両者は連続
体の為、剛性の大きな母材部に内面部が引張られるよう
になシ、内面部では引張応力が発生する。内面同時冷却
の場合は、両者の変形差が更に大きくなるので引張応力
も更に大きくなる。加熱停止して後、冷却過程において
は、両者を切り離して考えると、■に示すように温度高
の母材部の収縮量が内面部のそれよりも大きくなる。従
って、常温に戻した時点では、■に示すように、内面部
は剛性の大きな母材部の収縮により圧縮を受けるように
なる。
The mechanism of reducing residual stress by heating the outer surface or simultaneously cooling the inner surface of the present invention will be explained. As shown in Figure 4 (■), by heating the outer surface, within the thickness of the plate, as shown in (■), the temperature rises at the base material part, while the temperature at the inner part becomes lower. If the inner surface is simultaneously cooled, the temperature difference between the two will further increase. In this temperature distribution, if the two are considered separately as in the case of cladding shown in FIG. 2, the radial deformation of the base material becomes large as shown in (■). Since both the inner surface part and the base material part are continuous bodies, the inner surface part is pulled by the rigid base material part, and tensile stress is generated in the inner surface part. In the case of simultaneous cooling of the inner surface, the difference in deformation between the two becomes even larger, so that the tensile stress also becomes larger. After the heating is stopped, in the cooling process, if the two are considered separately, the shrinkage amount of the high-temperature base material portion is greater than that of the inner surface portion, as shown in (2). Therefore, when the temperature is returned to room temperature, the inner surface is compressed due to the contraction of the rigid base material, as shown in (2).

本発明の加熱時におけるこれら一連の全店カー全ひずみ
推移を内面部について示すと第5図の点線のようになる
。内面部残留応力は、加熱前のAs Tel状態より減
少する事が予想される。
The series of changes in the total strain during heating according to the present invention for the inner surface is shown by the dotted line in FIG. It is expected that the residual stress on the inner surface will be reduced compared to the As Tel state before heating.

〔具体例〕〔Concrete example〕

以下、第6〜8図に基づいて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail based on FIGS. 6 to 8.

第6図(a)は原子炉容器の一部を取り出しだ図でちゃ
、第6図(b)は本発明の具体例である温度変化を示し
、この温度変化に対する全応カー全ひずみの推移を第7
図に示す。第8図(a)は本発明による温度変化に対す
る軸方向残留応力変化を、第8図(b)は同円周方向残
留応力変化をそれぞれ示す。
Figure 6(a) shows a part of the reactor vessel taken out, and Figure 6(b) shows a temperature change, which is a specific example of the present invention, and the change in the total strain of the total reactor with respect to this temperature change. The seventh
As shown in the figure. FIG. 8(a) shows the change in residual stress in the axial direction with respect to temperature change according to the present invention, and FIG. 8(b) shows the change in residual stress in the circumferential direction.

第6図に示すように、原子炉容器−股部の一部を取シ出
し、(a)に示すように母材部(A533材)5の内表
面にクラツド鋼(SUB 304材)2を軸方向に遂次
肉盛溶接させた後、0)に示すように外表面にTo m
ax= 300℃、内表面にTi=20℃を与えた場合
の残留応力を解析した。
As shown in Fig. 6, a part of the crotch of the reactor vessel is removed, and clad steel (SUB 304 material) 2 is coated on the inner surface of the base material (A533 material) 5, as shown in (a). After successive overlay welding in the axial direction, Tom is applied to the outer surface as shown in 0).
The residual stress was analyzed when ax=300°C and Ti=20°C were applied to the inner surface.

結果は、第7図に示すように、全応カー全ひずみ線図に
おいて、先に予想した通りの推移となった。まだ、第8
図(a)、(b)に示すように、クラッド肉盛溶接後の
As Weld状態の残留応力は、クラッド近傍におい
て実線に示すように非常に大きいが、残留応力除去処理
後、これらの高残留応力は点線に示すように約Aまで減
少している。
As a result, as shown in FIG. 7, the curve of the total stress curve showed a transition as expected. Still the 8th
As shown in Figures (a) and (b), the residual stress in the As Weld state after cladding welding is extremely large near the cladding, as shown by the solid line, but after residual stress removal treatment, these high residual stresses are The stress has decreased to about A as shown by the dotted line.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上詳記したように、原子炉容器等の厚肉構
造部材の肉盛面を冷却、同時に他面を加熱することによ
シ、該容器のクラッド肉盛時に発生している高残留応力
を減少させる効果が生ずるものである。
As described in detail above, the present invention cools the overlay surface of a thick structural member such as a nuclear reactor vessel and simultaneously heats the other side, thereby reducing the build-up temperature that occurs when building up the cladding of the vessel. This has the effect of reducing residual stress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子炉容器の断面図、第2図■〜■はクラッド
部残留応力発生のメカニズムを説明するだめの図であっ
て、第1図の原子炉容器の軸方向一部であるX、−X、
を取出した図である。 第3図は温度変化に対する全応カー全ひずみの推移を示
す。第4図■〜■は本発明による残留応力減少メカニズ
ムを説明するための図であって、第1図の原子炉容器の
軸方向一部であるx4−X、を取出した図である。第5
図は本発明による温度変化に対する全応カー全ひずみの
推移を示す。第6図(a)は原子炉容器の一部を取出し
た図であり、第6図(b)は本発明による温度変化を示
し、第7図は涼6図(b)に基づく温度変化に対する全
応カー全ひずみの推移を示す。第8図(a)。 (b)は本発明による温度変化に対する残留応力変化を
示す。 復代理人   内 1)   明 復代理人    萩  原  亮  −第3図 第5図 n− 第 (α) 内表面 8図 (b) 内艮面
Figure 1 is a cross-sectional view of the reactor vessel, and Figures 2 - 2 are diagrams for explaining the mechanism of residual stress generation in the cladding. , -X,
This is an extracted figure. Figure 3 shows the change in total strain of the total stress curve with respect to temperature changes. FIGS. 4 - 4 are diagrams for explaining the residual stress reduction mechanism according to the present invention, and are views taken from x4-X, which is a part of the reactor vessel in FIG. 1 in the axial direction. Fifth
The figure shows the evolution of the total strain of the total stress curve with respect to temperature changes according to the present invention. FIG. 6(a) is a diagram showing a part of the reactor vessel taken out, FIG. 6(b) shows the temperature change according to the present invention, and FIG. 7 shows the temperature change based on Ryo 6(b). The graph shows the transition of the total stress curve. Figure 8(a). (b) shows the residual stress change with respect to temperature change according to the present invention. Sub-agent 1) Clear agent Ryo Hagiwara - Figure 3 Figure 5 n- Part (α) Inner surface Figure 8 (b) Inner surface

Claims (1)

【特許請求の範囲】[Claims] 厚肉構造部材の片面に被覆鋼材を溶接肉盛をするに際し
、溶接肉盛が完了した後、肉盛面を相対的に低温に保持
しつつ該構造部材を他面から加熱し、次に全体を冷却す
ることを特徴とする厚肉構造部材の溶接肉盛方法。
When welding a coated steel material onto one side of a thick structural member, after the welding is completed, the structural member is heated from the other side while the overlay surface is kept at a relatively low temperature, and then the entire structure is heated. A method for welding overlay of thick structural members, characterized by cooling.
JP59198559A 1984-09-25 1984-09-25 Build-up welding method of subjecting thick-walled structural member Pending JPS6176622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198559A JPS6176622A (en) 1984-09-25 1984-09-25 Build-up welding method of subjecting thick-walled structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198559A JPS6176622A (en) 1984-09-25 1984-09-25 Build-up welding method of subjecting thick-walled structural member

Publications (1)

Publication Number Publication Date
JPS6176622A true JPS6176622A (en) 1986-04-19

Family

ID=16393192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198559A Pending JPS6176622A (en) 1984-09-25 1984-09-25 Build-up welding method of subjecting thick-walled structural member

Country Status (1)

Country Link
JP (1) JPS6176622A (en)

Similar Documents

Publication Publication Date Title
Rybicki et al. The effect of pipe thickness on residual stresses due to girth welds
JP2554107B2 (en) Pilger equipment die
EP0047082A1 (en) Method of production of cladding tube for nuclear fuel element
JPH0843567A (en) Manufacture of coating pipe
JPS6176622A (en) Build-up welding method of subjecting thick-walled structural member
JPH0457997B2 (en)
US4608101A (en) Method for heat treating pipe with double-pipe section
US2961761A (en) Production of clad steel plates by the 2-ply method
US4588869A (en) Method for relieving residual stresses by controlling weld heat input
JPS6018293A (en) Method for relieving residual stress of welded joint part
JPS5941425A (en) Improvement in residual stress of hollow body
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
JPS6310081A (en) Stress corrosion cracking preventing welding method for stainless steel
JPH05169255A (en) Method for welding tube with tube
JPS6263620A (en) Method for improving residual stress of hollow body
JPH0230716A (en) Method for improving residual stress in circumferential weld zone
JPS63203280A (en) Dissimilar material butt welded joint
Bogdanovich et al. Strength and axisymmetric deformation of laminate cylindrical shells under axial impact
JPS6036984A (en) Nuclear reactor fuel coated pipe and manufacture thereof
JPS60135526A (en) Heat treatment of weld zone of double pipe
JPH046494A (en) Joining method for reactor pressure vessel and control rod drive housing
SU1082590A1 (en) Method of removal of weld deformations and strains
JPS59170562A (en) Hydrogen resistant pressure container
JPS62104625A (en) Camber straightening method for two layer clad metallic plate
JPH02194107A (en) Manufacture of combined alloy cylinder