JPS6175579A - Laser amplifier - Google Patents

Laser amplifier

Info

Publication number
JPS6175579A
JPS6175579A JP19742684A JP19742684A JPS6175579A JP S6175579 A JPS6175579 A JP S6175579A JP 19742684 A JP19742684 A JP 19742684A JP 19742684 A JP19742684 A JP 19742684A JP S6175579 A JPS6175579 A JP S6175579A
Authority
JP
Japan
Prior art keywords
glass
laser
parasitic oscillation
angle
laser glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19742684A
Other languages
Japanese (ja)
Inventor
Jusaku Komatsu
小松 寿作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19742684A priority Critical patent/JPS6175579A/en
Publication of JPS6175579A publication Critical patent/JPS6175579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a laser amplifier suppressed in a parasitic oscillation by inclining the air contacting surface of a clad glass with respect to the surface of a laser glass at a certain critical angle from a vertical direction. CONSTITUTION:One of a light beam of a bulk parasitic oscillation mode incident to the surface of a laser glass, i.e., the light beam of a range surrounded by L41, L42 is, for example, is smaller than the total reflecting angle at the incident angle in the reflection of the air contacting surface 12 of the clad glass. Accord ingly, the reflectivity is small to 0.04-0.05. The light beam of the row, i.e., the light beam of the range surrounded by L43, L44 is fully reflected in the reflection on the surface 31 of the laser glass and the air contacting surface 13 of the glad class, but is not fully reflected on the surface 22 of the other laser glass,and the reflectivity becomes approx. 0.04-0.05. Therefore,the bulk parasitic oscillation mode is dampaged at an amplifying light path, resulting in a difficulty in the oscillation. Since the surface parasitic oscillation mode is not in parallel at the air contacting surface of the clad glasses opposed through the laser glass, the reflectivity is equivalently near 0, and does not oscillate.

Description

【発明の詳細な説明】 (技術分野) 本発明はレーザ増幅器に関し、特にレーザ光の透過する
口径に比し厚さの小さいディスクの形状を有するレーザ
ガラスをレーザ媒質とするディスク型レーザ増幅器に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a laser amplifier, and more particularly to a disk-type laser amplifier in which a laser medium is a laser glass having a disk shape that is thinner than the aperture through which laser light passes.

(従来技術) 従来、ディスク型レーザ増幅器に使用されるディスク型
レーザガラスは第1図および第2図に示すが如き形状全
持つ。すなわち、正面を表わす第1図に示すように外部
は楕円形の平行平面板でろシ、そのレーザ光に対する配
置は、側面図をあられす第2図に示すように、入射角が
いわゆるブリュースタ角をなすように配置される。よく
知られているようにこの角はtan ’ (ガラスの屈
折率)で与えられ、入射法線面に平行な偏光成分を持つ
光は、この角で入射した時は反射を受けない。また従来
のディスク型レーザガラスの断面を第3図に示す。
(Prior Art) Conventionally, a disk-type laser glass used in a disk-type laser amplifier has a shape as shown in FIGS. 1 and 2. That is, as shown in Fig. 1, which shows the front view, the outside is an elliptical parallel plane plate, and its arrangement with respect to the laser beam is such that the incident angle is the so-called Brewster's angle, as shown in Fig. 2, which shows the side view. It is arranged so that it forms. As is well known, this angle is given by tan' (the refractive index of glass), and light having a polarization component parallel to the normal plane of incidence is not reflected when it is incident at this angle. FIG. 3 shows a cross section of a conventional disk-shaped laser glass.

フラッシュランプなどの光源によシ励起九を照射された
レーザガラスの表面および内部はレーザ増幅利得を持つ
ようになる。この時第3図L31゜L32およびL33
の矢印で表わされるような発振が生じる。L31 、L
32に示されるような発振の形態をバルク寄生発振モー
ドと、またL33に示されるような発振の形態を表面寄
生発振モ−ドと呼ぶ。正規のレーザ増幅作用に悪影響を
及はすこれらの寄生発振モードを極力防止するために第
3図に示すように発振レーザ光を吸収するイオンヲ含む
ガラス1をレーザガラス2の周囲に付着させることが実
施されている。この吸収ガラスをクラッドガラスと呼ぶ
The surface and interior of the laser glass that is irradiated with excitation light by a light source such as a flash lamp has a laser amplification gain. At this time, Figure 3 L31゜L32 and L33
Oscillation as shown by the arrow occurs. L31, L
The form of oscillation shown at L32 is called the bulk parasitic oscillation mode, and the form of oscillation shown at L33 is called the surface parasitic oscillation mode. In order to prevent as much as possible these parasitic oscillation modes that adversely affect the normal laser amplification function, it is possible to attach a glass 1 containing ions that absorb the oscillated laser light around the laser glass 2, as shown in FIG. It has been implemented. This absorbing glass is called clad glass.

バルクモードを抑えるためには、レーザガラスの平均利
得係数αa、楕円の長軸長り、クラッドガラスの吸収係
数α。、同厚さd、空気−クラッドガラス間の反射率α
。′および入射角θの間に次の関係式が満たされAけれ
ばならない。
In order to suppress the bulk mode, the average gain coefficient αa of the laser glass, the long axis length of the ellipse, and the absorption coefficient α of the cladding glass are required. , same thickness d, reflectance α between air and clad glass
. The following relational expression must be satisfied between ' and the incident angle θ.

fi、c’ exp(−2acd/ sin O)・e
xp(α6L/5ine)〈1・・・・・・・・・・ 
(1) すなわち 2αc11>α、L−1−sinO・In Re’ −
−・−(210の範囲について述べれば、第3図に示す
如く全反射角Ocより大きい範囲についてはR+e’=
1゜小さい範囲についてはRc’ = 9.04〜0.
05となる。
fi, c' exp(-2acd/sin O)・e
xp (α6L/5ine)〈1・・・・・・・・・・・・
(1) That is, 2αc11>α, L-1-sinO・In Re' −
−・−(If we talk about the range of 210, as shown in Fig. 3, for the range larger than the total reflection angle Oc, R+e'=
For a range 1° smaller, Rc' = 9.04~0.
It becomes 05.

よく知られているようにθ。はsin”−’ (ガラス
の屈折率の逆数)で与えられる。レーザガラスとしてフ
ォスフェートガラスを採用した場合、使用波長1.05
μmにて屈折率1.51であるので6 c ” 41.
5゜となる。
As is well known, θ. is given by sin"-' (reciprocal of the refractive index of glass). When phosphate glass is used as the laser glass, the wavelength used is 1.05
Since the refractive index is 1.51 in μm, it is 6 c ” 41.
It becomes 5°.

表面モードを抑えるためには、バルクモードの場合と同
様に次の関係式が満たされなければならない。
In order to suppress the surface mode, the following relational expression must be satisfied as in the case of the bulk mode.

Re  exp(−2ac  d )*  exp d
wL<1  ・・・・・−(3)すなわち 2αCd>dwL + jn Re      ・−・
−・−(41ここでα1はレーザガラス表面の利得であ
り、Rcはθ=06の場合の空気−クラッドガラス間の
反射率を表わし0.0413である。
Reexp(-2acd)*expd
wL<1...-(3) That is, 2αCd>dwL + jn Re...
-.-(41 Here, α1 is the gain of the laser glass surface, and Rc represents the reflectance between air and clad glass when θ=06, which is 0.0413.

これら寄生発振モードを抑制するためには式(2)およ
び式(4)において、左辺を大きくすること、すなわち
吸収係数の高いまた厚さの大きいクラッドガラスを採用
すればよいが、材質、クラッドガラス−レーザガラス間
の熱応力、クシラドガラス部励起の非効率性等によシ限
界がある。したがって右辺を極力小さく抑える必要があ
る。
In order to suppress these parasitic oscillation modes, it is sufficient to increase the left side of equations (2) and (4), that is, to use a clad glass with a high absorption coefficient and a large thickness. - There are limitations due to thermal stress between the laser glasses, inefficiency of excitation of the KUSHIRADO glass part, etc. Therefore, it is necessary to keep the right-hand side as small as possible.

第3図に示されるような断面形状を持つ従来のディスク
型レーザガラスにおいては、クラッドガラスの空気に接
する面11−−これをクラッドガラスの空気接面と呼ぶ
ことにする−はレーザガラスの二つの平行な表面21と
22に対して垂直であるため、バルクモードおよび表面
モードの2つの寄生発振モードが発振しやすくなる欠点
があった。すなわちレーザガラスの表面21にて全反射
角で入射する光線L31とクラッドガラス空気接面にて
同じく全反射角にて入射する光線L32との間の光線に
関しては、それぞれの反射においてRc’=tとな9、
さらに続く反射においても全反射となるためバルク寄生
発振モードが安定に発生する。またレーザガラスをはさ
んで2つのクシラドガラス空気接面が平行に向き会うた
め表面寄生発振モードが発生する。
In a conventional disk-shaped laser glass having a cross-sectional shape as shown in FIG. Since it is perpendicular to the two parallel surfaces 21 and 22, there is a drawback that two parasitic oscillation modes, a bulk mode and a surface mode, tend to oscillate. That is, regarding the light ray between the light ray L31 that is incident at the total reflection angle on the surface 21 of the laser glass and the light ray L32 that is incident at the same total reflection angle on the cladding glass air contact surface, Rc'=t for each reflection. Tona 9,
Furthermore, since the subsequent reflection becomes total reflection, a bulk parasitic oscillation mode is stably generated. Furthermore, since the air-contacting surfaces of two KUSHIRADO glasses face each other in parallel with the laser glass in between, a surface parasitic oscillation mode occurs.

(発明の目的) 本発明の目的は、−F記欠点を除去して寄生発振の発生
を抑制したレーザ増幅器を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a laser amplifier that eliminates the −F defect and suppresses the occurrence of parasitic oscillation.

(発明の構成) すなわち、本発明は、レーザ光の入出射する2つの表面
をとシかこむ側面に付着させられたレーザ光吸収のため
のクラッドガラスの空気と接する面の形状が、上記表面
に垂直な線に対して、90゜から全反射角の2倍の角度
を減じた角度以上の角度で傾いていることを特徴とする
ディスク型レーザガラスをレーザ媒質とするレーザ増幅
器である。
(Structure of the Invention) That is, the present invention provides a structure in which the shape of the surface in contact with air of the clad glass for absorbing laser light, which is attached to the side surface that surrounds the two surfaces on which the laser light enters and exits, is in contact with the air. This is a laser amplifier using a disk-shaped laser glass as a laser medium, which is inclined with respect to a vertical line at an angle greater than or equal to 90 degrees minus an angle twice the total reflection angle.

(実施例) 次に本発明の実施例について図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第4図は本発明の一実施例を示す。FIG. 4 shows an embodiment of the present invention.

図において、本実施例はクラッドガラスの空気接面の傾
きが、レーザガラス表面に対して垂直よシある角度α以
上傾いていることを示す0ある角度αとは90°よシ全
反射角の2倍の角度を減じた角度を示す。
In the figure, in this example, the inclination of the air-contacting surface of the clad glass is 0 or more than a certain angle α perpendicular to the laser glass surface. Indicates the angle obtained by subtracting twice the angle.

例えばレーザガラス表面に入射するバルク寄生発振モー
ドの光線の一つ、すなわちL41とL42で囲まれた領
域の光線は、クラッドガラス空気接面12の反射におい
ては入射角はすでに全反射角  ′よシ小さいため反射
率は0.04〜0.05と小さい。
For example, when one of the bulk parasitic oscillation mode light rays incident on the laser glass surface, that is, the light ray in the area surrounded by L41 and L42, is reflected by the clad glass air contact surface 12, the incident angle is already equal to the total reflection angle '. Since it is small, the reflectance is as low as 0.04 to 0.05.

また列の光線すなわちL43とL44で囲まれた領域の
光線は、レーザガラスの表面21およびクラッドガラス
の空気接面13での反射においては全反射をなすが、も
う一方のレーザガラスの表面22においては全反射とは
ならず反射率は0.04〜0.05程度となる。したが
ってバルク寄生発振モードは、増幅光路に損失を受ける
ため発振は困難となる。
Furthermore, the light rays in the column, that is, the light rays in the area surrounded by L43 and L44, undergo total internal reflection when reflected at the surface 21 of the laser glass and the air-contacting surface 13 of the clad glass, but at the surface 22 of the other laser glass. does not result in total reflection and has a reflectance of about 0.04 to 0.05. Therefore, in the bulk parasitic oscillation mode, oscillation becomes difficult due to loss in the amplification optical path.

また表面寄生発振モー ドについて述べれば、レーザガ
ラ、スな・介して向き会うクラッドガラスの空気接面は
平行でかいため、反射率は等測的にOに近く、シたがっ
て発振はしなくガる。また本実施例では、クラッドガラ
スの空気接面が2面に分離され、かつ断面の形状が直線
状であるが、面の数および形状がこれらに限定されない
ことは言う迄もない。
Regarding the surface parasitic oscillation mode, the air-contacting surfaces of the clad glass that face the laser glass through the glass are parallel and large, so the reflectance is isometrically close to O, so there is no oscillation and there is no oscillation. . Further, in this embodiment, the air-contacting surface of the clad glass is separated into two surfaces, and the cross-sectional shape is linear, but it goes without saying that the number and shape of the surfaces are not limited to these.

(発明の幼芽) 以上述べたように、レーザガ2ス表面に対しクラッドガ
ラスの空気接面を垂直よシある臨界角板上傾けることに
よシ、寄生発振の光路に多大の損失を与えたシ、あるい
は光路そのものを形成できなくする効果を得ることがで
きる。すなわち、本発明によれば寄生発振を抑制したレ
ーザ増幅器を得ることができる。
(The germ of the invention) As mentioned above, by tilting the air-contacting surface of the clad glass to the laser gas surface on a critical angle plate that is perpendicular to the surface, a large amount of loss is caused in the optical path of parasitic oscillation. It is possible to obtain the effect of making it impossible to form a beam or an optical path itself. That is, according to the present invention, it is possible to obtain a laser amplifier in which parasitic oscillation is suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はディスク型レーザガラスの正面図、第2図は上
記ディスク型レーザガラスのレーザ光に対する配置を示
す側面図、第3図は従来のディスク型レーザガラスの断
面図、第4図は本発明の一実施例を示すディスク型レー
ザガラスの断面図である。 1・・・クラッドガラス、2・・・レーザガラス、11
゜12.13・・・クラッドガラスの空気と接する面、
すなわち空気接面、21.22・・・レーザガラスの表
面、L31.L32.L41.L42.L43.L44
・・・バルク寄生発振モードを示す光線、L33・・・
表面寄生発振モードを示す光線。 代理人 弁理士  内 原   晋  ・、。 −8−、、、、+ 、、’ 第1図 第2図 第3図
Figure 1 is a front view of the disc-shaped laser glass, Figure 2 is a side view showing the arrangement of the disc-shaped laser glass with respect to the laser beam, Figure 3 is a cross-sectional view of the conventional disc-shaped laser glass, and Figure 4 is the book. FIG. 1 is a cross-sectional view of a disk-shaped laser glass showing an embodiment of the invention. 1... Clad glass, 2... Laser glass, 11
゜12.13...Surface of clad glass in contact with air,
That is, air contact surface, 21.22... surface of laser glass, L31. L32. L41. L42. L43. L44
...Light ray indicating bulk parasitic oscillation mode, L33...
Ray showing surface parasitic oscillation mode. Agent: Susumu Uchihara, patent attorney. -8-,,,,+,,' Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] レーザ光の入出射する2つの表面をとりかこむ側面に付
着させられたレーザ光吸収のためのクラッドガラスの空
気と接する面の形状が、上記表面に垂直な線に対して、
90°から全反射面の2倍の角度を減じた角度以上の角
度で傾いていることを特徴とするディスク型レーザガラ
スをレーザ媒質とするレーザ増幅器。
The shape of the surface in contact with the air of the clad glass for laser light absorption attached to the side surface surrounding the two surfaces where the laser light enters and exits is relative to a line perpendicular to the surface.
A laser amplifier using a disk-shaped laser glass as a laser medium, which is tilted at an angle greater than 90 degrees minus twice the angle of the total reflection surface.
JP19742684A 1984-09-20 1984-09-20 Laser amplifier Pending JPS6175579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19742684A JPS6175579A (en) 1984-09-20 1984-09-20 Laser amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19742684A JPS6175579A (en) 1984-09-20 1984-09-20 Laser amplifier

Publications (1)

Publication Number Publication Date
JPS6175579A true JPS6175579A (en) 1986-04-17

Family

ID=16374320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19742684A Pending JPS6175579A (en) 1984-09-20 1984-09-20 Laser amplifier

Country Status (1)

Country Link
JP (1) JPS6175579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839908B2 (en) 2005-03-30 2010-11-23 Mitsubishi Electric Corporation Mode control waveguide laser device
JP2017017194A (en) * 2015-07-01 2017-01-19 三菱電機株式会社 Carbon dioxide gas laser amplifier, carbon dioxide gas laser oscillator, and carbon dioxide gas laser oscillation-amplification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839908B2 (en) 2005-03-30 2010-11-23 Mitsubishi Electric Corporation Mode control waveguide laser device
JP2017017194A (en) * 2015-07-01 2017-01-19 三菱電機株式会社 Carbon dioxide gas laser amplifier, carbon dioxide gas laser oscillator, and carbon dioxide gas laser oscillation-amplification system

Similar Documents

Publication Publication Date Title
US5349600A (en) Solid state laser
JP3089017B2 (en) High power laser device with combination of focusing mirrors
US4740983A (en) Laser apparatus for minimizing wavefront distortion
US3622907A (en) Composite oscillator amplifier laser
JPH03190293A (en) Slab type laser medium
US4744073A (en) Recording/reproducing optical system utilizing semiconductor laser light source and anamorphic imaging element
US11431145B2 (en) Solid-state laser gain medium with inclined reflective planes for pump and seed radiation confinement
US4912713A (en) Solid state laser rod for optimizing efficiency and minimizing wave front distortion
US4783789A (en) Annular lasing apparatus
US5095389A (en) Beam shaping optical system
JPS6175579A (en) Laser amplifier
US4571076A (en) Blooming auto collimator
US3825856A (en) Laser generator for single transverse mode operation
GB2253714A (en) Preventing ghosting in scanning optical system
KR102400468B1 (en) Optical system for counting particles
US4787092A (en) Laser utilizing a negative branch instable cavity resonator
JP2001264551A (en) Optical waveguide for optical spectrometer whose incident aperture are integrally shaped
JPH0754376B2 (en) Optical disk device
JPH06223401A (en) Super-high resolution optical element and optical memory
CN111148986A (en) Compact sensing device
JP2570253B2 (en) Laser beam resonator system and laser beam transmission system
JPS62196622A (en) Collimater lens for semiconductor laser
CA1176361A (en) Longitudinally pumped dye laser arrangement
JPH06216438A (en) Slab type solid laser device
JPH01312521A (en) Optical system for vacuum device