JPH01312521A - Optical system for vacuum device - Google Patents

Optical system for vacuum device

Info

Publication number
JPH01312521A
JPH01312521A JP14494388A JP14494388A JPH01312521A JP H01312521 A JPH01312521 A JP H01312521A JP 14494388 A JP14494388 A JP 14494388A JP 14494388 A JP14494388 A JP 14494388A JP H01312521 A JPH01312521 A JP H01312521A
Authority
JP
Japan
Prior art keywords
lens
index
refractive index
optical axis
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14494388A
Other languages
Japanese (ja)
Inventor
Hisami Nishi
壽巳 西
Katsumi Ura
裏 克巳
Hiroshi Nishihara
西原 浩
Akio Takaoka
昭夫 鷹岡
Masamitsu Haruna
正光 春名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP14494388A priority Critical patent/JPH01312521A/en
Publication of JPH01312521A publication Critical patent/JPH01312521A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size and weight of the optical system by composing a collimator lens of one axially distributed index lens. CONSTITUTION:The single axially distributed index lens (ZGI lens) is used as the collimator lens 16. The ZGI lens is a lens given a uniform refractive index distribution which decreases gradually and linearly or nearly linearly in the direction of an optical axis 16B in a spherical lens base body while maximum at the center point 0 of a spherical lens surface 16A and is uniform in a plane 16C crossing the optical axis at right angles. Namely, the refracting index is maximum at the center point 0 on the plane 16C crossing the optical axis at right angles and decreases radially toward the periphery. Namely, the refractive index index whose refractive index contours 16D are concentric is obtained. A relay lens system 15 guides parallel light from the collimator lens 16 to an objective 17. Consequently, a small-sized unit is obtained in combination with a spot light source body 13 and high-accuracy and stable light beam irradiation is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子顕微鏡等の真空装置内に置かれた試料に
光ビームを照射するための光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical system for irradiating a light beam onto a sample placed in a vacuum apparatus such as an electron microscope.

〔従来の技術〕[Conventional technology]

電子顕微鏡等の真空装置内に置かれた試料に高エネルギ
ーの光ビームを照射し、試料の特性変化を、電子ビーム
等で観察する装置において、光ビームの照射装置は重要
な役割を果す。電子ビームが試料に照射されるため、こ
のビームを妨げない構造の光学系が要求されている。同
時に、より高いエネルギーを照射するには、高効率の光
学系を用いなくてはならない。
BACKGROUND ART A light beam irradiation device plays an important role in an apparatus that irradiates a high-energy light beam onto a sample placed in a vacuum apparatus such as an electron microscope and observes changes in the characteristics of the sample using an electron beam or the like. Since the sample is irradiated with an electron beam, an optical system is required that does not interfere with the electron beam. At the same time, higher energy irradiation requires the use of highly efficient optical systems.

従来、この様な光ビーム照射光学系としては、第4図に
示すように、真空装置1の外部に置かれたガスレーザを
代表とする大型の光源2とビーム拡大光学系3、真空チ
ャンバ−4側面に設けたレーザ光透過窓5、および電子
ビーム6が通るように中心に穴を明けた集光用反射放物
面鏡7とから成るものが用いられていた。
Conventionally, as shown in FIG. 4, such a light beam irradiation optical system includes a large light source 2, typically a gas laser, placed outside a vacuum device 1, a beam expansion optical system 3, and a vacuum chamber 4. A device consisting of a laser beam transmitting window 5 provided on the side surface and a condensing reflective parabolic mirror 7 having a hole in the center through which the electron beam 6 passes was used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の装置では各部品が大型であるばかりでなく、
光学軸の調整が常に必要であり、きわめて取扱いにくい
ものであった。
In the conventional equipment mentioned above, not only each part is large, but also
The optical axis always needs to be adjusted, making it extremely difficult to handle.

〔問題点を解決するための手段〕[Means for solving problems]

半導体レーザ、光ファイバー等の点光源と、この光源か
らの放射光を平行に成形するコリメートレンズと、平行
光を集光して試料にスポット照射する対物レンズとを一
体止゛ユニットに構成し、且つ前記コリメートレンズと
して軸方向屈折率分布型レンズを使用した。
A point light source such as a semiconductor laser or an optical fiber, a collimating lens that shapes the emitted light from the light source in parallel, and an objective lens that collects the parallel light and irradiates the sample with a spot are configured in an integrated stop unit, and An axial gradient index lens was used as the collimating lens.

〔作 用〕[For production]

上記構成によれば、真空装置内での温度変化により金属
製の鏡筒が伸縮しても集光点が移動することがない。し
たがって点光源体と組み合せて小型ユニット化し、真空
装置内に配置しても高精度で安定した光ビーム照射を行
なうことができ、また光軸の調整等はユニットの組み立
て時のみ1回で済む。またコリメートレンズとして貼合
せレンズではなく、単一の軸方向屈折率分布型レンズを
用いているので、高真空中に設置しても接着剤からのガ
ス発生もなく、高パワー、高効率の光照射を行なうこと
ができる。
According to the above configuration, even if the metal lens barrel expands or contracts due to temperature changes within the vacuum device, the focal point does not move. Therefore, even if it is combined with a point light source to form a compact unit and placed in a vacuum device, highly accurate and stable light beam irradiation can be performed, and the adjustment of the optical axis only needs to be done once when assembling the unit. In addition, since a single axial gradient index lens is used as the collimating lens instead of a laminated lens, there is no gas generation from the adhesive even when installed in a high vacuum, and high power and high efficiency light can be produced. Irradiation can be performed.

〔実施例〕〔Example〕

以下本発明を図面に示した実施例に基づいて詳細に説明
する。
The present invention will be described in detail below based on embodiments shown in the drawings.

第1図は本発明に係る光学系を設置した電子顕微鏡の真
空装置の断面を示し、真空チャコ/バー10内には、試
料8に光ビームを集光照射する光学系11を設けである
FIG. 1 shows a cross section of a vacuum apparatus of an electron microscope equipped with an optical system according to the present invention. An optical system 11 for condensing and irradiating a light beam onto a sample 8 is provided in a vacuum chamber/bar 10.

第2図は第1図中の光学系11の拡大断面を示し、筒状
の光源ハウジング12内の一端側には、点光源体の一例
として半導体レーザ13が取り付けてあり、この光源ハ
ウジング12の他端開口には、リレーレンズ系を保持す
る鏡筒14が固着しである。
FIG. 2 shows an enlarged cross section of the optical system 11 in FIG. A lens barrel 14 that holds a relay lens system is fixed to the other end opening.

鏡筒14内に保持されたリレーレンズ系15は、半導体
レーザ13からの放射光を平行光に成形するコリメート
レンズ16と、このコリメートレンズ16から間隔をお
いて配置された平行光を集光して試料8にスポット照射
するための対物レンズ17とで構成されている。
A relay lens system 15 held within the lens barrel 14 includes a collimating lens 16 that forms the emitted light from the semiconductor laser 13 into parallel light, and a collimating lens 16 that focuses the parallel light that is spaced apart from the collimating lens 16. and an objective lens 17 for irradiating a spot onto the sample 8.

半導体レーザからの放射光を、より効率良くコリメート
レンズ16で集めるには、コリメートレンズ16は開口
数が大きい方がよい。開口数が大きくなると、通常の均
質媒質を用いた球面レンズでは、球面収差を補正するた
め、最低2枚のレンズを接着剤で貼合わせた組合せレン
ズが用いられる。しかしながら接着剤を用いたレンズを
高真空中に置くと、ガス発生のため、真空度が上がらず
実用にならない。
In order for the collimator lens 16 to collect the emitted light from the semiconductor laser more efficiently, it is preferable that the collimator lens 16 has a large numerical aperture. When the numerical aperture becomes large, a combination lens consisting of at least two lenses bonded together with an adhesive is used to correct spherical aberration in a normal spherical lens using a homogeneous medium. However, if a lens using an adhesive is placed in a high vacuum, the degree of vacuum will not increase due to gas generation, making it impractical.

そこで本発明ではコリメートレンズ16として、単一の
軸方向屈折率分布型レンズ(以下ZGIレンズと記す)
を用いる。
Therefore, in the present invention, a single axial gradient index lens (hereinafter referred to as ZGI lens) is used as the collimating lens 16.
Use.

ZGIレンズは第3図に示すように、球面レンズ母体中
に、球面レンズ面16Aの中心0点を最大とし光軸16
B方向に直線状ないしはほぼ直線状に漸減するとともに
、光軸に直交する面16C内では−様な屈折率分布を与
えたレンズであり、レンズ面16Aの面上で、中心点0
を最大とし、周辺に向けて半径方向に漸減する、つまり
等屈折率線16 Dが同心円状を成す屈折率分布を有し
ている。
As shown in Fig. 3, the ZGI lens has an optical axis 16 in the spherical lens matrix with the maximum point at the center 0 of the spherical lens surface 16A.
It is a lens that gradually decreases linearly or almost linearly in the direction B, and has a −-like refractive index distribution within the surface 16C perpendicular to the optical axis, and has a center point 0 on the lens surface 16A.
The refractive index distribution has a maximum value and gradually decreases in the radial direction toward the periphery, that is, the equirefractive index lines 16D form concentric circles.

上記のような屈折率分布をもつZGIレンズでは、レン
ズ面16Aに入射する光線は、屈折率−様な通常の球面
レンズに比べて、周辺部において相対的に屈折角が小さ
くなり、これにより球面レンズでありながら非球面レン
ズと同様の球面収差補正能を有している。
In the ZGI lens having the refractive index distribution as described above, the light rays incident on the lens surface 16A have a relatively small refraction angle at the periphery compared to a normal spherical lens with a similar refractive index. Although it is a lens, it has the same ability to correct spherical aberration as an aspheric lens.

上記ようなZGIレンズは、例えばガラス基板の表面か
らタリウムイオン等の高屈折率化イオンを、ガラス中の
イオンとの交換により基板内に拡散させ、イオンの濃度
分布に基づく屈折率勾配をガラス基板の厚み方向に形成
した後、通常のレンズと同様の球面加工を施すことによ
り得られる。
The ZGI lens described above diffuses ions with a high refractive index, such as thallium ions, from the surface of a glass substrate into the substrate by exchanging them with ions in the glass, and creates a refractive index gradient based on the concentration distribution of the ions on the glass substrate. It is obtained by forming the lens in the thickness direction and then subjecting it to the same spherical processing as a normal lens.

なおZC,Iレンズの詳細については、例えば特開昭5
9−33415(特願昭57−142991) 、特開
昭60−250319 (特願昭59−105920)
に記載されている。
For details on ZC and I lenses, see, for example, Japanese Patent Application Laid-open No. 5
9-33415 (Japanese Patent Application 1982-142991), Japanese Patent Application Publication No. 60-250319 (Patent Application 1987-105920)
It is described in.

リレーレンズ系15においては、コリメートレンズ16
から平行光が対物レンズ17まで導かれる。
In the relay lens system 15, the collimating lens 16
The parallel light is guided to the objective lens 17.

対物Iノンズ17は屈折率−様な媒質から成る通常の球
面レンズであってよい。
The objective I-nons 17 may be a conventional spherical lens made of a medium with a similar refractive index.

、二のように平行光で導くことにより、コリメートレン
ズ16と対物レンズ17の距離が長い場合、温度変化に
より金属製の鏡筒12が伸縮しても、集光点18が移動
しない。
When the distance between the collimating lens 16 and the objective lens 17 is long, the condensing point 18 does not move even if the metal lens barrel 12 expands or contracts due to temperature changes.

そして、この光学系全体を対物レンズのある鏡筒部分1
4Aで保持すれば、温度変化による伸縮の影響をいっさ
い受けない゛ことになり、金属部品に特別なものを用い
ずともよいことになる。
The entire optical system is connected to the lens barrel section 1 where the objective lens is located.
If it is held at 4A, it will not be affected by expansion and contraction due to temperature changes, and there will be no need to use special metal parts.

ところで、電子ビーム19をプローブとして用いる電子
顕微鏡では、試料から散乱された電子が誘導体にトラッ
プされるチャージアップ現象を引き起す。
By the way, in an electron microscope that uses the electron beam 19 as a probe, a charge-up phenomenon occurs in which electrons scattered from a sample are trapped in a dielectric.

このチャージアップ現象の防止のために、試料に最も近
い対物レンズ17のガラス面17Aを導電性被膜20で
全面コーティングしている。そしてコーテイング面17
Aと金属製鏡筒14との間は、導電性ペースト21で埋
めている。
In order to prevent this charge-up phenomenon, the entire glass surface 17A of the objective lens 17 closest to the sample is coated with a conductive film 20. And coating surface 17
The space between A and the metal lens barrel 14 is filled with a conductive paste 21.

もちろん、導電性コーティングをレンズ面に施す代りに
、この膜をコーティングしたガラス平板を、対物レンズ
17の試料側に挿入する構造としても効果は同じである
Of course, instead of applying a conductive coating to the lens surface, a glass flat plate coated with this film may be inserted into the sample side of the objective lens 17 to obtain the same effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のものに比べて極めて小型軽量で
あるばかりでなく、安定且つ高性能な光学性能を有する
真空チャンバー内で使用可能な光照射光学系が得られる
According to the present invention, it is possible to obtain a light irradiation optical system that is not only extremely smaller and lighter than conventional systems, but also has stable and high-performance optical performance and can be used in a vacuum chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学系を設置した真空装置を示す断面
図、第2図は本発明の一実施例を示す断面図、第3図は
本発明で使用する軸方向屈折率分布型レンズを示す断面
図及び正面図、第4図従来装置を示す断面図である。 8・・・試料、10・・・真空チャンバー、11・・・
光照射光学系、12・・・光源ハウジング、13・・・
半導体レーザ、14・・・鏡筒、15・・・リレーレン
ズ系、16・・・コリメートレンズ、16C・・・等屈
折率面、16D・・・等屈折率線、17・・・対物レン
ズ、18・・・集光点、19・・・電子ビーム、20・
・・導電性被膜、21・・・導電性ペースト。 第1図 第2図 第3図 り 第4 図(従来装置)
Fig. 1 is a cross-sectional view showing a vacuum apparatus in which the optical system of the present invention is installed, Fig. 2 is a cross-sectional view showing an embodiment of the present invention, and Fig. 3 is an axial gradient index lens used in the present invention. FIG. 4 is a cross-sectional view showing a conventional device. 8... Sample, 10... Vacuum chamber, 11...
Light irradiation optical system, 12... Light source housing, 13...
Semiconductor laser, 14... Lens barrel, 15... Relay lens system, 16... Collimator lens, 16C... Equal refractive index surface, 16D... Equal refractive index line, 17... Objective lens, 18... Focus point, 19... Electron beam, 20.
... Conductive film, 21... Conductive paste. Figure 1 Figure 2 Figure 3 Figure 4 (Conventional device)

Claims (1)

【特許請求の範囲】[Claims] 点光源と、この光源からの放射光を平行に成形するコリ
メートレンズと、該平行光を集光して対象物にスポット
照射する対物レンズとから成り、前記コリメートレンズ
を、1枚の軸方向屈折率分布型レンズで構成したことを
特徴とする真空装置用光学系。
It consists of a point light source, a collimating lens that forms the emitted light from this light source in parallel, and an objective lens that collects the parallel light and irradiates the object with a spot. An optical system for vacuum equipment characterized by being composed of a rate distribution type lens.
JP14494388A 1988-06-13 1988-06-13 Optical system for vacuum device Pending JPH01312521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14494388A JPH01312521A (en) 1988-06-13 1988-06-13 Optical system for vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14494388A JPH01312521A (en) 1988-06-13 1988-06-13 Optical system for vacuum device

Publications (1)

Publication Number Publication Date
JPH01312521A true JPH01312521A (en) 1989-12-18

Family

ID=15373794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14494388A Pending JPH01312521A (en) 1988-06-13 1988-06-13 Optical system for vacuum device

Country Status (1)

Country Link
JP (1) JPH01312521A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311212A (en) * 2001-04-13 2002-10-23 Nippon Sheet Glass Co Ltd Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens
JP2009251618A (en) * 2008-04-10 2009-10-29 Chi Mei Communication Systems Inc Light guiding pole and light source device using it
JP2014178464A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Light source unit, illuminating device, and image projecting device
JP2014529839A (en) * 2011-07-26 2014-11-13 中国科学院物理研究所 Nanopatterning and ultra-wideband electromagnetic property measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311212A (en) * 2001-04-13 2002-10-23 Nippon Sheet Glass Co Ltd Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens
JP2009251618A (en) * 2008-04-10 2009-10-29 Chi Mei Communication Systems Inc Light guiding pole and light source device using it
US8622581B2 (en) 2008-04-10 2014-01-07 Chi Mei Communication Systems, Inc. Light guiding pole and illumination assembly using same
JP2014529839A (en) * 2011-07-26 2014-11-13 中国科学院物理研究所 Nanopatterning and ultra-wideband electromagnetic property measurement system
JP2014178464A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Light source unit, illuminating device, and image projecting device

Similar Documents

Publication Publication Date Title
JP3614294B2 (en) Light intensity conversion element, optical device, and information storage device
US5321717A (en) Diode laser having minimal beam diameter and optics
EP0708970B1 (en) Spherical mirror grazing incidence x-ray optics
JP2526409B2 (en) X-ray lens
KR100206095B1 (en) Method and device for focusing laser beam
JPH08240793A (en) Refration ellipse optical face without spherical aberration
US4017163A (en) Angle amplifying optics using plane and ellipsoidal reflectors
US10264660B2 (en) Beam trap, beam guide device, EUV radiation generating apparatus, and method for absorbing a beam
US6269145B1 (en) Compound refractive lens for x-rays
CN110568625A (en) Polarization-adjustable laser beam expanding collimator
CN112630984A (en) Laser scanning device and scanning method capable of changing size and shape of laser focus position light spot
US20020021782A1 (en) Optical assembly for increasing the intensity of a formed X-ray beam
US11217357B2 (en) X-ray mirror optics with multiple hyperboloidal/hyperbolic surface profiles
US3802767A (en) Catoptric lens arrangement
JPH01312521A (en) Optical system for vacuum device
US4805992A (en) Astigmatism generator
JPH0743643A (en) Semiconductor laser condenser
CN109725431B (en) Compact large-diameter grating compressor and grating parallelism adjusting method thereof
US3633985A (en) Concentration objective composed of four lenses
US6282259B1 (en) X-ray mirror system providing enhanced signal concentration
US8019043B2 (en) High-resolution X-ray optic and method for constructing an X-ray optic
JPH05249370A (en) Inverted telephoto objective lens
Forkner et al. Characteristics of efficient laser diode collimators
CN112666196A (en) Ray integration device
Forkner et al. Characteristics of efficient laser diode collimators