JP2002311212A - Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens - Google Patents

Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens

Info

Publication number
JP2002311212A
JP2002311212A JP2001114775A JP2001114775A JP2002311212A JP 2002311212 A JP2002311212 A JP 2002311212A JP 2001114775 A JP2001114775 A JP 2001114775A JP 2001114775 A JP2001114775 A JP 2001114775A JP 2002311212 A JP2002311212 A JP 2002311212A
Authority
JP
Japan
Prior art keywords
refractive index
lens
optical axis
axis direction
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001114775A
Other languages
Japanese (ja)
Inventor
Hiroshi Koshi
浩志 越
Minoru Taniyama
実 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2001114775A priority Critical patent/JP2002311212A/en
Publication of JP2002311212A publication Critical patent/JP2002311212A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a working method for a lens having distribution of refractive index in an optical axis direction, with which the dispersion of optical performance, especially, of spherical aberration is reduced, and to provide a collimator, with which satisfactory optical performance can be provided by reducing an insertion loss even when an inter-lens distance is changed over a wide range. SOLUTION: In a working method for a lens having distribution of refractive index in an optical axis direction, the lens having spherical surface of a curvature radius (r) on one end face side is formed from a substrate 11 (figure 1 (a)) having the distribution of refractive index different depending on depth positions in the direction of optical axis from one end face 11a, and the side of one end face 11a for each of samples 181 -185 produced from the substrate 11 is ground or polished so that each of stock removal ΔZ1 -ΔZ5 from one end face 11a can be different step by step. The surface refractive index of the end face of each sample produced by grinding is measured. On the basis of this measured result, the refractive index distribution of the substrate 11 is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信分野等でコ
リメータ用レンズとして使用される光軸方向屈折率分布
型レンズの加工方法及び同方法で作製したレンズを用い
たコリメータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of processing a refractive index distribution type lens in the optical axis direction used as a collimator lens in the field of optical communication and the like, and a collimator using a lens manufactured by the method.

【0002】 〔発明の詳細な説明〕[Detailed Description of the Invention]

【0003】[0003]

【発明の属する技術分野】本発明は、光通信分野等でコ
リメータ用レンズとして使用される光軸方向屈折率分布
型レンズの加工方法及び同方法で作製したレンズを用い
たコリメータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of processing a refractive index distribution type lens in the optical axis direction used as a collimator lens in the field of optical communication and the like, and a collimator using a lens manufactured by the method.

【0004】[0004]

【従来の技術】光通信分野等で使用される従来のコリメ
ータとして、例えば、入射側の単一モード光ファイバか
ら出射した光をコリメータレンズにより平行光にし、こ
の平行光を別のコリメータレンズにより集光して受光側
の単一モード光ファイバ等に結合させる構成のものが知
られている。このようなコリメータでは、両コリメータ
レンズ間に光機能素子(例えば、光学フィルタ、光アイ
ソレータ、光スイッチ、光変調器等)を挿入することに
より、入射側の単一モード光ファイバを伝搬してきた光
に所定の作用を及ぼしたのち、再度受光側の単一モード
光ファイバに結合して伝搬させる機能を有する。
2. Description of the Related Art As a conventional collimator used in the field of optical communication, for example, light emitted from a single-mode optical fiber on the incident side is made parallel by a collimator lens, and this parallel light is collected by another collimator lens. A configuration in which light is coupled to a single-mode optical fiber or the like on the light receiving side is known. In such a collimator, an optical functional element (for example, an optical filter, an optical isolator, an optical switch, an optical modulator, etc.) is inserted between the two collimator lenses, so that the light propagating through the single-mode optical fiber on the incident side. After having a predetermined effect on the single mode optical fiber on the light receiving side.

【0005】このようなコリメータ用レンズ(コリメー
タレンズ)として、屈折率がそれぞれ均一な均質球面レ
ンズや均質非球面レンズ、光軸に垂直な半径方向の位置
により屈折率の異なる屈折率分布を持つ半径方向屈折率
分布型ロッドレンズ、及び光軸方向の位置により屈折率
の異なる屈折率分布を持つ光軸方向屈折率分布型レンズ
が使用可能である。
As such a collimator lens (collimator lens), a uniform spherical lens or a uniform aspheric lens having a uniform refractive index, a radius having a refractive index distribution having a different refractive index depending on a radial position perpendicular to the optical axis. A directional refractive index distribution type rod lens and an optical axis direction refractive index distribution type lens having a refractive index distribution having a different refractive index depending on the position in the optical axis direction can be used.

【0006】[0006]

【発明が解決しようとする課題】ところが、光通信分野
等で使用されるコリメータレンズは、球面収差等が小さ
いことが要求される。このため、上記各レンズを、光通
信分野等でコリメータレンズとして使用する場合、以下
の問題点がある。
However, a collimator lens used in the field of optical communication and the like is required to have small spherical aberration and the like. Therefore, when each of the above lenses is used as a collimator lens in an optical communication field or the like, there are the following problems.

【0007】(1)上記均質球面レンズでは、球面収差
を補正するのに、複数の均質球面レンズからなる組合せ
レンズを使用する必要がある。この場合、その組合せレ
ンズの設計及び組立てが複雑になってしまう。
(1) In the above-mentioned homogeneous spherical lens, it is necessary to use a combination lens composed of a plurality of homogeneous spherical lenses in order to correct spherical aberration. In this case, the design and assembly of the combination lens become complicated.

【0008】(2)上記均質非球面レンズでは、単レン
ズで球面収差を最小化する設計が可能である。しかし、
一般に均質非球面レンズはプレス成形で製作されるた
め、同レンズの形状を変更するには金型の変更が必要に
なり、製造コストが増大してしまう。
(2) The above-mentioned homogeneous aspherical lens can be designed to minimize spherical aberration with a single lens. But,
Generally, since a homogeneous aspherical lens is manufactured by press molding, changing the shape of the lens requires a change in a mold, which increases the manufacturing cost.

【0009】(3)上記半径方向屈折率分布型ロッドレ
ンズでは、屈折率分布形状の変更により、球面収差をあ
る程度補正することができる。また、同ロッドレンズ
は、光軸を中心とする円柱状であるので、光ファイバ等
との整合性は良い。しかし、同ロッドレンズの端面が光
軸に垂直な平面である場合、光ファイバ等に対する反射
戻り光が発生し易い。この反射戻り光を低減するため
に、端面を斜めに加工すると、収差が増大し性能が低下
してしまい、製造コストも増大する。
(3) In the radial gradient index rod lens, the spherical aberration can be corrected to some extent by changing the refractive index distribution shape. In addition, since the rod lens has a cylindrical shape centered on the optical axis, it has good matching with an optical fiber or the like. However, when the end surface of the rod lens is a plane perpendicular to the optical axis, reflected return light to an optical fiber or the like is easily generated. If the end face is processed obliquely in order to reduce the reflected return light, the aberration will increase, the performance will decrease, and the manufacturing cost will increase.

【0010】(4)上記光軸方向屈折率分布型レンズ
は、少なくとも一端面側に球面を有する。同レンズで
は、屈折率分布形状の変更により、単レンズでも球面収
差を補正することができる。同レンズでは、イオン交換
等により形成される屈折率分布と、球面の加工状態との
両方により特性が決まる。しかし、同レンズは、一端面
側に上記屈折率分布を持つ基板から作られるが、基板を
その一端面側からどの位削れば波面収差が最小になるの
かが分からない。そのため、図9に示すように光学性能
特に球面収差のばらつきが大きくなってしまう。
(4) The refractive index distribution type lens in the optical axis direction has a spherical surface on at least one end surface side. In this lens, spherical aberration can be corrected even with a single lens by changing the refractive index distribution shape. The characteristics of the lens are determined by both the refractive index distribution formed by ion exchange and the like and the processing state of the spherical surface. However, this lens is made of a substrate having the above-mentioned refractive index distribution on one end surface side, but it is not known how far the substrate should be cut from the one end surface side to minimize the wavefront aberration. Therefore, as shown in FIG. 9, the dispersion of the optical performance, particularly the spherical aberration, becomes large.

【0011】本発明は、このような従来の問題点に着目
してなされたもので、その目的は、光学性能特に球面収
差のばらつきの少ない光軸方向屈折率分布型レンズの加
工方法を提供することにある。また、本発明の別の目的
は、光学性能特に球面収差のばらつきの少ない光軸方向
屈折率分布型レンズを提供することにある。さらに、本
発明の別の目的は、レンズ間距離を広い範囲で変更して
も挿入損失が少なく、良好な光学性能が得られるコリメ
ータを提供することにある。
The present invention has been made in view of such a conventional problem, and an object thereof is to provide a method of processing a refractive index distribution type lens in an optical axis direction with little variation in optical performance, particularly spherical aberration. It is in. Another object of the present invention is to provide a gradient index lens in the optical axis direction with little variation in optical performance, particularly spherical aberration. Still another object of the present invention is to provide a collimator which has a small insertion loss even when the distance between lenses is changed in a wide range, and which can obtain good optical performance.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に係る発明は、一端面からの光軸方向の深
さ位置により屈折率が異なる屈折率分布を有する透明な
基板から、少なくとも前記一端面側を曲率半径rの球面
にした1個以上の光軸方向屈折率分布型レンズを作製す
る光軸方向屈折率分布型レンズの加工方法であって、前
記屈折率分布の実測値に基づき前記レンズを加工するこ
とを要旨とする。
Means for Solving the Problems To solve the above problems, the invention according to claim 1 is based on a transparent substrate having a refractive index distribution having a different refractive index depending on a depth position from one end face in an optical axis direction. A method of processing an optical axis direction gradient index lens to produce at least one optical axis direction gradient index lens having at least one end surface having a spherical surface with a radius of curvature r, wherein the measured value of the refractive index distribution is measured. The gist is to process the lens based on.

【0013】この構成によれば、屈折率分布の実測値に
基づき前記レンズを加工するので、同実測値から、基板
をその一端面側からどの位削れば波面収差が最小になる
のかが分かる。このため、波面収差が最小となる削り量
を狙いとして基板の一端面側を研削することができ、光
学性能特に球面収差のばらつきの少ない光軸方向屈折率
分布型レンズが作製可能となる。
According to this configuration, since the lens is processed based on the actually measured value of the refractive index distribution, it is possible to determine from the actually measured value how far the substrate should be cut from one end surface side to minimize the wavefront aberration. For this reason, it is possible to grind the one end surface side of the substrate with the aim of the shaving amount at which the wavefront aberration is minimized, and it is possible to manufacture a refractive index distribution type lens with small variations in optical performance, particularly spherical aberration.

【0014】請求項2に係る発明は、請求項1に記載の
光軸方向屈折率分布型レンズの加工方法において、前記
屈折率分布の実測値に基づき、波面収差が最小となる前
記一端面からの最適削り量ΔZmと、同最適削り量ΔZ
mだけ削ったときの表面屈折率ntとを求め、この表面
屈折率ntと、予め設定される開口数NAと、予め設定
されるレンズの有効径De又は前記曲率半径rとに基づ
き、曲率半径r又は有効径Deを求めることを要旨とす
る。
According to a second aspect of the present invention, in the method of processing a refractive index distribution type lens in the optical axis direction according to the first aspect, based on the actually measured value of the refractive index distribution, the one end face where the wavefront aberration is minimized. Of optimal cutting amount ΔZm and optimal cutting amount ΔZ
Determine the surface refractive index n t when shaving by m, based on this surface refractive index n t , a preset numerical aperture NA, and a preset effective diameter De of the lens or the radius of curvature r, The gist is to determine the radius of curvature r or the effective diameter De.

【0015】この構成によれば、屈折率分布の実測値に
基づき波面収差が最小となる一端面からの最適削り量Δ
Zmを求めるので、同削り量ΔZmを狙いとして基板の
一端面側を研削することができる。これにより、波面収
差のばらつきの少ない光軸方向屈折率分布型レンズが基
板から作製可能となる。
According to this configuration, based on the actually measured value of the refractive index distribution, the optimum shaving amount Δ from one end face where the wavefront aberration is minimized.
Since Zm is obtained, it is possible to grind one end surface side of the substrate with the aim of the same shaving amount ΔZm. This makes it possible to manufacture a refractive index distribution type lens in the optical axis direction with a small variation in wavefront aberration from the substrate.

【0016】また、最適削り量ΔZmだけ削ったときの
表面屈折率ntと、予め設定される開口数NAと、予め
設定されるレンズの有効径De又は前記曲率半径rとに
基づき、曲率半径r又は有効径Deを求めることができ
る。このため、設計パラメータとして開口数NAと、レ
ンズの有効径De又は曲率半径rとを与えることによ
り、加工パラメータとして、最適削り量ΔZmの他に、
有効径De又は曲率半径rが得られる。これにより、少
なくとも一端面側を球面にした光軸方向屈折率分布型レ
ンズが、基板から容易に作製可能となる。
The radius of curvature is determined based on the surface refractive index n t obtained by cutting by the optimum shaving amount ΔZm, the preset numerical aperture NA, and the preset effective diameter De of the lens or the radius of curvature r. r or the effective diameter De can be determined. Therefore, by giving the numerical aperture NA as a design parameter and the effective diameter De or the radius of curvature r of the lens, in addition to the optimum shaving amount ΔZm as a processing parameter,
The effective diameter De or the radius of curvature r is obtained. Thus, a refractive index distribution type lens in the optical axis direction having at least one spherical surface on one end surface side can be easily manufactured from the substrate.

【0017】請求項3に係る発明は、請求項1又は2に
記載の光軸方向屈折率分布型レンズの加工方法におい
て、前記波面収差が最小となる前記最適削り量ΔZm
は、前記実測値を、前記削り量ΔZの異なる前記光軸方
向の各深さ位置Zにおける屈折率n(Z)を表す下記の
多項式 n(Z)=n0+n1Z+n22+・・・(ここで、n0
はΔZ=0の位置での屈折率、n1は1次項の分布定
数、n2は2次項の分布定数である。)に当てはめて前
記屈折率分布を得るとともに、同屈折率分布に基づき波
面収差を前記一端面からの削り量ΔZの関数として求め
ことにより得ることを要旨とする。
According to a third aspect of the present invention, in the method of processing a refractive index distribution type lens in the optical axis direction according to the first or second aspect, the optimum shaving amount ΔZm in which the wavefront aberration is minimized.
Is the following polynomial n (Z) = n 0 + n 1 Z + n 2 Z 2 + · representing the refractive index n (Z) at each depth position Z in the optical axis direction having a different shaving amount ΔZ. .. (where n 0
Is the refractive index at the position of ΔZ = 0, n 1 is the distribution constant of the first-order term, and n 2 is the distribution constant of the second-order term. ) To obtain the refractive index distribution and obtain the wavefront aberration based on the refractive index distribution as a function of the shaved amount ΔZ from the one end face.

【0018】この構成によれば、前記実測値を、上記多
項式に当てはめることにより、前記基板の屈折率分布を
正確に知ることができる。このとき、その基板の屈折率
分布は、理想的には直線分布(1次項まで)で表される
が、実際にイオン交換法により形成された屈折率分布は
直線分布からずれるため、このずれを高次項で補正する
ことができる。
According to this configuration, the refractive index distribution of the substrate can be accurately known by applying the measured value to the polynomial. At this time, the refractive index distribution of the substrate is ideally represented by a linear distribution (up to the first order term), but the refractive index distribution actually formed by the ion exchange method deviates from the linear distribution. It can be corrected by higher order terms.

【0019】また、こうして得られる屈折率分布に基づ
き、波面収差を前記一端面からの削り量ΔZの関数とし
て求めることができる。この計算は、光学シュミレーシ
ョンソフトを使って行う。また、その関数から、波面収
差が最小となる削り量ΔZmを求めることができる。
Further, based on the refractive index distribution thus obtained, the wavefront aberration can be obtained as a function of the shaved amount ΔZ from the one end face. This calculation is performed using optical simulation software. Further, the shaving amount ΔZm that minimizes the wavefront aberration can be obtained from the function.

【0020】請求項4に係る発明は、請求項1〜3のい
ずれか一項に記載の光軸方向屈折率分布型レンズの加工
方法において、前記基板の一端面側を、該一端面からの
光軸方向の削り量ΔZを段階的に変えて研削或いは研磨
し、前記深さ位置がそれぞれ異なる各端面の表面屈折率
をそれぞれ測定することにより、前記屈折率分布の実測
値を得ることを要旨とする。
According to a fourth aspect of the present invention, in the method of processing a refractive index distribution type lens in the optical axis direction according to any one of the first to third aspects, one end surface of the substrate is moved from the one end surface. The point is that the actual measured value of the refractive index distribution is obtained by grinding or polishing while gradually changing the shaving amount ΔZ in the optical axis direction and measuring the surface refractive index of each end surface having the different depth position. And

【0021】この構成によれば、基板の一端面側を、光
軸方向の削り量ΔZを段階的に変えて研削或いは研磨
し、前記深さ位置がそれぞれ異なる各端面の表面屈折率
をそれぞれ測定するので、この測定結果に基づき基板の
正確な屈折率分布が得られる。これにより、光学性能特
に球面収差のばらつきの少ない光軸方向屈折率分布型レ
ンズが作製可能となる。
According to this configuration, the one end surface of the substrate is ground or polished by gradually changing the shaving amount ΔZ in the optical axis direction, and the surface refractive index of each end surface having the different depth position is measured. Therefore, an accurate refractive index distribution of the substrate can be obtained based on the measurement result. This makes it possible to manufacture a refractive index distribution type lens with small variations in optical performance, particularly spherical aberration, in the optical axis direction.

【0022】請求項5に係る発明は、請求項4に記載の
光軸方向屈折率分布型レンズの加工方法において、前記
各端面の表面屈折率を測定する際に、前記基板をその光
軸方向に沿って切断した複数個の試料の各一端面側を、
同一端面からの前記削り量ΔZがそれぞれ異なるように
研削或いは研磨するとともに、削られてできる各試料の
端面の表面屈折率を測定することを要旨とする。
According to a fifth aspect of the present invention, in the method of processing a refractive index distribution type lens in the optical axis direction according to the fourth aspect, when measuring the surface refractive index of each end face, the substrate is moved in the optical axis direction. Each end face side of a plurality of samples cut along
The gist is to grind or polish such that the shaving amount ΔZ from the same end face is different from each other, and to measure the surface refractive index of the end face of each of the cut samples.

【0023】この構成によれば、基板から複数個の試料
を作り、各試料の一端面側を前記削り量ΔZがそれぞれ
異なるように研削或いは研磨し、削られてできる各試料
の端面の表面屈折率を測定するので、この測定結果に基
づき基板の正確な屈折率分布が得られる。このため、同
一のイオン交換ロットで所望の屈折率分布がそれぞれ形
成された複数個の基板の一つのみを使って、基板の屈折
率分布を知ることができる。
According to this configuration, a plurality of samples are formed from the substrate, and one end surface of each sample is ground or polished so that the shaving amount ΔZ is different from each other, and the surface refraction of the end surface of each sample formed by the cutting is performed. Since the index is measured, an accurate refractive index distribution of the substrate can be obtained based on the measurement result. For this reason, the refractive index distribution of the substrate can be known using only one of the plurality of substrates each having the desired refractive index distribution formed in the same ion exchange lot.

【0024】請求項6に係る発明は、請求項5に記載の
光軸方向屈折率分布型レンズの加工方法において、前記
複数個の試料の各一端面側を削り量ΔZがそれぞれ異な
るように研削或いは研磨する際に、各試料を、その一端
面側を上にして、各試料の削り量ΔZに応じて高さの異
なる複数の載置面にそれぞれ載せ、この状態で複数個の
試料の各一端面側を同じ高さ位置で研削或いは研磨する
ことを要旨とする。
According to a sixth aspect of the present invention, in the method of processing a refractive index distribution type lens in the optical axis direction according to the fifth aspect, each of the plurality of samples is ground such that the amount of shaving ΔZ is different from each other. Alternatively, at the time of polishing, each sample is placed on a plurality of mounting surfaces having different heights according to the shaved amount ΔZ of each sample, with one end surface thereof facing upward, and in this state, each of the plurality of samples is The gist is to grind or polish one end surface at the same height position.

【0025】この構成によれば、各試料の削り量ΔZに
応じて高さの異なる複数の載置面を有する治具を作製し
ておき、これらの載置面のうち、高さの低い載置面には
削り量ΔZの小さい試料が載るように、複数の載置面に
複数個の試料を順に載せる。この状態で、複数個の試料
の各一端面側を同じ高さ位置で研削或いは研磨すること
により、複数個の試料に対して、一端面からの削り量Δ
Zが異なるように1回の加工で簡単に削ることができ
る。これにより、複数個の試料を所望の長さに研削或い
は研磨する作業を効率良く行うことができる。
According to this configuration, a jig having a plurality of mounting surfaces having different heights in accordance with the shaving amount ΔZ of each sample is prepared, and among these mounting surfaces, a mounting device having a low height is prepared. A plurality of samples are sequentially placed on the plurality of mounting surfaces such that a sample having a small shaving amount ΔZ is mounted on the mounting surface. In this state, by grinding or polishing each one end surface of the plurality of samples at the same height position, the shaving amount Δ from one end surface for the plurality of samples is obtained.
It can be easily cut by one processing so that Z is different. Thereby, the operation of grinding or polishing a plurality of samples to a desired length can be efficiently performed.

【0026】請求項7に係る発明は、上記請求項1〜6
のいずれか一項に記載の光軸方向屈折率分布型レンズの
加工方法で作製される光軸方向屈折率分布型レンズであ
る。この構成によれば、上記加工方法で作製されるの
で、光学性能特に球面収差のばらつきが低減される。ま
た、少なくとも一端側に球面を有するので、反射戻り光
が低減される。
The invention according to claim 7 is the invention according to claims 1-6.
An optical axis direction gradient index lens manufactured by the method for processing an optical axis direction gradient index lens according to any one of the above items. According to this configuration, since it is manufactured by the above-described processing method, variation in optical performance, particularly, spherical aberration is reduced. In addition, since at least one end has a spherical surface, reflected return light is reduced.

【0027】請求項8に係る発明は、上記請求項1〜6
のいずれか一項に記載の光軸方向屈折率分布型レンズの
加工方法で作製したレンズを用いたコリメータであっ
て、前記光軸方向屈折率分布型レンズを2個用い、これ
ら2つのレンズを、前記一端面側に形成した各々の曲面
を対向させるとともに、互いの光軸を一致させて配置し
てなることを要旨とする。
The invention according to claim 8 is the invention according to claims 1 to 6.
A collimator using a lens manufactured by the method for processing an optical axis direction gradient index lens according to any one of the above, wherein the two optical axis direction gradient index lenses are used, and these two lenses are used. The gist is that the curved surfaces formed on the one end surface side are opposed to each other, and are arranged so that their optical axes coincide with each other.

【0028】この構成によれば、上記加工方法で作製さ
れる光学性能特に球面収差のばらつきの少ない光軸方向
屈折率分布型レンズレンズを2個用いてコリメータが構
成されている。このため、コリメータのレンズ間距離L
と挿入損失の関係を示す図8から明らかなように、例え
ば、レンズ間距離LがL=0からL=1000mm付近
までの広い範囲にわたって、挿入損失が小さくなり、良
好な光学性能が得られる。
According to this configuration, a collimator is formed by using two optical axis direction refractive index distribution type lenses having small variations in optical performance, particularly spherical aberration, manufactured by the above processing method. For this reason, the distance L between the lenses of the collimator
As is clear from FIG. 8 showing the relationship between the insertion loss and the insertion loss, for example, the insertion loss is reduced over a wide range where the distance L between lenses is from L = 0 to around L = 1000 mm, and good optical performance is obtained.

【0029】[0029]

【発明の実施の形態】以下、本発明を具体化した光軸方
向屈折率分布型レンズの加工方法、同方法で作製した光
軸方向屈折率分布型レンズ、及び同レンズを用いたコリ
メータの各実施形態について、図面を参照して説明す
る。なお、各実施形態の説明において、同様の部位には
同一の符号を付して重複した説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for processing a gradient index lens in the optical axis direction embodying the present invention, a gradient index lens in the optical axis direction produced by the method, and a collimator using the lens will be described. Embodiments will be described with reference to the drawings. In the description of each embodiment, the same portions are denoted by the same reference numerals, and redundant description will be omitted.

【0030】[ 加工方法の一実施形態]図1(a)〜
(f)は一実施形態に係る光軸方向屈折率分布型レンズ
の加工方法を示しており、図2(a)は同加工方法で作
製される光軸方向屈折率分布型レンズを示している。
[One Embodiment of Processing Method] FIGS.
FIG. 2F shows a method of processing an optical axis direction gradient index lens according to an embodiment, and FIG. 2A shows an optical axis direction gradient index lens manufactured by the same processing method. .

【0031】本実施形態の加工方法は、図1(a)に示
す透明な基板11から、図2(a)に示す光軸方向屈折
率分布型レンズ12を1個以上作製するための方法であ
る。図1(a)に示す基板11はガラス基板であり、同
基板11には、一端面11aから光軸方向(幅方向)の
所定の深さ位置Aまで、同方向の深さ位置に応じて屈折
率が異なる屈折率分布がイオン交換により形成されてい
る。すなわち、基板11は、前記屈折率分布を持つ一端
面11aから所定の深さ位置Aまでの屈折率分布領域1
3と、屈折率が均一である前記位置Aから他端面11b
までの屈折率均質領域14とを備える。また、屈折率分
布領域13では、屈折率が、一端面11aからの光軸方
向における深さ位置に応じてほぼ直線的に小さくなって
いる(図1(b)参照)。なお、同図(b)は、基板1
1を、光軸方向に沿って円柱状に切り出した一つの試料
の断面を示している。
The processing method of this embodiment is a method for producing one or more refractive index distribution type lenses 12 in the optical axis direction shown in FIG. 2A from the transparent substrate 11 shown in FIG. is there. The substrate 11 shown in FIG. 1A is a glass substrate. The substrate 11 has a depth from one end surface 11a to a predetermined depth position A in the optical axis direction (width direction) according to the depth position in the same direction. Refractive index distributions having different refractive indices are formed by ion exchange. That is, the substrate 11 has a refractive index distribution region 1 extending from the one end face 11a having the refractive index distribution to a predetermined depth position A.
3 and the other end face 11b from the position A where the refractive index is uniform.
And a uniform refractive index region 14 up to Further, in the refractive index distribution region 13, the refractive index decreases substantially linearly according to the depth position from the one end face 11a in the optical axis direction (see FIG. 1B). FIG. 2B shows the substrate 1
1 shows a cross section of one sample cut into a column along the optical axis direction.

【0032】また、光軸方向屈折率分布型レンズ12
は、図2(a)に示すように、前記一端面11a側、す
なわち屈折率分布領域13側に曲率半径rの球面15を
有し、他端面11b側にレンズ光軸16に垂直な平面1
7を有している。すなわち、光軸方向屈折率分布型レン
ズ(以下、単にレンズという。)12では、前記深さ位
置に応じて屈折率がn0からΔnだけほぼ直線的に小さ
くなる屈折率分布領域13に、球面15が形成されてい
る(図2(b)参照)。
The optical axis direction refractive index distribution type lens 12
As shown in FIG. 2A, a flat surface 1 having a spherical surface 15 with a radius of curvature r on the one end surface 11a side, that is, the refractive index distribution region 13 side, and a vertical surface 1 perpendicular to the lens optical axis 16 on the other end surface 11b side.
7. That is, in the refractive index distribution type lens (hereinafter, simply referred to as a lens) 12 in the optical axis direction, the refractive index distribution region 13 in which the refractive index decreases substantially linearly from n 0 by Δn according to the depth position has a spherical surface. 15 are formed (see FIG. 2B).

【0033】本実施形態の加工方法は、以下の工程
(1)〜工程(7)を備える。 (工程1)図1(a)に示す基板11を、光軸方向に沿
って切断し或いは切り出して図1(b)に示す試料18
を複数個作製する。本例では、基板11を光軸方向に沿
って円柱状に切り出した5個の試料181〜185(図1
(b),(c)参照)を作製する。
The processing method of the present embodiment includes the following steps (1) to (7). (Step 1) The substrate 11 shown in FIG. 1A is cut or cut out along the optical axis direction, and a sample 18 shown in FIG.
Are prepared. In this example, five samples 18 1-18 5 cut along the substrate 11 in the optical axis direction in a cylindrical shape (Fig. 1
(See (b) and (c)).

【0034】(工程2)各試料181〜185の一端面1
1a側を、図1(c)に示すように、その一端面11a
からの削り量(球面側削り量)ΔZ(ΔZ1〜ΔZ5)が
段階的に異なるように研削或いは研磨する。ここで、各
削り量ΔZ1〜ΔZ5は、ΔZ 1<ΔZ2<ΔZ3<ΔZ4
ΔZ5の関係になっている。
(Step 2) Each sample 181~ 18FiveOne end face of
As shown in FIG. 1C, one end face 11a
From the surface (amount of grinding on the spherical surface side) ΔZ (ΔZ1~ ΔZFive)But
Grind or polish differently in stages. Where each
Cutting amount ΔZ1~ ΔZFiveIs ΔZ 1<ΔZTwo<ΔZThree<ΔZFour<
ΔZFiveIs in a relationship.

【0035】このように、各試料181〜185の一端面
11a側を、削り量ΔZ1〜ΔZ5がそれぞれ異なるよう
に研削或いは研磨するために、本例では、底面19aか
らの高さの異なる5つの載置面191〜195を有する研
削加工用の治具19を用いる。5つの載置面191〜1
5は、載置面191側から載置面195側に向かって高
さが次第に高くなっている。
As described above, in order to grind or polish the one end surface 11a side of each of the samples 18 1 to 18 5 so that the shaving amounts ΔZ 1 to ΔZ 5 are different from each other, in this embodiment, the height from the bottom surface 19a is set. Jig 19 having five different mounting surfaces 19 1 to 19 5 is used. Five mounting surfaces 19 1 -1
9 5 has a height towards the surface 19 5 side mounting from the mounting surface 19 1 side is increasingly high.

【0036】各載置面191〜195に、各試料181
185をその一端面11a側が上になる姿勢で載せる。
このとき、これらの載置面のうち、高さの低い載置面に
は削り量ΔZの小さい試料が載るように、複数の載置面
に複数個の試料を順に載せる。この状態で、5個の試料
181〜185の各一端面11a側を、治具19の底面1
9aから同じ高さHの位置で一度に研削或いは切断す
る。これにより、各試料181〜185の一端面11a側
が、削り量ΔZ1〜ΔZ5だけそれぞれ削られる(図1
(c)参照)。
Each of the samples 18 1 to 18 5 is placed on each of the mounting surfaces 19 1 to 19 5.
18 5 Post posture to become the one end surface 11a on the side is.
At this time, a plurality of samples are sequentially placed on the plurality of mounting surfaces such that a sample having a small shaving amount ΔZ is mounted on a mounting surface having a low height among these mounting surfaces. In this state, the five respective end face 11a of the sample 18 1-18 5, the bottom surface 1 of the jig 19
Grind or cut all at once at the same height H from 9a. Thus, one end surface 11a side is the respective samples 18 1-18 5, scraped respectively by cutting the amount ΔZ 1 ~ΔZ 5 (Fig. 1
(C)).

【0037】(工程3)上記工程(2)で削られてでき
る各試料181〜185の端面の表面屈折率を、例えばア
ッベの屈折率計でそれぞれ測定する。この測定により、
各削り量ΔZ1〜ΔZ5と、削られてできる各試料181
〜185の端面の屈折率(表面屈折率)nΔZ1〜nΔZ
5との関係を示す図3に示すような測定結果が得られ
る。
[0037] (Step 3) the surface refractive index of the end faces of the sample 18 1-18 5 shaved can do in the above step (2), for example measured respectively Abbe's refractometer. With this measurement,
Each shaving amount ΔZ 1 to ΔZ 5 and each sample 18 1 formed by shaving
To 18 the refractive index of the fifth end face of the (surface refractive index) nΔZ 1 ~nΔZ
5 relationship measurement result shown in FIG. 3 showing the between is obtained.

【0038】(工程4)上記工程(3)で得られる測定
結果に基づき、基板11の屈折率分布領域13の屈折率
分布を得る。この屈折率分布は、図3に示す上記測定結
果を、削り量ΔZのそれぞれ異なる光軸方向の各深さ位
置Zにおける屈折率n(Z)を表す下記の多項式(1) n(Z)=n0+n1Z+n22+n33・・・(1) に当てはめて得られる。
(Step 4) The refractive index distribution of the refractive index distribution region 13 of the substrate 11 is obtained based on the measurement result obtained in the above step (3). This refractive index distribution is obtained by converting the above measurement result shown in FIG. 3 into the following polynomial (1) n (Z) = refractive index n (Z) at each depth position Z in the optical axis direction with different shaving amount ΔZ. n 0 + n 1 Z + n 2 Z 2 + n 3 Z 3 (1)

【0039】ここで、n0はΔZ=0の位置、つまり基
板11の一端面11aでの屈折率、n1は1次項の分布
定数、n2は2次項の分布定数、n3は3次項の分布定数
である。
Here, n 0 is the position of ΔZ = 0, that is, the refractive index at one end surface 11a of the substrate 11, n 1 is the distribution constant of the first-order term, n 2 is the distribution constant of the second-order term, and n 3 is the third-order term. Is the distribution constant of

【0040】また、屈折率分布領域13の屈折率分布を
求める際に、必要に応じて上記多項式(1)の高次の項
を加える。つまり、その屈折率分布は、理想的には直線
分布(1次まで)であるが、実際にイオン交換法により
形成される屈折率分布は直線分布からずれるために、こ
のずれを高次の項で補正する。
When calculating the refractive index distribution of the refractive index distribution region 13, higher order terms of the above polynomial (1) are added as necessary. That is, the refractive index distribution is ideally a linear distribution (up to the first order), but the refractive index distribution actually formed by the ion exchange method deviates from the linear distribution. Correct with.

【0041】例えば、上記多項式(1)で2次の項まで
加えることにより、下記に示す分布式(2)が一例とし
て得られる。 n(Z)=1.620 +(-0.060)Z+(0.049 )Z2・・・(2) すなわち、分布式(2)では、n0=1.620 、n1=-0.06
0、n2=0.049 となっている。
For example, by adding up to the second order term in the above polynomial (1), the following distribution equation (2) is obtained as an example. n (Z) = 1.620 + (− 0.060) Z + (0.049) Z 2 (2) That is, in the distribution formula (2), n 0 = 1.620 and n 1 = −0.06
0 and n 2 = 0.049.

【0042】(工程5)上記工程(4)で得られる分布
式、例えば上記分布式(2)で表される屈折率分布に基
づき、RMS(Root Mean Square)波面収差(λ)を一
端面11aからの削り量ΔZの関数として求める。
(Step 5) Based on the distribution equation obtained in the above step (4), for example, the refractive index distribution expressed by the above-mentioned distribution equation (2), the RMS (Root Mean Square) wavefront aberration (λ) is calculated on one end face 11a. As a function of the amount of shaving .DELTA.Z.

【0043】ここでの波面収差の計算は、光学シュミレ
ーションソフト(例えば、米国Sinclair Optics 社のOs
lo Six等)により行う。こうした計算により求めたRM
S波面収差(λ)と削り量ΔZ(mm)の関係を図4で
示してある。同図から、RMS波面収差が最小となる一
端面11aからの最適削り量ΔZmmが、ΔZm=0.
08mmであることがわかる。
Here, the calculation of the wavefront aberration is performed by using optical simulation software (for example, Os by Sinclair Optics, USA).
lo Six etc.). RM obtained by such calculation
FIG. 4 shows the relationship between the S wavefront aberration (λ) and the shaving amount ΔZ (mm). From the figure, the optimum shaving amount ΔZmm from the one end face 11a at which the RMS wavefront aberration is minimized is ΔZm = 0.
It turns out that it is 08 mm.

【0044】(工程6)上記工程(5)で得られた最適
削り量ΔZmだけ基板11を削ったときにできる端面の
表面屈折率nt(図1(d)参照)を求める。求めた表
面屈折率ntと、それぞれ予め設定されるレンズ12の
開口数NA及び有効径De(図2(a)参照)とに基づ
き、レンズ12の焦点距離f及び曲率半径rが求まる。
(Step 6) The surface refractive index n t (see FIG. 1 (d)) of the end face formed when the substrate 11 is cut by the optimum shaving amount ΔZm obtained in the above step (5) is obtained. The focal length f and the radius of curvature r of the lens 12 are obtained based on the obtained surface refractive index n t and the numerical aperture NA and the effective diameter De (see FIG. 2A) of the lens 12 which are set in advance.

【0045】すなわち、製品仕様からの要請により、開
口数NAとレンズの有効径Deとが予め設定されて与え
られることにより、下記の式(3)によりレンズ12の
焦点距離fが求まる。
That is, the numerical aperture NA and the effective diameter De of the lens are preset and given in accordance with a request from the product specification, and the focal length f of the lens 12 is obtained by the following equation (3).

【0046】 NA=De/2f・・・・・・・・・・・・・・・・・・(3) また、上式(3)で求めた焦点距離fと、前記表面屈折
率ntとにより、下記の式(4)によりレンズ12の曲
率半径rが求まる。
NA = De / 2f (3) Further, the focal length f obtained by the above equation (3) and the surface refractive index n t , The radius of curvature r of the lens 12 is obtained by the following equation (4).

【0047】 f=r/(nt−1)・・・・・・・・・・・・・・・・・(4) さらに、レンズ12のレンズ厚sが、下記の式(5)に
より求まる。 s=r−(r2−De2/4)1/2・・・・・・・・・・・(5) こうして、レンズ12を基板11から作製するための加
工パラメータ(本例では、最適削り量ΔZm、曲率半径
r及びレンズ厚s)が求まる。これらの加工パラメータ
は、同一のイオン交換ロットの基板に対して適用可能で
ある。
[0047] f = r / (n t -1 ) ················· (4) In addition, the lens thickness s of the lens 12, by the following equation (5) I get it. s = r- (r 2 -De 2 /4) 1/2 ··········· (5) Thus, in processing parameters (the example for making the lens 12 from the substrate 11, optimal The shaving amount ΔZm, the radius of curvature r, and the lens thickness s) are obtained. These processing parameters are applicable to substrates of the same ion exchange lot.

【0048】(工程7)図1(a)に示す基板11を、
一端面11aから最適削り量ΔZmだけ(図1(d)の
斜線部を)研削或いは研磨し、同基板11から有効径D
eの円柱形状のレンズ母材20(図1(e)参照)を1
個以上切り出す。また、切り出されたレンズ母材20の
一端面側を、図1(f)に示すように、曲率半径rの球
面に加工する。そして、最後に、レンズ母材20を、球
面の頂部から距離sの位置で、レンズ軸16に垂直な平
面に切断或いは研削する。
(Step 7) The substrate 11 shown in FIG.
From the one end face 11a, the substrate is ground or polished by the optimum shaving amount ΔZm (the shaded portion in FIG.
e into a cylindrical lens preform 20 (see FIG. 1 (e)).
Cut out more than one piece. Further, one end surface side of the cut lens preform 20 is processed into a spherical surface having a radius of curvature r as shown in FIG. Finally, the lens preform 20 is cut or ground into a plane perpendicular to the lens axis 16 at a distance s from the top of the spherical surface.

【0049】これにより、一端面側に球面15を有する
図2(a)に示すレンズ12が完成する。以上のように
構成された一実施形態に係る加工方法によれば、以下の
作用効果を奏する。
Thus, the lens 12 shown in FIG. 2A having the spherical surface 15 on one end surface is completed. According to the processing method according to the embodiment configured as described above, the following operation and effect can be obtained.

【0050】(イ)図1(c)に示す5個の試料181
〜185の一端面11a側を、削り量ΔZ1〜ΔZ5がそ
れぞれ異なるように研削或いは研磨する、一端面11a
からの光軸方向の深さ位置がそれぞれ異なる各試料の端
面の表面屈折率をそれぞれ測定する。このため、各削り
量ΔZ1〜ΔZ5だけ一端面からの光軸方向の深さがそれ
ぞれ異なる各深さ位置での屈折率が得られる。この測定
結果に基づき基板11の屈折率分布領域13の正確な屈
折率分布(上記分布式(2)で表される屈折率分布)を
得ることができる。これにより、光学性能特にRMS球
面収差のばらつきの少ないレンズ12を作製することが
できる。
(A) Five samples 18 1 shown in FIG.
The ~ 18 5 end face 11a side of shaving amount ΔZ 1 ~ΔZ 5 is ground or polished to different manner, one end face 11a
The surface refractive indices of the end faces of the respective samples having different depth positions in the optical axis direction from are measured. For this reason, the refractive index at each depth position where the depth in the optical axis direction from one end face differs from the one end surface by each of the shaving amounts ΔZ 1 to ΔZ 5 can be obtained. Based on this measurement result, an accurate refractive index distribution (refractive index distribution represented by the above-mentioned distribution formula (2)) of the refractive index distribution region 13 of the substrate 11 can be obtained. This makes it possible to manufacture the lens 12 with small variations in optical performance, particularly RMS spherical aberration.

【0051】(ロ)光学性能特にRMS球面収差のばら
つきの少ないレンズ12を作製できるので、同レンズを
2個使ってコリメータを構成した場合に、挿入損失を低
減することができる。
(B) Since a lens 12 with small variations in optical performance, particularly RMS spherical aberration, can be manufactured, the insertion loss can be reduced when a collimator is formed using two such lenses.

【0052】(ハ)レンズ12は少なくとも一端側に球
面15を形成した平凸レンズであるので、反射戻り光を
低減することができる。 (ニ)レンズ12を作製する基板11から、その屈折率
分布を測定するための試料を5個作り、これら5個の試
料181〜185を使って、基板11の一端面11aから
それぞれ異なる深さ位置にある5つの位置での屈折率を
知ることができる。このため、同一のイオン交換ロット
でそれぞれ所望の屈折率分布が形成された複数個の基板
11の一つのみを使って、基板11の正確な屈折率分布
を得ることができる。
(C) Since the lens 12 is a plano-convex lens having a spherical surface 15 formed at least on one end side, reflected return light can be reduced. From the substrate 11 to produce a (D) lens 12, the sample for measuring the refractive index distribution five making, these five with the sample 18 1-18 5, different from each other from one end surface 11a of the substrate 11 It is possible to know the refractive index at five positions at the depth position. For this reason, an accurate refractive index distribution of the substrate 11 can be obtained using only one of the plurality of substrates 11 each having a desired refractive index distribution formed in the same ion exchange lot.

【0053】(ホ)各削り量ΔZ1〜ΔZ5と、削られて
できる各試料181〜185の端面の屈折率(表面屈折
率)nΔZ1〜nΔZ5との関係を示す図3に示すような
測定結果に基づき、RMS波面収差が最小となる一端面
からの最適削り量ΔZmを求めることができる。このた
め、この最適削り量ΔZmを狙いとして基板11の一端
面11a側を研削することができる。これにより、RM
S波面収差のばらつきの小さい1個以上のレンズ12を
基板11から作製することができる。
(E) FIG. 3 shows the relationship between the shaved amounts ΔZ 1 to ΔZ 5 and the refractive indices (surface refractive indexes) nΔZ 1 to nΔZ 5 of the end faces of the samples 18 1 to 18 5 formed by shaving. Based on the measurement results as shown, the optimum shaving amount ΔZm from one end surface where the RMS wavefront aberration is minimized can be obtained. Therefore, the one end surface 11a side of the substrate 11 can be ground with the aim of the optimum shaving amount ΔZm. Thereby, RM
One or more lenses 12 with small variations in S wavefront aberration can be manufactured from the substrate 11.

【0054】例えば、最適削り量ΔZmをほぼ0.1m
mとした場合、その最適削り量ΔZmを狙いとして基板
11の一端面11a側を研削することができるので、図
6に示すように、加工公差範囲内での波面収差のばらつ
きを、±0.01λ程度の範囲内に抑えることができ
る。
For example, when the optimum shaving amount ΔZm is set to approximately 0.1 m
m, it is possible to grind the one end surface 11a side of the substrate 11 with the aim of the optimum shaving amount ΔZm. Therefore, as shown in FIG. It can be suppressed within a range of about 01λ.

【0055】(ヘ)製品仕様からの要請により、開口数
NAとレンズの有効径Deとが予め設定されて与えられ
ることにより、上式(3)によりレンズ12の焦点距離
fが求まる。また、上式(3)で求めた焦点距離fと、
最適削り量ΔZmだけ削ったときの表面屈折率ntとに
より、上式(4)により曲率半径rを求めることができ
る。
(F) The numerical aperture NA and the effective diameter De of the lens are preset and given in accordance with a request from the product specification, and the focal length f of the lens 12 is determined by the above equation (3). Also, the focal length f obtained by the above equation (3) and
The radius of curvature r can be obtained by the above equation (4) from the surface refractive index n t when the cutting is performed by the optimum shaving amount ΔZm.

【0056】このため、基板11を一端面11aから最
適削り量ΔZmだけ研削或いは研磨し、同基板11から
有効径Deの円柱形状のレンズ母材20を1個以上切り
出し、同母材20の一端面側を曲率半径rの球面に加工
することにより、RMS波面収差の小さいレンズ12を
容易に作製することができる。
For this reason, the substrate 11 is ground or polished from the one end face 11a by an optimum shaving amount ΔZm, and one or more cylindrical lens base materials 20 having an effective diameter De are cut out from the substrate 11 and one of the base materials 20 is cut out. By processing the end surface into a spherical surface having a radius of curvature r, the lens 12 having a small RMS wavefront aberration can be easily manufactured.

【0057】(ト)図3に示すような測定結果を、上記
多項式(1)に当てはめることにより、基板11の屈折
率分布を正確に知ることができる。 (チ)こうして得られる屈折率分布に基づき、RMS波
面収差を、光学シュミレーションソフトを使って、一端
面11aからの削り量ΔZの関数として求めることがで
きる。こうして求めた関数から、RMS波面収差が最小
となる削り量ΔZmを求めることができる。
(G) By applying the measurement result as shown in FIG. 3 to the above polynomial (1), the refractive index distribution of the substrate 11 can be known accurately. (H) Based on the refractive index distribution thus obtained, the RMS wavefront aberration can be obtained as a function of the shaved amount ΔZ from the one end face 11a using optical simulation software. From the function thus obtained, the shaving amount ΔZm that minimizes the RMS wavefront aberration can be obtained.

【0058】(リ)各試料181〜185の一端面11a
側を、削り量ΔZ1〜ΔZ5がそれぞれ異なるように研削
或いは研磨するために、底面19aからの高さの異なる
5つの載置面191〜195を有する研削加工用の治具1
9を用いている。これにより、5個の試料181〜185
の各一端面11a側を、治具19の底面19aから同じ
高さHの位置で研削或いは切断することにより、5個の
試料181〜185の一端面11a側を、1回の研削或い
は研磨加工で削り量ΔZ1〜ΔZ5だけそれぞれ削ること
ができる。その結果、複数個の試料181〜185を所望
の長さに研削或いは研磨する作業を効率良く行うことが
できる。
(I) One end face 11a of each of the samples 18 1 to 18 5
In order to grind or polish the sides so that the shaving amounts ΔZ 1 to ΔZ 5 are different from each other, a jig 1 for grinding has five mounting surfaces 19 1 to 19 5 having different heights from the bottom surface 19a.
9 is used. As a result, the five samples 18 1 to 18 5
Each end face 11a of the by grinding or cutting from the bottom 19a of the jig 19 at the position of the same height H, the end face 11a of the five samples 18 1-18 5, one of the grinding or By the polishing process, it is possible to cut by the shaving amounts ΔZ 1 to ΔZ 5 respectively. As a result, it is possible to efficiently perform the work of grinding or polishing a plurality of samples 18 1-18 5 to a desired length.

【0059】[ コリメータの一実施形態]次に、上記一
実施形態に係る加工方法で作製したレンズ12を用いた
コリメータの一実施形態について、図7及び図8を参照
して説明する。
[One Embodiment of Collimator] Next, one embodiment of a collimator using the lens 12 manufactured by the processing method according to the one embodiment will be described with reference to FIGS. 7 and 8. FIG.

【0060】図7に示すコリメータ30は、上記レンズ
12を2個用い、これら2つのレンズ12,12を、前
記一端面側に形成した各々の曲面15,15を対向させ
るとともに、互いのレンズ光軸16,16を一致させて
配置してなる。
The collimator 30 shown in FIG. 7 uses two of the above lenses 12, and makes the two lenses 12, 12 face the respective curved surfaces 15, 15 formed on the one end surface side, and the lens light of each other. The shafts 16 are arranged so as to coincide with each other.

【0061】このように構成された一実施形態に係るコ
リメータによれば、以下の作用効果を奏する。 (ヌ)光学性能特にRMS球面収差のばらつきの少ない
レンズ12を2個用いてコリメータ30が構成されてい
る。このため、コリメータ30のレンズ間距離Lと挿入
損失(dB)の関係を示す図8から明らかなように、レ
ンズ間距離LがL=0からL=1000mm付近までの
広い範囲にわたって、挿入損失を小さくすることがで
き、良好な光学性能が得られる。したがって、レンズ間
距離Lを広い範囲で変更しても、挿入損失が少なく、良
好な光学性能を有する高性能コリメータが得られる。
According to the collimator according to the embodiment having the above-described configuration, the following operation and effect can be obtained. (G) The collimator 30 is configured by using two lenses 12 with small variations in optical performance, particularly RMS spherical aberration. Therefore, as is apparent from FIG. 8 showing the relationship between the distance L between the lenses of the collimator 30 and the insertion loss (dB), the insertion loss can be reduced over a wide range from L = 0 to around L = 1000 mm. The size can be reduced, and good optical performance can be obtained. Therefore, even if the distance L between lenses is changed in a wide range, a high-performance collimator having small insertion loss and excellent optical performance can be obtained.

【0062】[ 変形例]なお、この発明は以下のように
変更して具体化することもできる。 ・上記一実施形態の加工方法では、1つの基板11から
作製した5個の試料181〜185を使って、基板11の
屈折率分布を得るようにしているが、試料の数は5個以
外の複数個であってもよい。
[Modification] The present invention can be embodied with the following modifications. · In the processing method of the embodiment, using 5 samples 18 1-18 5 produced from one substrate 11, but so as to obtain the refractive index distribution of the substrate 11, the number of sample 5 Any number other than the above may be used.

【0063】・上記一実施形態の加工方法では、複数個
の試料181〜185を使って基板11の屈折率分布を得
るようにしているが、本発明はこれに限定されない。例
えば、基板11自体の一端面11a側を、同端面からの
削り量ΔZを段階的に変えて研削或いは研磨する、削ら
れてできる各端面の表面屈折率をその都度測定するよう
にしてもよい。
[0063] In the processing method of the above embodiment, but uses a plurality of sample 18 1-18 5 so as to obtain the refractive index distribution of the substrate 11, the present invention is not limited thereto. For example, the one end surface 11a side of the substrate 11 itself may be ground or polished by gradually changing the shaving amount ΔZ from the same end surface, or the surface refractive index of each cut end surface may be measured each time. .

【0064】・上記一実施形態の加工方法では、基板1
1の一端面11aからの光軸方向の深さ位置がそれぞれ
異なる位置での表面屈折率をそれぞれ測定して、同基板
11の屈折率分布の実測値を得ているが、同屈折率分布
の測定方法はこれに限定されない。
In the processing method of the embodiment, the substrate 1
The surface refractive indices at different depth positions in the optical axis direction from one end face 11a of the substrate 1 are measured to obtain actual measured values of the refractive index distribution of the substrate 11, but the measured values of the refractive index distribution of the same substrate 11 are obtained. The measuring method is not limited to this.

【0065】・上記一実施形態の加工方法では、治具1
9を用いて複数個(5個)の試料181〜185の一端面
側を1回の加工で一度に研削或いは研磨するようにして
いるが、各試料の一端面側を個別に研削或いは研磨する
ようにしてもよいことは言うまでもない。
In the processing method of the above embodiment, the jig 1
9 using although the one end face side of the sample 18 1-18 5 a plurality (five) to be ground or polished at a time in one process, or separately ground one end face of each sample Needless to say, polishing may be performed.

【0066】・上記一実施形態の加工方法では、レンズ
12の一端面側にのみ球面15を形成するようにしてい
るが、レンズ12の両端面に球面を形成する場合にも本
発明は適用可能である。
In the processing method of the above embodiment, the spherical surface 15 is formed only on one end surface of the lens 12, but the present invention is also applicable to the case where spherical surfaces are formed on both end surfaces of the lens 12. It is.

【0067】・上記一実施形態の加工方法において、上
記分布式(2)で表される屈折率分布のとき、レンズの
有効径Deと曲率半径rを一定にして、削り量ΔZを
0.02mmから0.20mmまで0.02mm間隔で
変えた場合、各削り量ΔZに対応する焦点距離fと開口
数NAを計算すると、NAはほとんど一定になる。この
場合の焦点距離fと削り量ΔZの関係を図5に示してあ
る。ここで、De=3.4mm、r=7.3mm、s=
0.2mmとして計算している。図5から明らかなよう
に、焦点距離fはΔZが大きくなるのに従って増加する
が、NAはΔZの変化に対してほぼ一定である。
In the processing method according to the embodiment, when the refractive index distribution is represented by the distribution formula (2), the effective diameter De and the radius of curvature r of the lens are kept constant, and the shaving amount ΔZ is set to 0.02 mm. When the focal length f and the numerical aperture NA corresponding to each shaving amount ΔZ are calculated when the distance is changed from 0.0 to 0.20 mm at an interval of 0.02 mm, the NA becomes almost constant. FIG. 5 shows the relationship between the focal length f and the shaving amount ΔZ in this case. Here, De = 3.4 mm, r = 7.3 mm, s =
Calculated as 0.2 mm. As is clear from FIG. 5, the focal length f increases as ΔZ increases, but the NA is almost constant with changes in ΔZ.

【0068】このことから、設計パラメータとして開口
数NAと、有効径De又は曲率半径rのいずれかを与え
れば、最適削り量ΔZmは上記分布式(2)で表される
屈折率分布に基づいて求まるとともに、曲率半径r又は
有効径Deが求まる。これにより、波面収差のばらつき
の小さい特性の揃った光軸方向屈折率分布型レンズを作
製できることが分かる。
From the above, if the numerical aperture NA and either the effective diameter De or the radius of curvature r are given as design parameters, the optimum shaving amount ΔZm is determined based on the refractive index distribution expressed by the above-mentioned distribution formula (2). At the same time, the radius of curvature r or the effective diameter De is determined. Thus, it can be seen that a refractive index distribution type lens in the optical axis direction having uniform characteristics with small variations in wavefront aberration can be manufactured.

【0069】したがって、上記一実施形態の加工方法で
は、設計パラメータとして、レンズ12の開口数NA
と、レンズの有効径Deとを与えることにより、加工パ
ラメータとして、最適削り量ΔZmと曲率半径rを求め
るようにしているが、本発明はこのような構成に限定さ
れない。設計パラメータとして、開口数NAと曲率半径
rを与えることにより、加工パラメータとして、最適削
り量ΔZmと有効径Deを求めるようにしてもよい。
Therefore, in the processing method of the embodiment, the numerical aperture NA of the lens 12 is used as a design parameter.
And the effective diameter De of the lens, the optimum shaving amount ΔZm and the radius of curvature r are determined as processing parameters, but the present invention is not limited to such a configuration. By providing the numerical aperture NA and the radius of curvature r as design parameters, the optimum cutting amount ΔZm and the effective diameter De may be obtained as the processing parameters.

【0070】・上記一実施形態の加工方法では、基板1
1としてガラス基板を用いたが、基板11はガラスに限
らず、光軸方向に屈折率分布を形成できる材質であれば
よい。
In the processing method of the embodiment, the substrate 1
Although a glass substrate was used as 1, the substrate 11 is not limited to glass, and may be any material that can form a refractive index distribution in the optical axis direction.

【0071】[0071]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、光学性能特に球面収差のばらつきの少ない
光軸方向屈折率分布型レンズを作製することができる。
As described above, according to the first aspect of the present invention, it is possible to manufacture a refractive index distribution type lens in the optical axis direction with little variation in optical performance, particularly spherical aberration.

【0072】請求項7に係る発明によれば、光学性能特
に球面収差のばらつきの少ない光軸方向屈折率分布型レ
ンズが得られる。請求項8に係る発明によれば、レンズ
間距離を広い範囲で変更しても挿入損失が少なく、良好
な光学性能を有する高性能コリメータが得られる。
According to the seventh aspect of the present invention, it is possible to obtain a refractive index distribution type lens in the optical axis direction with small variations in optical performance, particularly spherical aberration. According to the invention according to claim 8, even if the distance between the lenses is changed in a wide range, a high-performance collimator having small insertion loss and excellent optical performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)〜(f)は一実施形態に係る光軸方向
屈折率分布型レンズの加工方法を示す説明図。
FIGS. 1A to 1F are explanatory views showing a method of processing a gradient index lens in an optical axis direction according to an embodiment.

【図2】 (a)は同加工方法で作製した光軸方向屈折
率分布型レンズを示す側面図、(b)は同レンズの屈折
率分布を示す説明図。
FIG. 2A is a side view showing a refractive index distribution type lens in an optical axis direction manufactured by the processing method, and FIG. 2B is an explanatory view showing a refractive index distribution of the lens.

【図3】 削り量と屈折率の関係を示すグラフ。FIG. 3 is a graph showing a relationship between a shaving amount and a refractive index.

【図4】 削り量とRMS波面収差の関係を示すグラ
フ。
FIG. 4 is a graph showing a relationship between a shaving amount and an RMS wavefront aberration.

【図5】 一実施形態の変形例を説明するための削り量
と焦点距離の関係を示すグラフ。
FIG. 5 is a graph showing a relationship between a shaving amount and a focal length for explaining a modification of the embodiment.

【図6】 一実施形態に係る加工方法により、最適削り
量ΔZmをほぼ0.1mmとした場合における、削り量
ΔZと波面収差の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the shaving amount ΔZ and the wavefront aberration when the optimum shaving amount ΔZm is set to approximately 0.1 mm by the working method according to one embodiment.

【図7】 一実施形態に係るコリメータを示す概略構成
図。
FIG. 7 is a schematic configuration diagram showing a collimator according to one embodiment.

【図8】 同コリメータにおけるレンズ間距離と挿入損
失の関係を示すグラフ。
FIG. 8 is a graph showing a relationship between an inter-lens distance and an insertion loss in the collimator.

【図9】 従来の光軸方向屈折率分布型レンズの削り量
と波面収差の関係を示すグラフ。
FIG. 9 is a graph showing the relationship between the shaving amount and the wavefront aberration of a conventional gradient index lens in the optical axis direction.

【符号の説明】[Explanation of symbols]

11…基板、11a…一端面、12…光軸方向屈折率分
布型レンズ、15…球面、16…レンズ軸(光軸)、1
8(181〜185)…試料、19…治具、191〜195
…載置面、20…レンズ母材、30…コリメータ。
11: substrate, 11a: one end face, 12: optical axis direction refractive index distribution lens, 15: spherical surface, 16: lens axis (optical axis), 1
8 (18 1-18 5) ... sample, 19 ... jig, 19 1-19 5
... Mounting surface, 20. Lens base material, 30. Collimator.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H087 KA22 LA25 PA02 PA17 PB02 QA05 QA13 QA21 QA33 QA41 RA23  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H087 KA22 LA25 PA02 PA17 PB02 QA05 QA13 QA21 QA33 QA41 RA23

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一端面からの光軸方向の深さ位置により
屈折率が異なる屈折率分布を有する透明な基板から、少
なくとも前記一端面側を曲率半径rの球面にした1個以
上の光軸方向屈折率分布型レンズを作製する光軸方向屈
折率分布型レンズの加工方法であって、 前記屈折率分布の実測値に基づき前記レンズを加工する
ことを特徴とする光軸方向屈折率分布型レンズの加工方
法。
1. A transparent substrate having a refractive index distribution having a different refractive index depending on a depth position in an optical axis direction from one end face, and at least one optical axis having at least one end face side as a spherical surface having a radius of curvature r. A method of processing an optical axis direction refractive index distribution lens for producing a directional refractive index distribution type lens, wherein the lens is processed based on an actually measured value of the refractive index distribution. How to process the lens.
【請求項2】 前記屈折率分布の実測値に基づき、波面
収差が最小となる前記一端面からの最適削り量ΔZm
と、同最適削り量ΔZmだけ削ったときの表面屈折率n
tとを求め、この表面屈折率ntと、予め設定される開口
数NAと、予め設定されるレンズの有効径De又は前記
曲率半径rとに基づき、曲率半径r又は有効径Deを求
めることを特徴とする請求項1に記載の光軸方向屈折率
分布型レンズの加工方法。
2. An optimum shaving amount ΔZm from the one end face where a wavefront aberration is minimized based on a measured value of the refractive index distribution.
And the surface refractive index n when the cutting amount is the same as the optimum cutting amount ΔZm.
t, and a curvature radius r or an effective diameter De based on the surface refractive index n t , a preset numerical aperture NA, and a preset effective diameter De or the radius of curvature r of the lens. The method for processing a refractive index distribution type lens in the optical axis direction according to claim 1, wherein:
【請求項3】 前記波面収差が最小となる前記最適削り
量ΔZmは、前記実測値を、前記削り量ΔZの異なる前
記光軸方向の各深さ位置Zにおける屈折率n(Z)を表
す下記の多項式 n(Z)=n0+n1Z+n22+・・・(ここで、n0
はΔZ=0の位置での屈折率、n1は1次項の分布定
数、n2は2次項の分布定数である。)に当てはめて前
記屈折率分布を得るとともに、同屈折率分布に基づき波
面収差を前記一端面からの削り量ΔZの関数として求め
ことにより得ることを特徴とする請求項1又は2に記載
の光軸方向屈折率分布型レンズの加工方法。
3. The optimum shaving amount ΔZm at which the wavefront aberration is minimized is obtained by converting the measured value to a refractive index n (Z) at each depth position Z in the optical axis direction where the shaving amount ΔZ differs. of the polynomial n (Z) = n 0 + n 1 Z + n 2 Z 2 + ··· ( here, n 0
Is the refractive index at the position of ΔZ = 0, n 1 is the distribution constant of the first-order term, and n 2 is the distribution constant of the second-order term. 3. The light according to claim 1 or 2, wherein the refractive index distribution is obtained by applying the formula (1), and the wavefront aberration is obtained as a function of a shaving amount ΔZ from the one end face based on the refractive index distribution. A method for processing an axial gradient index lens.
【請求項4】 前記基板の一端面側を、該一端面からの
光軸方向の削り量ΔZを段階的に変えて研削或いは研磨
し、前記深さ位置がそれぞれ異なる各端面の表面屈折率
をそれぞれ測定することにより、前記屈折率分布の実測
値を得ることを特徴とする請求項1〜3のいずれか一項
に記載の光軸方向屈折率分布型レンズの加工方法。
4. An end surface of the substrate is ground or polished by gradually changing a shaving amount ΔZ from the one end surface in an optical axis direction, and a surface refractive index of each end surface having a different depth position is determined. The method for processing a refractive index distribution type lens in the optical axis direction according to any one of claims 1 to 3, wherein an actual measurement value of the refractive index distribution is obtained by measuring the refractive index distribution.
【請求項5】 前記各端面の表面屈折率を測定する際
に、前記基板をその光軸方向に沿って切断した複数個の
試料の各一端面側を、同一端面からの前記削り量ΔZが
それぞれ異なるように研削或いは研磨するとともに、削
られてできる各試料の端面の表面屈折率を測定すること
を特徴とする請求項4に記載の光軸方向屈折率分布型レ
ンズの加工方法。
5. When measuring the surface refractive index of each of the end faces, each of the one end faces of a plurality of samples obtained by cutting the substrate along the optical axis direction has the shaved amount ΔZ from the same end face. 5. The method of processing a refractive index distribution type lens in the optical axis direction according to claim 4, wherein each of the samples is ground or polished differently, and a surface refractive index of an end face of each sample formed by the grinding is measured.
【請求項6】 前記複数個の試料の各一端面側を削り量
ΔZがそれぞれ異なるように研削或いは研磨する際に、
各試料を、その一端面側を上にして、各試料の削り量Δ
Zに応じて高さの異なる複数の載置面にそれぞれ載せ、
この状態で複数個の試料の各一端面側を同じ高さ位置で
研削或いは研磨することを特徴とする請求項5に記載の
光軸方向屈折率分布型レンズの加工方法。
6. When grinding or polishing each one end surface side of the plurality of samples so that the shaving amount ΔZ is different from each other,
The amount of shaving Δ of each sample, with one end face up,
Place them on a plurality of placement surfaces with different heights according to Z,
6. The method according to claim 5, wherein one end surface of each of the plurality of samples is ground or polished at the same height in this state.
【請求項7】 上記請求項1〜6のいずれか一項に記載
の光軸方向屈折率分布型レンズの加工方法で作製される
光軸方向屈折率分布型レンズ。
7. An optical axis direction gradient index lens produced by the method for processing an optical axis direction gradient index lens according to any one of claims 1 to 6.
【請求項8】 上記請求項1〜6のいずれか一項に記載
の光軸方向屈折率分布型レンズの加工方法で作製したレ
ンズを用いたコリメータであって、 前記光軸方向屈折率分布型レンズを2個用い、これら2
つのレンズを、前記一端面側に形成した各々の曲面を対
向させるとともに、互いの光軸を一致させて配置してな
ることを特徴とするコリメータ。
8. A collimator using a lens produced by the method for processing a gradient index lens in the optical axis direction according to any one of claims 1 to 6, wherein the gradient index lens in the optical axis direction is used. Using two lenses, these two
A collimator characterized in that two lenses are arranged such that their curved surfaces formed on the one end face face each other and their optical axes coincide with each other.
JP2001114775A 2001-04-13 2001-04-13 Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens Pending JP2002311212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114775A JP2002311212A (en) 2001-04-13 2001-04-13 Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114775A JP2002311212A (en) 2001-04-13 2001-04-13 Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens

Publications (1)

Publication Number Publication Date
JP2002311212A true JP2002311212A (en) 2002-10-23

Family

ID=18965779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114775A Pending JP2002311212A (en) 2001-04-13 2001-04-13 Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens

Country Status (1)

Country Link
JP (1) JP2002311212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243635A (en) * 2012-04-23 2013-12-05 Rohm Co Ltd Document scanner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964547A (en) * 1982-10-02 1984-04-12 Nippon Sheet Glass Co Ltd Preparation of lens having refractive index distribution in axial direction
JPS61261238A (en) * 1985-05-13 1986-11-19 Hoya Corp Production of lens having refractive index distribution in axial direction
JPH01226753A (en) * 1988-03-07 1989-09-11 Nippon Sheet Glass Co Ltd Production of vitreous body having distributed refractive index
JPH01312521A (en) * 1988-06-13 1989-12-18 Nippon Sheet Glass Co Ltd Optical system for vacuum device
JPH02271936A (en) * 1989-04-12 1990-11-06 Nippon Sheet Glass Co Ltd Ion-exchange treatment of optical glass
JPH11153705A (en) * 1997-11-20 1999-06-08 Nippon Sheet Glass Co Ltd Lens with distribution of refractive index in axial direction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964547A (en) * 1982-10-02 1984-04-12 Nippon Sheet Glass Co Ltd Preparation of lens having refractive index distribution in axial direction
JPS61261238A (en) * 1985-05-13 1986-11-19 Hoya Corp Production of lens having refractive index distribution in axial direction
JPH01226753A (en) * 1988-03-07 1989-09-11 Nippon Sheet Glass Co Ltd Production of vitreous body having distributed refractive index
JPH01312521A (en) * 1988-06-13 1989-12-18 Nippon Sheet Glass Co Ltd Optical system for vacuum device
JPH02271936A (en) * 1989-04-12 1990-11-06 Nippon Sheet Glass Co Ltd Ion-exchange treatment of optical glass
JPH11153705A (en) * 1997-11-20 1999-06-08 Nippon Sheet Glass Co Ltd Lens with distribution of refractive index in axial direction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243635A (en) * 2012-04-23 2013-12-05 Rohm Co Ltd Document scanner

Similar Documents

Publication Publication Date Title
US5044737A (en) Double axial gradient lens and process for fabrication thereof
EP1329432A1 (en) Method for producing aspherical structure, and aspherical lens array molding tool and aspherical lens array produced by the same method
US20040062478A1 (en) Symmetric, bi-aspheric lens for use in optical fiber collimator assemblies
KR20020060731A (en) Manufacturing method of optical lens
US6990271B2 (en) Multi-bandwidth collimator
US20030231829A1 (en) Lens array for use with array of fibers
EP1233291A2 (en) Optical fiber coupling system using collimating lenses
US6980717B2 (en) Optical fiber collimator
KR20020070109A (en) Substrate for mounting optical parts, methods of manufacturing same, and assembly using the substrate
US5617252A (en) Gradient refractive index lens elements
US5638214A (en) Luneburg lens with a graded index core and homogeneous cladding
JP2002311212A (en) Working method for lens having distribution of refractive index in optical axis direction, lens having distribution of refractive index in optical axis direction produced by the method, and collimator using the lens
JPS5923313A (en) Large aperture condenser lens
US5607492A (en) Method for forming a nonfull aperture luneberg lens with a graded index core and a homogenous cladding
US6075656A (en) High numerical aperture objective lens
US20040047557A1 (en) Microlens array, optical module using the microlens array, and method for determining position of optical module
JP2001296472A (en) Objective optical system for optical head
KR20100111497A (en) Objective lens
CN111650690A (en) Micro-collimator based on double-clad optical fiber
CN111624702B (en) Orthogonal double-shaft aspheric optical fiber micro lens
JPH0576606B2 (en)
Messerschmidt et al. Diffraction-limited gradient-index (GRIN) microlenses with high numerical apertures produced by silver ion exchange in glass: diffusion modeling and process optimization
JPH043850B2 (en)
US5453878A (en) Laser beam expanders with plastic and liquid lens elements
JPS5999413A (en) Distributed refractive index lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005