JPS6172201A - Infrared transmittable element having protective polished surface - Google Patents

Infrared transmittable element having protective polished surface

Info

Publication number
JPS6172201A
JPS6172201A JP59192612A JP19261284A JPS6172201A JP S6172201 A JPS6172201 A JP S6172201A JP 59192612 A JP59192612 A JP 59192612A JP 19261284 A JP19261284 A JP 19261284A JP S6172201 A JPS6172201 A JP S6172201A
Authority
JP
Japan
Prior art keywords
crystal
infrared transmitting
polymer material
thin film
polished surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59192612A
Other languages
Japanese (ja)
Inventor
Seiji Nishizawa
西沢 誠治
Fumiko Kaneuchi
金内 芙美子
Shigeyuki Kimura
木村 茂行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP59192612A priority Critical patent/JPS6172201A/en
Publication of JPS6172201A publication Critical patent/JPS6172201A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To protect a precision polished surface against deliquescence by the moisture in outdoor air by coating a thin film consisting of a high-polymer material on the precision polished crystal surface of an IR transmittable material constituting an IR transmittable element. CONSTITUTION:The high-polymer material having relatively weak absorption intensity in an IR wavelength region, for example, polymethyl methacrylate of the like is dissolved in an org. solvent, for example, chloroform, etc. On the other hand, the crystal of the precision polished IR transmittable material such as KBr is dipped in a soln. of an org. solvent having high purity, for example, chloroform and the residue of polishing is washed away by high-frequency ultrasonic cleaning, etc. The crystal of the IR transmittable material is then dipped in the dil. soln. of the high-polymer material and when the crystal is thereafter dried at a room temp., the extremely thin film of the high-polymer material is formed on the prescribed polished surface of the crystal. The thin film of the high-polymer material formed in such a manner shuts off thoroughly the polished surface from the moisture in the outdoor air and does not contain pinholes at all.

Description

【発明の詳細な説明】 発明の目的 産業上の利用分野 本発明は赤外分光光度計のセル、高精度光路補正器、ビ
ームスプリッタ等釦用いられる赤外透過素子に関し、特
に赤外透過素子の精密研摩面を外気中の水分による潮解
から保直した赤外透過素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to infrared transmitting elements used in infrared spectrophotometer cells, high-precision optical path correctors, beam splitters, etc. This invention relates to an infrared transmitting element whose precisely polished surface is preserved from deliquescence caused by moisture in the outside air.

従来技術 赤外分光光度計ではセル、光路補正器、ビームスプリッ
タ、検知器及び試料室の窓材等種々の赤外透過素子がそ
れぞれの目的に応じて多数用いられている。その多くが
固体素子である必要があシ、はとんどがアルカリ・ハラ
イド系のイオン結晶で作製されているため、多かれ少な
かれ外気に含まれる水分に対して潮解性を有する。
In a conventional infrared spectrophotometer, a large number of various infrared transmitting elements such as cells, optical path correctors, beam splitters, detectors, and sample chamber window materials are used depending on their respective purposes. Most of them need to be solid elements, and most of them are made of alkali/halide-based ionic crystals, so they are more or less deliquescent to moisture contained in the outside air.

このため、赤外透過素子の精密研摩面を高fit度に保
つ必要がある場合には、従来赤外透過素子を含む外気の
湿度を強制的にコントロールすることによってその精度
を保ったシ、あるいは赤外吸収の比較的弱い結晶性素材
を薄膜蒸着して、外気の水分から保護する方法がとられ
てきた。しかし、前者の方法では湿度のコントロール装
置が必然的に必要で、その操作・調整の手間も要し、−
万後者の蒸着法では、蒸着膜を厚くできないこともらっ
て、一般的には必ずピンホールが存在し、そのピンホー
ルからの毛細管現象による水分浸透によって、時間的長
短はあるにせよ必ず潮解が進み、やがて研摩面の精度劣
化が避けられないという問題がある。
For this reason, when it is necessary to maintain the precision polished surface of an infrared transmitting element at a high degree of fit, conventional methods have been used to maintain precision by forcibly controlling the humidity of the outside air containing the infrared transmitting element, or A method that has been used is to deposit a thin film of a crystalline material with relatively weak infrared absorption to protect it from moisture in the outside air. However, the former method necessarily requires a humidity control device, which requires time and effort to operate and adjust.
In the latter type of vapor deposition method, since it is not possible to thicken the vapor deposited film, there are generally always pinholes, and water infiltration through the pinholes due to capillary action always leads to deliquescence, although the time may be longer or shorter. There is a problem in that the accuracy of the polished surface inevitably deteriorates over time.

従って本発明の目的は、湿度のコントロール装置を用い
ることなく、精密研摩面を外気中の水分による潮解から
確実に保護できる赤外透過素子及びその製法を提供する
ことにある。
Therefore, an object of the present invention is to provide an infrared transmitting element that can reliably protect a precisely polished surface from deliquescence due to moisture in the outside air without using a humidity control device, and a method for manufacturing the same.

発明の構成 上記目的を達成するため、本発明による赤外透過素子は
、同素子を構成する赤外透過材の精密研摩結晶面上に高
分子材の薄膜を溶媒蒸発法によって被覆して成ることを
特徴とするものである。
Structure of the Invention In order to achieve the above object, an infrared transmitting element according to the present invention is formed by coating a thin film of a polymeric material on the precisely polished crystal surface of an infrared transmitting material constituting the element by a solvent evaporation method. It is characterized by:

上記目的を達成するため、本発明による赤外透過素子は
、赤外透過素子を構成する精密研摩された赤外透過材結
晶を純度の高い有機溶材中に浸し、精密研摩面を高周波
超音波洗浄する段階、洗浄後の赤外透過材結晶を赤外波
長域での吸収強度が比較的弱い高分子材料を有機溶媒に
溶解した比較的濃度の薄い溶液に浸す段階、その後赤外
透過材結晶を熱良容器中に引き上げ、室温乾燥して有機
溶媒を蒸発せしめ、研摩結晶面上に高分子材の薄膜を生
成させる段階、から成る方法によシ製造される。
In order to achieve the above object, the infrared transmitting element according to the present invention is produced by immersing a precisely polished infrared transmitting material crystal constituting the infrared transmitting element in a highly pure organic solvent, and cleaning the precisely polished surface with high frequency ultrasonic waves. A step of immersing the infrared transmitting material crystal after cleaning in a relatively thin solution of a polymeric material having a relatively weak absorption strength in the infrared wavelength region dissolved in an organic solvent, and then immersing the infrared transmitting material crystal in It is produced by a method comprising the steps of raising the crystal in a heated container, drying at room temperature to evaporate the organic solvent, and forming a thin film of polymeric material on the polished crystal surface.

このように、赤外分光光度針で使われる各種赤外透過素
子を構成する赤外透過材の精密研摩面上に溶媒蒸発法で
高分子材の薄膜を被覆することによって、その精密研摩
面は外気中の水分による潮解から保護されるが、高分子
材の薄膜を被覆する具体的な溶媒蒸発法としては、まず
赤外波長域での吸収強度が比較的弱い高分子材料、例え
ば最も一般的にはポリメチル・メタ・アクリレート停を
有機溶媒、例えばクロロホルム等に溶解せしめ、重量そ
ル濃度で100 ppm程度の薄い溶液を準備する。−
万、精密研摩されたKBr等の赤外透過材結晶を純度の
高い有機溶材、例えばクロロホルムの溶液中に浸し、高
周波超音波洗浄等で研摩残留物及び付着界層をきれいに
洗い流す。次いで、赤外透過材結晶を上記高分子材の薄
い溶液中に浸した後、無、1容器中に引き上げ、室温乾
燥させ、これによって有機溶媒が蒸発し、結晶の精密研
摩面上には非常に薄い高分子材の膜が形成される。この
ようにして得られた高分子材の薄膜は研摩面を完全に外
気中の水分から遮断し、ピンホールも全く含まないもの
で、薄膜の厚さは研摩面を完全に覆う程度に厚く、目的
を果し得る限9において薄くするのが望ましく、又その
多数の実験的経験では120±30Xの厚さが好適でち
る。
In this way, by coating the precisely polished surface of the infrared transmitting material that makes up the various infrared transmitting elements used in the infrared spectrophotometer needle with a thin film of polymer material using the solvent evaporation method, the precisely polished surface can be Although it is protected from deliquescence due to moisture in the outside air, the specific solvent evaporation method for coating thin films of polymeric materials first involves coating polymeric materials with relatively weak absorption strength in the infrared wavelength range, such as the most common For this purpose, polymethyl meth acrylate is dissolved in an organic solvent such as chloroform to prepare a dilute solution having a concentration of about 100 ppm by weight. −
First, the precision-polished crystal of an infrared transmitting material such as KBr is immersed in a solution of a highly pure organic solvent, such as chloroform, and the polishing residue and adhesion layer are thoroughly washed away by high-frequency ultrasonic cleaning or the like. Next, the infrared transmitting material crystal is immersed in a dilute solution of the above-mentioned polymeric material, then taken up into a container and dried at room temperature. As a result, the organic solvent evaporates, and a very fine layer remains on the precisely polished surface of the crystal. A thin polymer film is formed on the surface. The thin film of the polymer material obtained in this way completely blocks the polished surface from moisture in the outside air, does not contain any pinholes, and is thick enough to completely cover the polished surface. It is desirable to be as thin as possible, and a number of experimental experiences suggest that a thickness of 120.+-.30.times. is preferred.

尚、高分子材の薄膜による赤外吸収スペクトルは実際の
測定時において、参照信号又は参照スペクトルに対し試
料スペクトルを演算処理する過程で比例相殺され、その
影響は測定スペクトルに現われて来ない。
Incidentally, during actual measurement, the infrared absorption spectrum due to the thin film of the polymer material is proportionally canceled out in the process of calculating the sample spectrum with respect to the reference signal or reference spectrum, and its influence does not appear on the measured spectrum.

実施例1 ポリメチル・メタ・アクリレートをクロロホルムに溶解
し、重量モル濃度で約1’OOppmの溶液を得た。フ
ーリエ変換赤外分光光度計で使われるビームスプリッタ
素子のKBr製赤外透過結晶材を純度の高いクロロホル
ム溶液中に浸し、高周波超音波洗浄を行った。洗浄後、
ビームスプリッタを上記のポリメチル・メタ・アクリレ
ートをクロロホルムに稀釈した溶液に浸した。
Example 1 Polymethyl meth acrylate was dissolved in chloroform to obtain a solution having a molar concentration of about 1'OO ppm. An infrared transmitting crystal material made of KBr, which is a beam splitter element used in a Fourier transform infrared spectrophotometer, was immersed in a high-purity chloroform solution and subjected to high-frequency ultrasonic cleaning. After washing,
The beam splitter was immersed in a solution of the above polymethyl meth acrylate diluted in chloroform.

次いで魚座容器中へ引上げ室温乾燥させた。この結果、
ビームスプリッタ素子のKBr結晶面上に厚さ約120
Xのポリメチル・メタ・アクリレートの薄膜が形成され
た。
Then, it was taken up into a Pisces container and dried at room temperature. As a result,
A thickness of approximately 120 mm is placed on the KBr crystal plane of the beam splitter element.
A thin film of polymethyl meth acrylate of X was formed.

実施例2 実施例1で得られたKBr製ビームスグリツタを50台
以上のフーリエ変換赤外分光光度計に装着して測定実験
した結果、夏期の高湿時期においても従来の研摩面溶解
に基因する干渉波強度の減少は全く見られなかった。
Example 2 As a result of a measurement experiment in which the KBr beam sgrit obtained in Example 1 was attached to more than 50 Fourier transform infrared spectrophotometers, it was found that even in the high humidity period of summer, the problem was caused by the dissolution of conventional polished surfaces. No decrease in interference wave intensity was observed.

実施例3 高分子薄膜処理のKBr結晶と無処理KBr結晶を並べ
て、85%以上の高湿容器中に放置したところ、6時間
後未処理KBr結晶面上に溶解を確認した一方、既処理
KBr結晶は36時間経過後も結晶表面に何等の異常も
認められなかった。
Example 3 When a KBr crystal treated with a polymer thin film and an untreated KBr crystal were placed side by side and left in a high humidity container of 85% or more, dissolution was confirmed on the surface of the untreated KBr crystal after 6 hours, while the treated KBr crystal was No abnormality was observed on the surface of the crystal even after 36 hours had passed.

発明の効果 以上の説明から明らかなごとく、本発明によれば赤外透
過素子の精密研摩面上に高分子材の薄膜を溶媒蒸発法で
被覆したため、従来の湿度コントロール法や蒸着法に伴
う欠点を伴なうことなく、外気中の水分による潮解から
研摩面を確実に保脹することができるという利点がある
Effects of the Invention As is clear from the above explanation, according to the present invention, a thin film of a polymer material is coated on the precisely polished surface of an infrared transmitting element by a solvent evaporation method, which causes disadvantages associated with conventional humidity control methods and vapor deposition methods. It has the advantage that the polished surface can be reliably protected from deliquescence due to moisture in the outside air without being accompanied by.

Claims (3)

【特許請求の範囲】[Claims] (1)赤外透過素子を構成する赤外透過材の精密研摩結
晶面上に高分子材の薄膜を溶媒蒸発法で被覆されている
ことを特徴とする研摩面を保護した赤外透過素子。
(1) An infrared transmitting element with a polished surface protected, characterized in that a thin film of a polymer material is coated on the precisely polished crystal surface of an infrared transmitting material constituting the infrared transmitting element by a solvent evaporation method.
(2)上記溶媒蒸発法が赤外透過素子を構成する精密研
摩された赤外透過材結晶を純度の高い有機溶材中に浸し
、精密研摩面を高周波超音波洗浄する段階;洗浄後の赤
外透過材結晶を赤外波長域での吸収強度が比較的弱い高
分子材料を有機溶媒に溶解した比較的濃度の薄い溶液に
浸す段階;その後赤外透過材結晶を無塵容器中に引き上
げ、室温乾燥して有機溶媒を蒸発せしめ、研摩結晶面上
に高分子材の薄膜を生成させる段階;から成ることを特
徴とする特許請求の範囲第(1)項記載の赤外透過素子
(2) In the above solvent evaporation method, the precisely polished infrared transmitting material crystal that constitutes the infrared transmitting element is immersed in a highly pure organic solvent, and the precisely polished surface is cleaned with high frequency ultrasonic waves; A step in which the transparent material crystal is immersed in a relatively thin solution of a polymer material with relatively weak absorption intensity in the infrared wavelength range dissolved in an organic solvent; the infrared transparent material crystal is then lifted into a dust-free container and kept at room temperature. An infrared transmitting element according to claim 1, comprising the step of drying to evaporate the organic solvent to form a thin film of polymer material on the polished crystal surface.
(3)上記高分子材の薄膜が120±30Åの厚さであ
ることを特徴とする特許請求の範囲第(1)項及び第(
2)項に記載の赤外透過素子。
(3) The thin film of the polymeric material has a thickness of 120±30 Å.
The infrared transmitting element described in item 2).
JP59192612A 1984-09-17 1984-09-17 Infrared transmittable element having protective polished surface Pending JPS6172201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59192612A JPS6172201A (en) 1984-09-17 1984-09-17 Infrared transmittable element having protective polished surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192612A JPS6172201A (en) 1984-09-17 1984-09-17 Infrared transmittable element having protective polished surface

Publications (1)

Publication Number Publication Date
JPS6172201A true JPS6172201A (en) 1986-04-14

Family

ID=16294151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192612A Pending JPS6172201A (en) 1984-09-17 1984-09-17 Infrared transmittable element having protective polished surface

Country Status (1)

Country Link
JP (1) JPS6172201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504154B2 (en) * 2005-03-23 2009-03-17 Lockheed Martin Corporation Moisture barrier coatings for infrared salt optics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131266A (en) * 1981-02-06 1982-08-14 Asahi Optical Co Ltd Coating composition
JPS5931450A (en) * 1982-08-16 1984-02-20 Nippon Petrochem Co Ltd Washing and flaw detecting method of inside of tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131266A (en) * 1981-02-06 1982-08-14 Asahi Optical Co Ltd Coating composition
JPS5931450A (en) * 1982-08-16 1984-02-20 Nippon Petrochem Co Ltd Washing and flaw detecting method of inside of tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504154B2 (en) * 2005-03-23 2009-03-17 Lockheed Martin Corporation Moisture barrier coatings for infrared salt optics

Similar Documents

Publication Publication Date Title
CN111373295B (en) Polarizer and polarizing plate
JPH0227620B2 (en)
JPH04292441A (en) Manufacturing of reflective article
US2761797A (en) Method of producing conductive coating on a surface and the coated article
JP2004536354A5 (en)
JPS6172201A (en) Infrared transmittable element having protective polished surface
US6680080B1 (en) Method for antiglare treatment and material having antiglare properties
JP2001108832A5 (en)
JPH10160935A (en) Production of polarizing film
JP2009193022A (en) Treatment method of plastic lens and method of manufacturing antireflection film
JPH08296031A (en) Metal oxide coated product and its production
JPS60260445A (en) Treatment of protecting surface for glass article
JP7321181B2 (en) Substrate for protein printing
JP4687009B2 (en) Anti-fogging article and manufacturing method thereof
JP2765174B2 (en) Manufacturing method of wavelength selective mirror
Kitaoka et al. Formation of Si02 film on plastic substrate by liquid-phase-deposition method
JPS59141441A (en) Method for producing glass coated with titanium oxide film
SU789452A1 (en) Method of producing optical coating on support
JPS61267027A (en) Formation of liquid crystal oriented film
SU544626A1 (en) Film-forming composition
US3962485A (en) Method for forming uniform stress-free thin films
JPS6285203A (en) Production of polarizing film
JPH02100001A (en) Infra-red transmissive material and its production
RU1778731C (en) Method for producing oriented molecular coatings
JPS61208038A (en) Manufacture of nonlinear optical organic crystal thin film