JPS6171776A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS6171776A
JPS6171776A JP59194145A JP19414584A JPS6171776A JP S6171776 A JPS6171776 A JP S6171776A JP 59194145 A JP59194145 A JP 59194145A JP 19414584 A JP19414584 A JP 19414584A JP S6171776 A JPS6171776 A JP S6171776A
Authority
JP
Japan
Prior art keywords
circuit
time
field
image pickup
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59194145A
Other languages
Japanese (ja)
Other versions
JPH0533588B2 (en
Inventor
Tadashi Okino
沖野 正
Nobuo Fukushima
信男 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59194145A priority Critical patent/JPS6171776A/en
Priority to US06/775,610 priority patent/US4675738A/en
Publication of JPS6171776A publication Critical patent/JPS6171776A/en
Publication of JPH0533588B2 publication Critical patent/JPH0533588B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the exposure accuracy with an image pickup device which performs the exposure control, etc. according to the luminance signal given from an image pickup element, by always changing the reference value of integration in response to the state of the image pickup device and therefore eliminating the fluctuation of the circuit conditions owing to the temperature change, etc. CONSTITUTION:The exposure time is decided by the information on the preliminary light leading and the aperture value. The picture information is read out of an image pickup element 4 in a field F4 next to the exposed field by a signal processing circuit 5. Then only the luminance signals are sampled out of the picture information, and the luminance signals equivalent to a screen are integrated by a luminance signal integration circuit 9. While the output of the circuit 9 is converted into digital signals via an A/D converter 12 at a time point t8 among those time points t7-t9. These digital signals are fetched by an arithmetic circuit 10. The circuit 10 checks in the field F4 whether the exposure value including the errors of a diaphragm 2 and a shutter 3 is proper or not. If some variance is detected, the diaphragm 2 is corrected between time points t10-t11 of the next field F5.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は撮像装置、特に撮像素子からの輝度信号をもと
に露光制御等を行なう撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an imaging device, and particularly to an imaging device that performs exposure control etc. based on a luminance signal from an image sensor.

〔従来技術〕[Prior art]

従来この種の装置では撮像素子の温度変動等に起因する
信号のレベル変動により、輝度信号およびその積分値が
変化してしまいこの積分情報を用いて露出制御等を行な
う場合に精度に悪影響を与えていた0 〔目 的〕 本発明は従来装置のかかる欠点にかんがみてなされたも
のであり、積分の基準値を常に撮像装置の状態に追従さ
せて変化させ、温度変動等による回路条件の変動を打ち
消し露光精度を向上する撮像装置を提供することを目的
とする0(実施例) 以下に添付した回路図も参照しながら本発明の内容を詳
しく説明する。第1図は本発明の一実施例を示す電気回
路図であり、図中1は被写体光学像を形成するための光
学系、2は絞り、2aは絞り2を駆動する為の絞りドラ
イバ、3はシャッタ、3aはシャッタ3を駆動する為の
シャッタドライバ、4は撮像手段としてのCOD等の撮
像素子であって光学像を電気信号に変換する。5は信号
処理回路、6は記録回路である。
Conventionally, in this type of device, the luminance signal and its integral value change due to signal level fluctuations caused by temperature fluctuations of the image sensor, which adversely affects accuracy when performing exposure control etc. using this integral information. [Purpose] The present invention was made in view of the drawbacks of the conventional device, and it changes the reference value of the integral to always follow the state of the imaging device, thereby eliminating fluctuations in circuit conditions due to temperature fluctuations, etc. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 0 (Embodiment) Aiming to provide an imaging device that improves cancellation exposure accuracy The content of the present invention will be described in detail below with reference to the attached circuit diagram. FIG. 1 is an electrical circuit diagram showing an embodiment of the present invention, in which 1 is an optical system for forming an optical image of a subject, 2 is an aperture, 2a is an aperture driver for driving the aperture 2, and 3 is an electric circuit diagram showing an embodiment of the present invention. 3a is a shutter driver for driving the shutter 3; 4 is an imaging device such as a COD as an imaging means, which converts an optical image into an electrical signal. 5 is a signal processing circuit, and 6 is a recording circuit.

7は各種のタイミング信号を発生するクロック回路、8
はクロック回路からの信号をもとに撮像素子4を駆動す
るドライバ、9は信号処理回路5の中から被写体輝度に
相当する輝度信号のみを抜き出し、一画面分の積分をす
るための積分手段としての輝度信号積分回路、10はク
ロック回路7からのタイミング信号や輝度信号積分回路
9等の情報をもとに撮像装置全体を制御する演算手段と
しての演算制御回路である。また11は被写体の大よそ
の明るさを測定する為に撮像手段と別に設けられた予備
測光回路、12はめコンバータである。
7 is a clock circuit that generates various timing signals; 8
9 is a driver that drives the image sensor 4 based on the signal from the clock circuit, and 9 is an integrating means for extracting only the luminance signal corresponding to the subject luminance from the signal processing circuit 5 and integrating it for one screen. A brightness signal integrating circuit 10 is an arithmetic control circuit as a calculating means for controlling the entire imaging apparatus based on the timing signal from the clock circuit 7 and information from the brightness signal integrating circuit 9 and the like. Reference numeral 11 denotes a 12-fitted converter, which is a preliminary photometry circuit provided separately from the imaging means to measure the approximate brightness of the subject.

以上が本発明の一実施例を示す回路図であり、以下に第
2図のタイミング図も参照しながらその作用を説明する
The above is a circuit diagram showing one embodiment of the present invention, and its operation will be explained below with reference to the timing diagram of FIG. 2.

第2図は本発明の撮像装置によって一駒撮影を行なう場
合のタイミング図である。
FIG. 2 is a timing chart when one-frame photography is performed using the imaging apparatus of the present invention.

同図(a)はクロック回路7で作られる垂直同期信号V
Dであり、これで区切られる各フィールドをFl、F2
.F3.・・・・・・と名づける。垂直同期信号と非同
期で時刻tlに不図示の電源スィッチが投入される(第
2図(b))と予備測光回路11が被写体輝度のおよそ
の値を測定し、演算制御回路10に入力する。次に時刻
t、に不図示のレリーズがなされる(第2図(b))と
その直後の時刻t2から予備測光の情報をもとに演算制
御回路10が絞シドライバ2aによシ絞シ2を所定の絞
υ値まで絞り込むよう駆動する。(第2図(C))絞り
込みが時刻t、で完了しフィールドF2で絞シ値A1に
落ち着いたら次のフィールド(F3)で前記予備測光の
情報をもとに演算制御回路1゜がシャッタドライバ3a
を介してシャッタ3を駆動し、撮像素子4を露光する。
The figure (a) shows the vertical synchronization signal V generated by the clock circuit 7.
D, and each field separated by this is Fl, F2
.. F3. Name it... When a power switch (not shown) is turned on at time tl asynchronously with the vertical synchronization signal (FIG. 2(b)), the preliminary photometry circuit 11 measures an approximate value of the subject brightness and inputs it to the arithmetic control circuit 10. Next, at time t, a release (not shown) is performed (FIG. 2(b)), and from time t2 immediately thereafter, the arithmetic control circuit 10 causes the aperture driver 2a to adjust the aperture based on the preliminary photometry information. 2 to a predetermined aperture υ value. (Fig. 2 (C)) When the aperture is completed at time t and the aperture value settles to A1 in field F2, in the next field (F3), the arithmetic control circuit 1° operates the shutter driver based on the information of the preliminary photometry. 3a
The shutter 3 is driven via the shutter 3 to expose the image sensor 4 to light.

(第2図(d)の時刻t4〜ts ) 尚、ここでシャッタ3は本実施例では2枚の羽根d、 
、 d、よりなるフォーカルブレーンシャッタとして構
成されており、時刻t4に羽根d、が走行し、時刻t5
に羽根d、が走行することにより露出時間(tst+)
を得る事ができる。
(Time t4 to ts in FIG. 2(d)) In this example, the shutter 3 has two blades d,
, d, and the blade d runs at time t4, and at time t5.
The exposure time (tst+) is increased by the movement of the blade d.
can be obtained.

この露出時間は前記の予備測光の情報及び絞り値に応じ
て決定される。露光を行なった次のフィールド(F4)
で信号処理回路5によって撮像素子4から画像の情報を
読み出し、その中の輝度信号のみを抜き出して輝度信号
積分回路9にて1画面分の輝度信号を積分する。(第2
図(e)の時刻t、〜11 )又、t、〜t、の間の時
刻tsに輝度信号積分回路9の出力をA/Dコンバータ
12を介してデジタル信号に変換して演算制御回路10
にとり込む。(第2図(f))これによって絞り2.シ
ャッタ3の誤差まで含めた露出量が適正であるかを演算
制御回路10においてフィールドF4内で評価し、ずれ
がある場合、次のフィールドF5の時刻t1゜〜t11
にかけて絞り2をA1からA2に修正する。(第2図(
C))時刻t7.−で絞シが修正すべき最終値A2に落
ちついたら次のフィールドF6において演算制御回路1
0は再びシャッタドライバ3aを介してシャッタ3を駆
動し、撮像素子4を時間(t、3〜t12)だけ露光す
る。この露光時間は絞り値A2及び時刻t6にとり込ま
れた輝度信号の積分値によって決定される。
This exposure time is determined according to the preliminary photometry information and the aperture value. Next field after exposure (F4)
Then, the signal processing circuit 5 reads image information from the image sensor 4, extracts only the luminance signal therein, and integrates the luminance signal for one screen in the luminance signal integration circuit 9. (Second
At time ts between time t and time 11 in FIG.
Incorporate into. (Fig. 2(f)) This causes the aperture 2. The arithmetic control circuit 10 evaluates whether the exposure amount including the error of the shutter 3 is appropriate within the field F4, and if there is a deviation, the exposure amount including the error of the shutter 3 is evaluated at time t1° to t11 of the next field F5.
to correct the aperture 2 from A1 to A2. (Figure 2 (
C)) Time t7. - When the aperture reaches the final value A2 to be corrected, the arithmetic control circuit 1
0 again drives the shutter 3 via the shutter driver 3a and exposes the image sensor 4 for a time (t, 3 to t12). This exposure time is determined by the aperture value A2 and the integral value of the luminance signal captured at time t6.

更に次のフィールドF7において信号処理回路5および
記録回路6を作動させ、撮像情報を記録媒体に記録する
。(第2図(f) (h)の期間T2)次に第2図およ
び第3図を参照しながら輝度信号積分回路9およびその
作用を補足説明する。
Furthermore, in the next field F7, the signal processing circuit 5 and the recording circuit 6 are activated to record the imaging information on the recording medium. (Period T2 in FIGS. 2(f) and (h)) Next, the luminance signal integration circuit 9 and its operation will be supplementarily explained with reference to FIGS. 2 and 3.

第3図において100は演算増幅器、101は積分キャ
パシタ、102は抵抗で100〜102は積分回路10
6を形成する。103,104はそれぞれスイッチ素子
でその制御端子C,Dがハイの時両端が導通し、C,D
がローの時両端が非導通になる。105は積分の晧準値
を保持するキャパシタ、A、Bは積分回路の入出力端子
を示す。103,105等により基準レベル形成手段と
してのサンプルホールド回路が構成されている。スイッ
チ104が導通すると積分キャパシタ101が放電し、
積分回路はリセット大振になり、またスイッチ104が
非導通時は積分が行なわれる。スイッチ103は後述の
如く撮像素子4かも信号が出力されている間の所定のタ
イミングで導通し、キャパシタ105が積分の基準レベ
ル相当の電圧まで充電される。
In FIG. 3, 100 is an operational amplifier, 101 is an integrating capacitor, 102 is a resistor, and 100 to 102 are an integrating circuit 10.
form 6. Reference numerals 103 and 104 are switching elements, and when the control terminals C and D are high, both ends are conductive.
When is low, both ends are non-conductive. 105 is a capacitor that holds the standard value of integration, and A and B are input/output terminals of the integrating circuit. 103, 105, etc. constitute a sample hold circuit as a reference level forming means. When the switch 104 becomes conductive, the integrating capacitor 101 is discharged,
The integration circuit is reset to a large swing, and integration is performed when the switch 104 is non-conductive. As will be described later, the switch 103 is turned on at a predetermined timing while the image sensor 4 is also outputting a signal, and the capacitor 105 is charged to a voltage corresponding to the reference level for integration.

それ以外の時スイッチ103は非導通となり、キャパシ
タ105は積分の基準レベルの電圧に保持される。以上
が第3図に示した輝度積分回路の構成であり、以下に第
2図も参照しながらその作用を説明する。
At other times, switch 103 is non-conductive and capacitor 105 is held at the voltage at the reference level for integration. The above is the configuration of the luminance integrating circuit shown in FIG. 3, and its operation will be explained below with reference to FIG. 2 as well.

端子りはフィールドF4以外は全てハイレベルにあり、
フィールドF4で積分動作を行なう以外輝度信号積分回
路9はリセット状態におがれる。(第2図(i))また
撮像素子4をフレーム転送型CODと仮定し、第3図の
端子Cが第2図(j)に示すようにフィールドF3内の
一瞬(時刻t+oo )だけハイレベルになるものとす
ると、時刻tlof1ではフィールドF2において撮像
素子4で形成された電気信号が読み出され第2図の端子
Aに印加されているため、時刻tlG。においてフィー
ルドF2に対応する# @素子出力電圧がスイッチ10
3を通してキャパシタ105にサンプルされ、その後そ
の値にホールドされる。
All terminals except field F4 are at high level,
The luminance signal integration circuit 9 is in a reset state except for performing an integration operation in field F4. (Fig. 2 (i)) Also, assuming that the image sensor 4 is a frame transfer type COD, the terminal C in Fig. 3 is at a high level for a moment (time t+oo) in the field F3 as shown in Fig. Assuming that, at time tlof1, the electric signal formed by the image sensor 4 in field F2 is read out and applied to terminal A in FIG. 2, and therefore, at time tlG. #@element output voltage corresponding to field F2 in switch 10
3 to capacitor 105 and then held at that value.

第2図(d)より、フィールドF2においてはシャッタ
ー3が閉じているため、時刻t+ooにおいてキャパシ
タ105にサンプルされるのは暗黒大振での撮像素子の
出力であり、撮影直前の撮像素子4の暗電流、雑音等の
情報を含む。
From FIG. 2(d), since the shutter 3 is closed in the field F2, what is sampled by the capacitor 105 at time t+oo is the output of the image sensor in the dark oscillation, and the output of the image sensor 4 immediately before shooting is sampled by the capacitor 105 at time t+oo. Contains information such as dark current and noise.

次にフィールドF3内の時刻t+ooの直後の時刻t1
01において輝度信号積分回路9の出力をA/D  コ
ンバータ12を介して演算制御回路10に取り込む。時
刻t1゜、において演算増幅器100の非反転入力には
キャパシタ105から暗黒状態に対応する撮像素子4の
出力が印加され、第2図(i)よりスイッチ104が導
通状態にあるため反転入力と出力が短絡される輝度信号
積分回路の出力BKは非反転入力の電圧がそのままあら
れれ、これがIV/Dコンバータ12を介して演算制御
回路10に一旦取り込まれる。
Next, time t1 immediately after time t+oo in field F3
01, the output of the luminance signal integration circuit 9 is taken into the arithmetic control circuit 10 via the A/D converter 12. At time t1°, the output of the image sensor 4 corresponding to the dark state is applied from the capacitor 105 to the non-inverting input of the operational amplifier 100, and as shown in FIG. 2(i), since the switch 104 is in the conducting state, the inverting input and output are The output BK of the luminance signal integrating circuit, which is short-circuited, receives the voltage of the non-inverting input as it is, and is once taken into the arithmetic control circuit 10 via the IV/D converter 12.

次にフィールドF4においてはフィールドF3に露光さ
れた撮像素子4の信号が先程説明したように輝度信号積
分回路9で積分され、(第2図<e) ) fi分が完
了した時刻t、以降のフィールドF4内の時刻t、にお
いて輝度信号積分回路9の出力が再びA/Dコンバータ
12t−介して演算制御回路10にとり込まれる。(第
2図(f))その後時刻trotでとり込んだ値と時刻
t、でとり込んだ旭の差をとるとそれが一画面分の輝度
信号の平均値になる。この値をもとに絞りに修正を加え
てA2とし、撮影を行なう。以降は既に説明した+lj
lりであるので説明を省略する。
Next, in the field F4, the signal of the image sensor 4 exposed to the field F3 is integrated by the luminance signal integration circuit 9 as explained earlier, (Fig. 2<e)) From the time t when the fi minute is completed, At time t in field F4, the output of the luminance signal integration circuit 9 is again taken into the arithmetic control circuit 10 via the A/D converter 12t. (FIG. 2(f)) Then, by taking the difference between the value taken at time trot and the value taken at time t, it becomes the average value of the luminance signal for one screen. Based on this value, the aperture is corrected to A2 and a photograph is taken. The rest is already explained +lj
The explanation will be omitted since it is the same.

以上説明したように輝度信号積分の基準電圧をシャッタ
ーが閉じている時の撮像素子4の出力にすれば基準電圧
をある一定値にした場合に比較して撮像素子の温特(暗
電流・雑音等)等を含めた変動、信号処理回路5および
輝度信号積分回路9のオフセットの温度ドリフト等の特
性変動までがキャンセルできるため、これらが被写体輝
度測定に与える誤差を少なくシ、露出制御の精度をあげ
ることができる。
As explained above, if the reference voltage for luminance signal integration is set to the output of the image sensor 4 when the shutter is closed, the temperature characteristics (dark current, noise) of the image sensor will be lower than when the reference voltage is set to a certain value. etc.), and characteristic fluctuations such as temperature drift of the offset of the signal processing circuit 5 and the luminance signal integration circuit 9 can be canceled, thereby reducing errors caused by these in subject luminance measurement and improving the accuracy of exposure control. I can give it to you.

(第2実施例) なお第1実施例ではシャッタ3で撮像素子4を暗黒にし
た例を説明したが、絞り2によって撮像素子4を暗黒に
してもよい。この場合、例えば静止画と動画の両方を撮
影できる撮像装置において動画撮影時はシャッタを使用
しないものに於ても本発明の実施例を適用できる。すな
わち撮影開始前に絞りを絞り切った状態で輝度信号積分
回路のべ準をとれば動画の露出制御に対しても撮像素子
4.信号処理回路5.4変信号積分回路9の変動要因を
除去できる。
(Second Embodiment) In the first embodiment, an example has been described in which the image sensor 4 is darkened by the shutter 3, but the image sensor 4 may be darkened by the diaphragm 2. In this case, the embodiments of the present invention can be applied to, for example, an imaging device that can take both still images and moving images, but does not use a shutter when shooting moving images. In other words, if the luminance signal integration circuit is standardized with the aperture fully closed before shooting starts, the image sensor 4. The fluctuation factors of the signal processing circuit 5.4 and the variable signal integration circuit 9 can be removed.

(第3実施例) なおシステム上及びシーケンス上絞り、シャツタでの暗
黒化ができない場合等には、CODの伝送を中止した状
態において輝度信号積分の基準をとれば撮像素子4その
ものの特性の変動は除去できないまでも撮像素子4内の
増幅器その他の周辺回路、信号処理回路5.輝度信号積
分回路9の変動要因を除去でき、その分だけ被写体輝度
測定!’[があがり、露出精度を向上できる。
(Third Embodiment) In cases where it is not possible to darken the aperture or shutter due to the system or sequence, if the standard of luminance signal integration is taken while COD transmission is stopped, changes in the characteristics of the image sensor 4 itself can be avoided. Even if it cannot be removed, the amplifier and other peripheral circuits in the image sensor 4 and the signal processing circuit 5. The fluctuation factors of the brightness signal integration circuit 9 can be removed, and the brightness of the subject can be measured accordingly! '[The image quality increases, and exposure accuracy can be improved.

(第4実施例) さらに第4図(a)に示したように撮像素子4の撮像画
面13の一部14(図の場合斜線部)を度光するとこれ
は第4図(b、)の1水平走査期間Th内の初期の一部
の時間TOBになる。第4図(b、)に示すようにT0
n内の時刻txにおいて輝度信号積分回路9の入力は撮
像素子4の暗黒レベルに相当しているから、この時刻t
xに積分回路9の基準値を演算制御回路10にとシ込め
ば撮像素子4から輝度信号積分回路9までの特性変動を
キャンセルすることができる。
(Fourth Embodiment) Further, as shown in FIG. 4(a), when a part 14 (shaded area in the figure) of the image sensing screen 13 of the image sensor 4 is illuminated, this is shown in FIG. 4(b). This is an initial part of time TOB within one horizontal scanning period Th. As shown in Figure 4(b,), T0
Since the input to the luminance signal integration circuit 9 corresponds to the dark level of the image sensor 4 at time tx within n, this time t
By inputting the reference value of the integrating circuit 9 to x into the arithmetic control circuit 10, characteristic fluctuations from the image sensor 4 to the luminance signal integrating circuit 9 can be canceled.

(第5実施例) 通常この暗黒部は光学的黒部分と呼ばれ撮像素子内に予
め設けられていることが多く、クランプ(直流分再生)
回路の基準レベルに使われるため、このクランプレベル
を積分の基準にしてもよい。このようにすれば第4実施
例よりも一層簡単な構成で同様の効果を得る事ができる
O(第6実施例) 尚、以上の実施例では積分回路を介して時刻t、。1で
の暗黒画像の信号と時刻t8での撮像積分信号との差分
を得る為に演算制御回路10を用いているが、時刻t1
゜1での信号をホールドするホールド回路を設け、この
ホールド回路の出力と積分回路の出力の差分を得る差動
増巾器を用いて構成する事も可能である。
(Fifth Embodiment) This dark area is usually called an optical black area and is often provided in advance within the image sensor.
Since it is used as the reference level of the circuit, this clamp level may be used as the reference for integration. In this way, the same effect can be obtained with a simpler configuration than that of the fourth embodiment (sixth embodiment).In the above embodiment, time t, is transmitted through the integrating circuit. The arithmetic control circuit 10 is used to obtain the difference between the dark image signal at time t1 and the imaging integral signal at time t8.
It is also possible to provide a hold circuit that holds the signal at 1 and use a differential amplifier that obtains the difference between the output of this hold circuit and the output of the integrating circuit.

(効 果) 以上説明した如く本発明によれば撮(象素子又は周辺回
路の温度変動等に起因する信号のレベル変動を減少させ
ることができ、露出制御等の制御を高い精度で行なうこ
とができる。
(Effects) As explained above, according to the present invention, it is possible to reduce signal level fluctuations caused by temperature fluctuations in the imaging element or peripheral circuits, and it is possible to perform controls such as exposure control with high precision. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のlfi像装置の構成例図、第2図はそ
の動作タイミングチャート、第3図は積分回路の構成例
図、 第4図       は本発明の第4実施例を説明する
図である。 4・・・撮像手段としての撮像素子、 106・・・積分手段としての積分回路、107・・・
基準レベル形成手段としてのサンプルホールド回路。 第4図 (a) (b) (b2)
FIG. 1 is a diagram showing an example of the configuration of the lfi image device of the present invention, FIG. 2 is an operation timing chart thereof, FIG. 3 is a diagram showing an example configuration of an integrating circuit, and FIG. 4 is a diagram explaining a fourth embodiment of the present invention. It is. 4... Imaging element as an imaging means, 106... Integrating circuit as an integrating means, 107...
Sample and hold circuit as a reference level forming means. Figure 4 (a) (b) (b2)

Claims (4)

【特許請求の範囲】[Claims] (1)光学像を電気信号に変換する撮像手段、該撮像手
段の出力を積分する積分手段、 前記撮像手段の所定の出力を用いて積分手段の積分基準
レベル信号を形成する基準レベル形成手段、を有する撮
像装置。
(1) an imaging means for converting an optical image into an electrical signal; an integrating means for integrating the output of the imaging means; a reference level forming means for forming an integrated reference level signal of the integrating means using a predetermined output of the imaging means; An imaging device having:
(2)前記基準レベル形成手段は撮像手段に光が入射し
ていない時に該撮像手段で形成された電気信号に基づき
基準レベル信号を形成する事を特徴とする特許請求の範
囲第(1)項記載の撮像装置。
(2) Claim (1) characterized in that the reference level forming means forms a reference level signal based on an electrical signal formed by the imaging means when no light is incident on the imaging means. The imaging device described.
(3)前記基準レベル形成手段は撮像手段の光学的黒部
分の信号に基づき基準レベル信号を形成する事を特徴と
する特許請求の範囲第(1)項記載の撮像装置。
(3) The imaging apparatus according to claim (1), wherein the reference level forming means forms a reference level signal based on a signal of an optically black portion of the imaging means.
(4)前記基準レベル形成手段は撮像手段の駆動を停止
した状態での撮像手段の出力信号に基づき基準レベル信
号を形成する事を特徴とする特許請求の範囲第(1)項
記載の撮像装置。
(4) The imaging device according to claim (1), wherein the reference level forming means forms the reference level signal based on the output signal of the imaging means in a state where the driving of the imaging means is stopped. .
JP59194145A 1984-09-17 1984-09-17 Image pickup device Granted JPS6171776A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59194145A JPS6171776A (en) 1984-09-17 1984-09-17 Image pickup device
US06/775,610 US4675738A (en) 1984-09-17 1985-09-13 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59194145A JPS6171776A (en) 1984-09-17 1984-09-17 Image pickup device

Publications (2)

Publication Number Publication Date
JPS6171776A true JPS6171776A (en) 1986-04-12
JPH0533588B2 JPH0533588B2 (en) 1993-05-19

Family

ID=16319659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59194145A Granted JPS6171776A (en) 1984-09-17 1984-09-17 Image pickup device

Country Status (1)

Country Link
JP (1) JPS6171776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143232A (en) * 1988-11-24 1990-06-01 Sharp Corp Electric shutter circuit
US5325205A (en) * 1991-10-07 1994-06-28 U.S. Philips Corporation Video camera comprising at least a semiconductor image sensor and a rotating sector shutter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742275A (en) * 1980-08-28 1982-03-09 Fujitsu Ltd Dark current correcting method for ccd sensor
JPS57129072A (en) * 1981-02-04 1982-08-10 Hitachi Ltd Solid image pickup device
JPS57212874A (en) * 1981-06-24 1982-12-27 Toshiba Corp Picture storage method
JPS58153465A (en) * 1982-03-09 1983-09-12 Copal Co Ltd Still camera using solid-state image pickup element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742275A (en) * 1980-08-28 1982-03-09 Fujitsu Ltd Dark current correcting method for ccd sensor
JPS57129072A (en) * 1981-02-04 1982-08-10 Hitachi Ltd Solid image pickup device
JPS57212874A (en) * 1981-06-24 1982-12-27 Toshiba Corp Picture storage method
JPS58153465A (en) * 1982-03-09 1983-09-12 Copal Co Ltd Still camera using solid-state image pickup element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143232A (en) * 1988-11-24 1990-06-01 Sharp Corp Electric shutter circuit
US5325205A (en) * 1991-10-07 1994-06-28 U.S. Philips Corporation Video camera comprising at least a semiconductor image sensor and a rotating sector shutter

Also Published As

Publication number Publication date
JPH0533588B2 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
US5926287A (en) Imaging device
US4675738A (en) Image pickup device
JPS6171776A (en) Image pickup device
JP4388151B2 (en) Camera system
JPH02287225A (en) Imaging apparatus
US6320615B1 (en) Light level detecting and indicating method for image photographing and recording
JPH11234552A (en) Electronic camera and exposure control method for the electronic camera
JP2879569B2 (en) Imaging device
JPH0640668B2 (en) Imaging device
JP3306627B2 (en) Imaging apparatus and exposure control method for imaging apparatus
JPH02274073A (en) Exposure control method
JP3021943B2 (en) Color television camera device
JP2808222B2 (en) Video camera and photometric method thereof
JPS6032484A (en) Image pickup device
JPS61103375A (en) Image pickup device
JP3058994B2 (en) Video camera and photometric method thereof
JP2538005B2 (en) Aperture shutter control device
JPH0562865B2 (en)
JP3467049B2 (en) Video camera and photometric method thereof
JPH0722355B2 (en) Exposure control device
JPH02111178A (en) Automatic focusing device
JPH02303278A (en) Image pickup device
JPS6171775A (en) Image pickup device
JPS63123278A (en) Image pickup device
JPS60125074A (en) Electronic still camera

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term