JPS6170750A - Manufacture of integrated circuit - Google Patents

Manufacture of integrated circuit

Info

Publication number
JPS6170750A
JPS6170750A JP59191800A JP19180084A JPS6170750A JP S6170750 A JPS6170750 A JP S6170750A JP 59191800 A JP59191800 A JP 59191800A JP 19180084 A JP19180084 A JP 19180084A JP S6170750 A JPS6170750 A JP S6170750A
Authority
JP
Japan
Prior art keywords
region
epitaxial layer
receiving element
concentration
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59191800A
Other languages
Japanese (ja)
Other versions
JPH0644617B2 (en
Inventor
Tadashi Umeji
梅地 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59191800A priority Critical patent/JPH0644617B2/en
Publication of JPS6170750A publication Critical patent/JPS6170750A/en
Publication of JPH0644617B2 publication Critical patent/JPH0644617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To increase the speed of response of a light-receiving element under the state in which the characteristics of elements except the light-receiving element are maintained by adopting a process forming a region having low concentration only in a light-receiving element forming prearranged region on a semiconductor substrate. CONSTITUTION:The ions of an N type impurity are implanted into a light- receiving element forming prearranged region in a P type semiconductor substrate 1 in concentration lower than impurity concentration in the substrate to shape p<-> layer (a low-concentration impurity region) 9. The N type impurity (phosphorus) is diffused into another functional element forming prearranged region in the substrate 1 to shape an N<+> buried layer 11, and an N type epitaxial layer 2 is formed onto the whole surface containing the layer 11. Isolation regions 3 are shaped through the thermal selective diffusion of a P type impurity while using an SiO2 insulating film 4 as a mask, and the N type epitaxial layer 2 is isolated into insular epitaxial layers 2a and 2b. A P-N junction in a light-receiving element is formed by the isolated N type epitaxial layer 2a and the P layer 9. Another functional element is shaped to the isolated N type epitaxial layer 2b.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は受光素子を有する集積回路の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing an integrated circuit having a light receiving element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第2図に従来のフォトダイオードを有する集積回路の一
例を示す、P型半導体基板1上にN型エピタキシャル層
2が形成されている。そしてこのN型エピタキシャル層
2はP型アイツレジョン領域3により個々の機能素子ご
とく分離されている。
FIG. 2 shows an example of a conventional integrated circuit having a photodiode, in which an N-type epitaxial layer 2 is formed on a P-type semiconductor substrate 1. The N-type epitaxial layer 2 is separated into individual functional elements by a P-type epitaxial region 3.

その分離されたN型エピタキシャル層2aと、基板1と
の間のPN接合を利用したフォトダイオード10が形成
されている。このフォトダイオード10Kaカソード電
極5a、及びアノード電極5bが接続されている。
A photodiode 10 is formed using a PN junction between the separated N-type epitaxial layer 2a and the substrate 1. This photodiode 10Ka cathode electrode 5a and anode electrode 5b are connected.

そしてこのフォトダイオード10に隣接するN型エピタ
キシャル層2b内にバイポーラトランジスタが形成され
ておシ、このエピタキシャル層2bはコレクタとして利
用される。ここで6はペース、エミッタ7及びコレクタ
2bに夫々接続された電極である。なおN型エピタキシ
ャル層2の電極形成部を除く表面は絶縁膜4で被覆され
ている。
A bipolar transistor is formed in the N-type epitaxial layer 2b adjacent to this photodiode 10, and this epitaxial layer 2b is used as a collector. Here, 6 is an electrode connected to the pace, emitter 7, and collector 2b, respectively. Note that the surface of the N-type epitaxial layer 2 except for the electrode forming portion is covered with an insulating film 4.

このような従来の集積回路におけるフォトダイオード1
0の応答性(動作速度)は十分なものではなく、この応
答性の改善(呻作速度の向上)が望まれている。この応
答性はN型エピタキシャル層2aとP型半導体基板1と
の接合面における接合容量に依存している。このため応
答性を改善するためには、この接合容f1&:小さくす
る必要がある。
Photodiode 1 in such a conventional integrated circuit
The responsiveness (operating speed) of 0 is not sufficient, and improvement of this responsiveness (improvement of the motion speed) is desired. This responsiveness depends on the junction capacitance at the junction surface between the N-type epitaxial layer 2a and the P-type semiconductor substrate 1. Therefore, in order to improve responsiveness, it is necessary to reduce this junction capacity f1&:.

この接合容it小さくする方法として、次の2つの方法
が考えられる。
The following two methods can be considered to reduce this junction capacitance.

(1)P型半導体基板1.!−N型エピタキシャル層2
aとの接合面積を小さくする。
(1) P-type semiconductor substrate 1. ! -N type epitaxial layer 2
Reduce the bonding area with a.

(2)P型半導体基板1とN型エピタキシャル層2aの
両方か、またはどちらか一方の不純物濃度を低くする。
(2) Lowering the impurity concentration of either or both of the P-type semiconductor substrate 1 and the N-type epitaxial layer 2a.

しかし、前記(1)の方法の場合、このフォトダイオー
ドの受光面積が小さくなり受光感度を減少することにな
り好ましくない。
However, in the case of method (1), the light-receiving area of the photodiode becomes smaller, which reduces the light-receiving sensitivity, which is not preferable.

また、PNN接合アイソレージノンよる集積回路では半
導体基板を通じての漏れ電流は完全には防止できない九
め、前記(2)の方法の鳩舎、P型半導体基板1の不純
物濃度を下げるとこの基板1の抵抗値が大きくなシ漏れ
電流による内部電圧降下が大きくなる。従って漏れ電流
の生じた部分における基板内部電位が不必要に高くなシ
近くの素子へ不所望なバイアスを与えその素子を誤動作
させるなどの悪影響を与える。
Furthermore, in integrated circuits based on PNN junction isolation, leakage current through the semiconductor substrate cannot be completely prevented. If the resistance value is large, the internal voltage drop due to leakage current will be large. Therefore, the internal potential of the substrate at the portion where the leakage current occurs is unnecessarily high, and an undesired bias is applied to a nearby element, causing an adverse effect such as causing the element to malfunction.

またエピタキシャル層2a及び2bはその製造過″穆に
おいて共通のN型エピタキシャル層2の形成によって得
られるものであり、エピタキシャル!@2aの不純物濃
度ギ下げるためにはN型エビタ卓シャル層2全体の濃度
を下げなければなちない。
In addition, the epitaxial layers 2a and 2b are obtained by forming a common N-type epitaxial layer 2 during their manufacturing process, and in order to lower the impurity concentration of the epitaxial layer 2a, the entire N-type epitaxial layer 2 must be concentration must be reduced.

従ってこのようにすると、集積回路上の他の機能素子1
例えば第2図中のトランジスタのコレクタとなるエピタ
キシャル/Pi2bの抵抗値が大きくなる。そのためエ
ミッタ7−コレクタ2b間の飽和電圧Vav、(SET
)が大きくなり増幅率が低下するといった性能悪化が生
じる。
Therefore, by doing this, other functional elements 1 on the integrated circuit
For example, the resistance value of the epitaxial layer /Pi2b serving as the collector of the transistor in FIG. 2 increases. Therefore, the saturation voltage Vav between emitter 7 and collector 2b, (SET
) increases, resulting in performance deterioration such as a decrease in amplification factor.

また個別受光素子では、第3図に示すようなPINフォ
トダイオードがある。
Further, as an individual light receiving element, there is a PIN photodiode as shown in FIG.

これはVGウェファ13、つまり高17J111−N 
 基板に低濃度N’Jをエピタキシャル法(気相成長法
)により形成したウェファを用いて、その低濃度N一層
の上に2層14を形成したPIN接合型のフォトダイオ
ードである。しかし、 このようなりGウェファを集積
回路の製造に適用することは一般に不可能であシ、これ
までにこのようなPIN接合型のフォトダイオードを内
蔵した集積回路は実現していない。
This is VG wafer 13, that is, height 17J111-N
This is a PIN junction type photodiode in which a wafer in which a low concentration N'J is formed on a substrate by an epitaxial method (vapor phase growth method) is used, and two layers 14 are formed on one layer of the low concentration N. However, it is generally impossible to apply such a G wafer to the manufacture of integrated circuits, and no integrated circuit incorporating such a PIN junction type photodiode has been realized to date.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の問題点を解決し、フォトダイオード
の受光感度を減少すること々く、かつ他の素子部の特性
が悪化することなく、フォトダイオードの応答性(動作
速V)を向上させる集積回路の展進方法を提供すること
を目的とする。
The present invention solves the above conventional problems and improves the responsiveness (operating speed V) of the photodiode without reducing the light receiving sensitivity of the photodiode and without deteriorating the characteristics of other element parts. The purpose is to provide a method for advancing integrated circuits.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するための、第1導電型半導体
基板の受光素子形成予定領域に、低濃度不純物領域を形
成する工程と、前記予定領域を含む半導体基板表面に第
24電型エピタキシヤル層を形成する工程と、前記予定
領域を囲んで前記低1度不純物領域に到達して前記エピ
タキシャル層のうち受光素子用の第1エピタキシャル層
を区画する第1アイソレージ百ン領域及び、前記基板に
到達して他の機能素子用の第2エピタキシャル層を区画
する@2アイソレーシッン領域を形成する工程とを具備
し、前記第1エピタキシャル層と前記低濃度不純物領域
との間のPN接合を用いて形成される受光素子がこの不
純物領域の不純物濃度に依存してその応答速度がコント
ロールされていることを特徴とする集積回路の製造方法
である。
In order to achieve the above object, the present invention includes a step of forming a low concentration impurity region in a region of a first conductivity type semiconductor substrate where a light receiving element is to be formed, and a step of forming a 24th conductivity type epitaxial layer on the surface of the semiconductor substrate including the said region. a first isolation region that surrounds the predetermined region and reaches the low-degree impurity region to define a first epitaxial layer for a light-receiving element in the epitaxial layer; forming an @2 isolating region that reaches and defines a second epitaxial layer for another functional element, using a PN junction between the first epitaxial layer and the low concentration impurity region. This method of manufacturing an integrated circuit is characterized in that the response speed of the light-receiving element is controlled depending on the impurity concentration of the impurity region.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例t−第1図を用いて説明する。 An embodiment of the present invention will be described with reference to FIG.

:g1工穆、P型半導体基板(第1導を型半導体基板)
lの受光素子形成予定領域にN型不純物(リン)を、こ
の基板の不純物濃度より低e4度にイオ、  ン注入し
P−IN (低濃度不純物領域)9を形成する。
:g1 process, P type semiconductor substrate (first conductor type semiconductor substrate)
An N-type impurity (phosphorus) is ion-implanted into the region where the light receiving element is to be formed at a temperature lower than the impurity concentration of this substrate by 4 degrees to form a P-IN (low concentration impurity region) 9.

(第1図a参照) 第2工穆、該基板lの他の機能素子形成予定領域にN型
不純物(リン)を拡散させN+埋込層11をよ#)N型
エピタキシャル層2を形成する。(第1図す参照) 第3工程、N型エピタキシャル層2にSiO□絶縁膜4
t−マスクとして用い、P型不純物の熱選択拡散により
アイソレージ冒ン領域3を形成し、このN型エピタキシ
ャル層2を島状のエピタキシャル層成されている。この
分離されたN型エピタキシャル層2aと該F″層9とで
受光素子のPN接合が形 −成される。ここで受光素子
10を囲むアイソレーシヲン領域3eを第1アイソレー
シヨン領域とし他の機能素子を区画する領域3fを第2
フイソレーシ・・領域とする。(第i図?参照)第4工
程、分離され7jN型工ピタキシヤル層2bに他の機能
素子を形成する5本実施例ではエピタキシャル層2aに
は受光素子(フォトダイオード)10が形成され、エピ
タキシャル層2 b K ハト5ンジスタ15が形成さ
れる。このトランジスタ15はエピタキシャルQ2b’
(5コレクタ用として用い、このIFi 2 bに順次
ペース拡散及びエミッタ歴数を始して2層(ペース領域
)6.N層(エミッタ領域)7を形成することにより得
られる。その後各り子に対する電極が形成される。そし
て5a及び5bは受光素子(フォトダイオード)101
5ダ のカソード電入及びアノード電極であり、Y亘トランジ
スタのエミッタ、ペース、コレクタ電極、4はS i 
02絶縁膜全それぞれ示している。(第1図d珍胆) このよう(でして製造された受光素子内蔵集積回路に、
H−いてI寸ズ極5 a、5 b間に逆電圧を印加する
とN QエピタキシャルI?42aとP−[9とのPN
接合面付近で空乏層が発生する。そしてP−P2OがP
型半導体共析に叱し低γζi度のため、この空乏層は従
来より浄く形成される。このため受光素子l。
(See FIG. 1a) Second step: Diffuse N-type impurity (phosphorus) into the region where other functional elements are to be formed in the substrate 1 to form an N-type epitaxial layer 2 (to remove the N+ buried layer 11). . (See Figure 1) Third step: SiO□ insulating film 4 on N-type epitaxial layer 2.
Using it as a t-mask, an isolation exposed region 3 is formed by thermally selective diffusion of P-type impurities, and this N-type epitaxial layer 2 is formed into an island-shaped epitaxial layer. A PN junction of the light receiving element is formed by the separated N type epitaxial layer 2a and the F'' layer 9. Here, the isolation region 3e surrounding the light receiving element 10 is used as a first isolation region and is used for other functions. The region 3f that partitions the element is the second
Fisoresis...area. (Refer to Fig. i?) In the fourth step, other functional elements are formed in the separated 7jN-type epitaxial layer 2b.In this embodiment, a light receiving element (photodiode) 10 is formed in the epitaxial layer 2a, 2 b K pigeon 5 register 15 is formed. This transistor 15 is an epitaxial Q2b'
(Used for 5 collectors, it is obtained by sequentially forming 2 layers (pace region) 6 and N layers (emitter region) 7 on this IFi 2 b starting with pace diffusion and emitter history. After that, each layer is 5a and 5b are light receiving elements (photodiodes) 101.
5 is the cathode electrode and anode electrode, and 4 is the emitter, pace, and collector electrode of the Y-transistor, and 4 is the Si
All of the 02 insulating films are shown. (Fig. 1 d) In an integrated circuit with a built-in photodetector manufactured in this way,
When a reverse voltage is applied between the I-sized poles 5a and 5b while the NQ epitaxial I? PN between 42a and P-[9
A depletion layer occurs near the junction surface. And P-P2O is P
Due to the low γζi degree of the type semiconductor eutectoid, this depletion layer is formed more cleanly than in the past. For this reason, the light receiving element l.

の接合容量は低減する。そしてこの受光素子10へ光を
入射すると、光の強弱に比例した強さの逆電流が出力さ
れろ、このときの応答法itrは以下の式で表すこ七が
できる。
The junction capacitance of is reduced. When light is incident on the light receiving element 10, a reverse current with an intensity proportional to the intensity of the light is outputted.The response method itr at this time can be expressed by the following equation.

Cj: 受光素子(フォトダイオード)の接合容量R5
: 受光素子の内部直列抵抗 几L: 負荷抵抗 よってこの式からもわかるように接合容量Cjが低減す
ると応答速度trは速くなる。
Cj: Junction capacitance R5 of light receiving element (photodiode)
: Internal series resistance L of the light-receiving element: As can be seen from this equation, the response speed tr increases as the junction capacitance Cj decreases due to the load resistance.

また、このような集積回路の製造工程において、半導体
基板1表面の受光素子形成予定領域に、予め半導体基板
と同一導電型でこの基板よりも低濃度の不純物領域9を
形成する工程を取り入れているために1この不純物領域
9の濃度コントロールにより受光素子10の応答速度を
適宜定めることができる。従って受光素子10のこの不
純物領域9との間でPN接合を形成するための隣接層即
ちエピタキシャルj?・72 aの形成に格別な制約が
ないため、トランジスタ15の動作特性要求に応じてそ
のコレクタとなるエピタキシャル層2bに要求された条
件従って形成されたエピタキシャル層2が各層2a及び
2bK共通に利用できる。また前記不純物領域9により
受光素子の応答速度が定められ得るから、受光素子面積
を大きくしてその応答速度を速くでき、受光感度を向上
できる。更に、応答速度を速ぐするために半導体基板1
やエピタキシャルM2の不#g物濃度を低くする必要が
なhので、刈れ〜電流による基板内での不所望な高電位
分布が・防止でき受光素子以外の他の機能素子の誤動作
が防止できる。ま恵受光素子以外の機能素子1例えばト
ランジスタのコレクタ抵抗を不所望に大きくすることが
なく例えば、 VCx(sat)を小さく保ソる。そし
てとのよう罠受光素子及びその他の機能素子の電気的特
性を維持した状與で集積回路・の溶易な製造が行なわれ
るなどの種々の効果がある。
In addition, in the manufacturing process of such an integrated circuit, a step is introduced in advance to form an impurity region 9 of the same conductivity type as the semiconductor substrate and at a lower concentration than that of the substrate in the area where the light receiving element is to be formed on the surface of the semiconductor substrate 1. Therefore, by controlling the concentration of impurity region 9, the response speed of light receiving element 10 can be appropriately determined. Therefore, the adjacent layer, that is, the epitaxial layer j?, for forming a PN junction with this impurity region 9 of the light receiving element 10 is formed.・Since there are no particular restrictions on the formation of 72a, the epitaxial layer 2 formed according to the conditions required for the epitaxial layer 2b serving as the collector in accordance with the operational characteristics requirements of the transistor 15 can be commonly used for each layer 2a and 2bK. . Further, since the response speed of the light receiving element can be determined by the impurity region 9, the area of the light receiving element can be increased to increase its response speed, and the light receiving sensitivity can be improved. Furthermore, in order to speed up the response speed, the semiconductor substrate 1
Since it is not necessary to lower the concentration of impurities in the epitaxial layer M2, it is possible to prevent undesired high potential distribution within the substrate due to current, and to prevent malfunctions of functional elements other than the light-receiving element. For example, VCx (sat) can be kept small without undesirably increasing the collector resistance of functional elements 1, such as transistors, other than the light receiving element. In addition, there are various effects such as easy manufacture of integrated circuits while maintaining the electrical characteristics of the trap light-receiving element and other functional elements.

上記実施例ではP−J低濃度不純物領域9をイオン注入
によって形成する場合のみ述べ九が、熱拡散法で形成し
ても同様の効果が得られる。まな、このr層9は、写真
蝕刻法により基板1に穴を形成しその中にエピタキシャ
ル法によりP一層9を成長させて形成してもよい。
In the above embodiment, only the case where the P-J low concentration impurity region 9 is formed by ion implantation is described; however, the same effect can be obtained even if it is formed by a thermal diffusion method. Alternatively, the r layer 9 may be formed by forming a hole in the substrate 1 by photolithography and growing the P layer 9 in the hole by epitaxial method.

ま念、この低濃度不純物領域9はr層に代えてN型エピ
タキシャル−より低濃度のN−型層であってもよく%N
’7Fは該2厘基板1にN型不紳物をとのP型基板の不
純物1度より高濃度に、イオン注入するか、又は上記の
ような熱拡散するかして形成する。なお、この場合の高
濃度とは、このN−1fQの不純物濃度がN型エビタキ
7ヤル層の不純物濃度を越えないまでの程度を言う。
By the way, this low concentration impurity region 9 may be an N-type layer with a lower concentration than an N-type epitaxial layer instead of the r layer.
'7F is formed by ion implantation of N-type impurities into the two-layer substrate 1 at a concentration higher than that of the P-type substrate, or by thermal diffusion as described above. Note that the high concentration in this case refers to the degree to which the impurity concentration of N-1fQ does not exceed the impurity concentration of the N-type epitaxy layer.

また、受光素子10以外の鳴能素子として、バイポーラ
トランジスタ15全図示して、述べたが、その他複数の
世態素子が他の領域に形成されてあシ、それらの礪能階
子の電気的特性も維持できることは言うまでもない。
In addition, although the bipolar transistor 15 has been fully illustrated and described as a functional element other than the light-receiving element 10, a plurality of other electrical elements may be formed in other regions, and the electrical characteristics of those functional elements may be Needless to say, it can also be maintained.

〔発明の効果〕〔Effect of the invention〕

本発明によると、半導体基板上の受光素子形成予定領域
のみ、I!P夜率姿fI亭、ザl趨府〃承りす低一度の
領域を形成する工8を取り入れているため受光素子以外
の素子の特性を維持した状、・裏で受光素子の応答速度
を向上させることができると共にその満造が容易である
という効果がある。
According to the present invention, only the region on the semiconductor substrate where the light receiving element is to be formed is I! P-night view fI-tei, Zarufu〃Since it incorporates the process 8 to form a low-level area, the characteristics of elements other than the light-receiving element are maintained, and the response speed of the light-receiving element is improved on the back side. It has the advantage that it can be easily manufactured and completed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示す工程図であり、べ
き稍回路の受光素子付近の断面図、第2図は従来の不積
回路の受光素子付近の断面図、第3図は個別受光素子(
PIN 7オトダイオード)の断面図である。 1・・・P型半導体基板(第14電型半導体基板)2・
・・N型エピタキシャル層(第2導電型エピタキシャル
層)3・・・アイソレーション領域(3e、2に1アイ
ンレーション領域代理人 弁理士 則近ン1佑(ほか1
名)第1図
FIG. 1 is a process diagram showing an embodiment of the method of the present invention, and FIG. 2 is a cross-sectional view of the vicinity of the light-receiving element of a powerless circuit, FIG. Individual photodetector (
PIN 7 Otodiode). 1... P-type semiconductor substrate (14th electric type semiconductor substrate) 2.
...N-type epitaxial layer (second conductivity type epitaxial layer) 3...Isolation region (3e, 2 to 1 isolation region agent Patent attorney Norichika 1yu (and 1 others)
name) Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板の受光素子形成予定領域に
低濃度不純物領域を形成する工程と、前記予定領域を含
む半導体基板表面に第2導電型エピタキシャル層を形成
する工程と、前記予定領域を囲んで前記低濃度不純物領
域に到達して前記エピタキシャル層のうち受光素子用の
第1エピタキシャル層を区画する第1アイソレーシヨン
領域及び、前記基板に到達して他の機能素子用の第2エ
ピタキシャル層を区画する第2アイソレーシヨン領域を
形成する工程とを具備し、前記第1エピタキシャル層と
前記低濃度不純物領域との間のPN接合を用いて形成さ
れる受光素子がこの低濃度不純物領域の不純物濃度に依
存してその応答速度がコントロールされていることを特
徴とする集積回路の製造方法。
(1) A step of forming a low concentration impurity region in a region of a first conductivity type semiconductor substrate where a light receiving element is to be formed, a step of forming a second conductivity type epitaxial layer on a surface of the semiconductor substrate including the said planned region, and a step of forming a second conductivity type epitaxial layer in said planned region. a first isolation region surrounding the substrate and reaching the low concentration impurity region to define a first epitaxial layer for a light-receiving element in the epitaxial layer; forming a second isolation region that partitions an epitaxial layer, and a light receiving element formed using a PN junction between the first epitaxial layer and the low concentration impurity region is formed using the low concentration impurity region. A method for manufacturing an integrated circuit, characterized in that its response speed is controlled depending on the impurity concentration of the region.
(2)前記低濃度不純物領域は、第1導電型であり、前
記基板よりも低濃度であることを特徴とする特許請求の
範囲第1項記載の集積回路の製造方法。
(2) The method for manufacturing an integrated circuit according to claim 1, wherein the low concentration impurity region is of a first conductivity type and has a lower concentration than the substrate.
(3)前記低濃度不純物領域は、第2導電型であり前記
エピタキシャル層よりも低濃度であることを特徴とする
特許請求の範囲第1項記載の集積回路の製造方法。
(3) The method of manufacturing an integrated circuit according to claim 1, wherein the low concentration impurity region is of a second conductivity type and has a lower concentration than the epitaxial layer.
(4)前記低濃度不純物領域は、第2導電型不純物を前
記基板の不純物濃度より低濃度にイオン注入することに
より形成することを特徴とする特許請求の範囲第2項記
載の集積回路の製造方法。
(4) Manufacturing the integrated circuit according to claim 2, wherein the low concentration impurity region is formed by ion-implanting a second conductivity type impurity at a concentration lower than the impurity concentration of the substrate. Method.
(5)前記低濃度不純物領域は、前記エピタキシャル層
よりも低濃度な第1導電型となる程度に第2導電型不純
物を前記基板の不純物濃度より高濃度にイオン注入する
ことにより形成することを特徴とする特許請求の範囲第
3項記載の集積回路の製造方法。
(5) The low concentration impurity region is formed by ion-implanting a second conductivity type impurity at a higher concentration than the impurity concentration of the substrate so as to have a first conductivity type lower in concentration than the epitaxial layer. A method for manufacturing an integrated circuit according to claim 3, characterized in that:
JP59191800A 1984-09-14 1984-09-14 Method of manufacturing integrated circuit Expired - Lifetime JPH0644617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191800A JPH0644617B2 (en) 1984-09-14 1984-09-14 Method of manufacturing integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191800A JPH0644617B2 (en) 1984-09-14 1984-09-14 Method of manufacturing integrated circuit

Publications (2)

Publication Number Publication Date
JPS6170750A true JPS6170750A (en) 1986-04-11
JPH0644617B2 JPH0644617B2 (en) 1994-06-08

Family

ID=16280743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191800A Expired - Lifetime JPH0644617B2 (en) 1984-09-14 1984-09-14 Method of manufacturing integrated circuit

Country Status (1)

Country Link
JP (1) JPH0644617B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280655A (en) * 1985-05-14 1986-12-11 Sanyo Electric Co Ltd Semiconductor integrated circuit with incorporated photosensor
JPS6372151A (en) * 1986-09-13 1988-04-01 Semiconductor Res Found Solid-state image sensing device and its manufacture
JPH03262167A (en) * 1990-03-12 1991-11-21 Sharp Corp Photodetector with built-in circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280655A (en) * 1985-05-14 1986-12-11 Sanyo Electric Co Ltd Semiconductor integrated circuit with incorporated photosensor
JPS6372151A (en) * 1986-09-13 1988-04-01 Semiconductor Res Found Solid-state image sensing device and its manufacture
JPH03262167A (en) * 1990-03-12 1991-11-21 Sharp Corp Photodetector with built-in circuit

Also Published As

Publication number Publication date
JPH0644617B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
US4879584A (en) Semiconductor device with isolation between MOSFET and control circuit
US4038680A (en) Semiconductor integrated circuit device
US4837186A (en) Silicon semiconductor substrate with an insulating layer embedded therein and method for forming the same
US4965872A (en) MOS-enhanced, self-aligned lateral bipolar transistor made of a semiconductor on an insulator
JP2677644B2 (en) Semiconductor device and manufacturing method thereof
JPS6322070B2 (en)
JPS60210861A (en) Semiconductor device
US5063167A (en) Method of producing a bipolar transistor with spacers
JP3122118B2 (en) Semiconductor device
JPH04256376A (en) Avalanche photodiode and its manufacture
JPH04363046A (en) Manufacture of semiconductor device
US4101349A (en) Integrated injection logic structure fabricated by outdiffusion and epitaxial deposition
JPS6170750A (en) Manufacture of integrated circuit
US4106049A (en) Semiconductor device
JP3083831B2 (en) Semiconductor device and manufacturing method thereof
US5204544A (en) Photoelectric conversion device with stabilizing electrode
JPS6244861B2 (en)
JPH02186675A (en) High breakdown strength planar type semiconductor element and manufacture thereof
JP2957837B2 (en) Photo detector and photo detector with built-in circuit
KR19990065744A (en) Bipolar transistor having a diode between a collector and an emitter and a manufacturing method thereof
USRE34025E (en) Semiconductor device with isolation between MOSFET and control circuit
JPS6167959A (en) Manufacture of semiconductor device
KR0165255B1 (en) Process of fabricating junction isolation vertical bipolar transistor
JPH05109745A (en) Semiconductor device