JPS6169949A - Corrosion resistant stainless steel - Google Patents

Corrosion resistant stainless steel

Info

Publication number
JPS6169949A
JPS6169949A JP19332185A JP19332185A JPS6169949A JP S6169949 A JPS6169949 A JP S6169949A JP 19332185 A JP19332185 A JP 19332185A JP 19332185 A JP19332185 A JP 19332185A JP S6169949 A JPS6169949 A JP S6169949A
Authority
JP
Japan
Prior art keywords
stainless steel
less
sulfur
corrosion
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19332185A
Other languages
Japanese (ja)
Inventor
Kikuo Takizawa
滝沢 貴久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP19332185A priority Critical patent/JPS6169949A/en
Publication of JPS6169949A publication Critical patent/JPS6169949A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stainless steel superior in corrosion resistance without adding plenty of precious alloying element, by regulating contents of S, Mn, Mo, Cu in a 18-8 stainless steel contg. specified compsn. quantities of C, Si, P, Ni and Cr. CONSTITUTION:In the 18-8 stainless steel contg. <=0.08wt% C, <=1.00% Si, <=0.04% P, 8.0-10.5% Ni, 18.0-20.0% Cr, corrosion resistant stainless steel having durability against corrosion as member in contact with drinking water is obtd. by adjusting to <0.005% S, <=150 in Mn/S, <=0.2% (Mo+Cu). Said steel is heated to about 1,300+ or -50 deg.C, solution treated at the temp. for >=about 2min, then cooled to room temp. at a rate of air cooling or above. Thereby, the corrosion resistance can be further improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はオーステナイト系の所謂18−8ステンレス鋼
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to austenitic so-called 18-8 stainless steel.

(ロ)従来の技術 従来、コーラ等の飲料販売機器における飲料液接触部に
は、18−8ステンレス鋼で代表される5US304が
主として使用されている。この18−8ステンレス鋼の
元素の含有量は、炭素が0゜08%以下、シリコンが1
.00%以下、燐が0.04%以下、クロムが18.0
0%乃至20.00%の範囲内で、ニッケルが8.00
%乃至10.50%の範囲で含有されていることが周知
である。また、この一般的な18−8ステンレス鋼にお
けるマンガンの含有量は1.0%乃至1.5%で、硫黄
は0.01%乃至0.02%である。
(B) Prior Art Conventionally, 5US304, typified by 18-8 stainless steel, has been mainly used for beverage liquid contact parts in beverage dispensing machines for cola and other beverages. The elemental content of this 18-8 stainless steel is less than 0.08% carbon and 1% silicon.
.. 00% or less, phosphorus is 0.04% or less, chromium is 18.0% or less
Within the range of 0% to 20.00%, nickel is 8.00%
It is well known that the content ranges from 10.5% to 10.50%. Further, the manganese content in this general 18-8 stainless steel is 1.0% to 1.5%, and the sulfur content is 0.01% to 0.02%.

(ハ)発明が解決しようとする問題点 かかる従来の18−8ステンレス鍋は耐蝕性が低く、飲
料液に接触する部材としては腐蝕に対する耐久性に難点
がある。
(c) Problems to be Solved by the Invention The conventional 18-8 stainless steel pot has low corrosion resistance, and as a member that comes into contact with drinking liquid, has a drawback in its durability against corrosion.

また耐蝕性を高めるために硫黄4Jtj、−少なくさせ
ることが考えられるが、その場合でもマンガンと硫黄の
混合比(MrL/S )が大きい場合は、耐蝕性を高め
ることはできない。すなわち、第1図は硫黄の含有量を
0.0051%乃至0.01%となし。
Furthermore, in order to improve the corrosion resistance, it is possible to reduce the sulfur content by 4 Jtj, but even in that case, if the mixing ratio of manganese and sulfur (MrL/S) is large, the corrosion resistance cannot be improved. That is, in FIG. 1, the sulfur content is 0.0051% to 0.01%.

マンガンと硫黄の混成比(M、/S )を79にした1
8−8ステンレス鋼を、10%のアスコルビン酸と1%
の塩化ナトリウム中に浸した場合における腐蝕状態を現
した顕微鏡写真であり、表面が短時間内に溶解すること
が判る。
1 with a mixture ratio of manganese and sulfur (M, /S) of 79
8-8 stainless steel with 10% ascorbic acid and 1%
This is a micrograph showing the corrosion state when immersed in sodium chloride, and it can be seen that the surface dissolves within a short time.

本発明は上記のようなことから、耐蝕性に優れたステン
レス鋼を提供するものである。
In view of the above, the present invention provides a stainless steel with excellent corrosion resistance.

に)問題点を解決するための手段 炭素が0.08%以下、シリコンが1.00%以下、燐
が0.04%以下、ニッケルが8.0%乃至10.5%
、及びクロムが18.0%乃至20.0%の各重量%含
有する所謂18−8ステンレス鋼において、硫黄の18
含有率が0.005%未満で、マンガンと硫黄の重量混
合比(MrL/S)を150以下とし、モリブデンと銅
を合わせた重量含有率を0.2%以下となして調整した
ステンレス鋼。
2) Means to solve the problem Carbon: 0.08% or less, Silicon: 1.00% or less, Phosphorus: 0.04% or less, Nickel: 8.0% to 10.5%
In so-called 18-8 stainless steel containing 18.0% to 20.0% of chromium by weight, 18% of sulfur
Stainless steel with a content of less than 0.005%, a weight mixing ratio of manganese and sulfur (MrL/S) of 150 or less, and a combined weight content of molybdenum and copper of 0.2% or less.

(ホ)作用 本発明は、硫黄の重量含有率が0.005%未満におい
てマンガンと硫黄の重量混合比(M3/S’)を150
以下とし、モリブデンと銅を合わせた重量含有率を0.
2%以下となして調整し、耐蝕性を高める。
(e) Effect The present invention provides a method for controlling the weight mixing ratio of manganese and sulfur (M3/S') to 150% when the weight content of sulfur is less than 0.005%.
The weight content of molybdenum and copper combined is 0.
Adjust to 2% or less to improve corrosion resistance.

(へ)実施例 炭素が0.08%以下、シリコンが1.00%以下、燐
が0.04%以下、ニッケルが8.0%乃至10.5%
、及びクロムが18.0%乃至20.0%の各重量%含
有する所謂18−8ステンレス鋼の通常元素含有料にお
いての硫黄、マンガンの量を以下の如(調整する。
(F) Examples Carbon: 0.08% or less, Silicon: 1.00% or less, Phosphorus: 0.04% or less, Nickel: 8.0% to 10.5%
The amounts of sulfur and manganese in the normal element content of so-called 18-8 stainless steel containing 18.0% to 20.0% chromium by weight are adjusted as follows.

実施例1゜ 硫黄(S)が0.005%未満のとき、マンガン(Mユ
)と硫黄(S)の重量混合比(MW/S)を150以下
と成し、モリブデン(MO)と銅(Crt )を合わせ
た重量含有率を0.2%以下と成して調整する。
Example 1゜When sulfur (S) is less than 0.005%, the weight mixing ratio (MW/S) of manganese (M) and sulfur (S) is set to 150 or less, and molybdenum (MO) and copper ( The combined weight content of Crt) is adjusted to 0.2% or less.

実施例2゜ 硫黄(S)が0.0051乃至0.01%のとき、マン
ガン(MfL)と硫黄(S)の重量混合比CM、/S 
)を50以下と成し、モリブデン(MO)と銅(C,1
,)を合わせた重量含有率を0.2%以下と成して調整
する。
Example 2゜When sulfur (S) is 0.0051 to 0.01%, the weight mixing ratio CM, /S of manganese (MfL) and sulfur (S)
) is 50 or less, and molybdenum (MO) and copper (C,1
, ) to a total weight content of 0.2% or less.

実施例3゜ 硫黄(S)が0.011乃至0.015%のとき、マン
ガン(Mユ)と硫黄(S)の重量混合比(M、/S )
を20以下と成し、モリブデン(MO)と銅(C,L)
を合わせた重量含有率を0.2%以下と成して調整する
Example 3゜When sulfur (S) is 0.011 to 0.015%, the weight mixing ratio of manganese (M) and sulfur (S) (M, /S)
20 or less, molybdenum (MO) and copper (C, L)
The combined weight content is adjusted to 0.2% or less.

上記混合比で夫々含有したステンレス鋼は、種々な溶液
中における溶解抵抗が極めて大きく、長時間に亘る腐蝕
環境にさらされても安定である。
Stainless steel contained in the above mixing ratio has extremely high dissolution resistance in various solutions and is stable even when exposed to a corrosive environment for a long time.

第2図に示す写真は、硫黄(S)を0.0051乃至0
.01%の範囲で含有する鋼、すなわち上記実施例2.
0条件で10%のアスコルビン酸と1%の塩化ナトリウ
ム中に浸した場合における腐蝕状態を示した顕微鏡写真
であり、第1図に示す顕微鏡写真と比較して耐蝕性が優
れていることが明瞭である。すなわち前記実施例以外の
条件においては、ステンレス鋼は短時間で溶解する。こ
のように各種飲料液など腐蝕性のある環境で使用される
ステンレス鋼の耐蝕性は、腐蝕の超点となるマンガン(
MrL)、硫黄(S)からなる硫化物系介在物の電気化
学的特性によって律速される。つまり、硫化物系介在物
の溶解抵抗をいずれかの手段によって高めれば腐蝕のア
ノード反応が著しく抑制され、腐蝕抵抗が大きくなる。
The photograph shown in Figure 2 shows sulfur (S) ranging from 0.0051 to 0.
.. Steel containing in the range of 0.01%, ie, the above Example 2.
This is a micrograph showing the corrosion state when immersed in 10% ascorbic acid and 1% sodium chloride under zero conditions, and it is clear that the corrosion resistance is superior compared to the micrograph shown in Figure 1. It is. That is, under conditions other than those of the above embodiments, stainless steel melts in a short time. The corrosion resistance of stainless steel, which is used in corrosive environments such as various beverages, is limited by manganese (
The rate is determined by the electrochemical properties of sulfide-based inclusions consisting of MrL) and sulfur (S). In other words, if the dissolution resistance of sulfide-based inclusions is increased by any means, the anodic reaction of corrosion will be significantly suppressed, and the corrosion resistance will increase.

第3図乃至第5図はマンガン(MrL)、硫黄(Slを
調整した鋼種と、それを調整しない鋼種の耐蝕性を実験
的に比較したものの代表例を示したものであるが、第3
図は沸騰した状態における5%の硫酸溶液(Hz 30
4)に0.01%の塩化ナトリウム(N、CI)を添加
した液中での腐蝕減少量を示している。硫黄(Sltが
0.005%未満の場合、腐蝕量はマンガン(Mi)と
硫黄(S)の混合比(Mn/8 )が60.95.13
0の場合少なく、200では急激に増加することが判り
、硫黄(S)量が0.0051乃至0.01%の場合に
ついてもマンガン(Mユ)と硫黄(S)の混合比(Mn
/S)と腐蝕量には相間がある。第4図は硫黄量が0.
0051乃至0.01%の鋼種についてマンガン(Mユ
)と硫黄(31の混合比(Mn、/S )が28及び7
9の鋼について5%の硫酸溶液(H,5o4)中でアノ
ード分極挙動を測定した結果を示す。マンガン(MrL
)と硫黄(S)の混合比(MrL/S)が28の試料は
活性態電流が少く、耐蝕抵抗が大きいが、混合比(Mr
L/S)が79では電流値が大きく耐蝕抵抗が極めて小
さいことを示している。これらの傾向は第5図に示すよ
うに有機酸中の腐蝕でも同様であることが判る。
Figures 3 to 5 show representative examples of experimental comparisons of the corrosion resistance of steel types in which manganese (MrL) and sulfur (Sl) were adjusted and those in which they were not adjusted.
The figure shows a 5% sulfuric acid solution (Hz 30
It shows the amount of corrosion reduction in a solution in which 0.01% sodium chloride (N, CI) was added to 4). When sulfur (Slt) is less than 0.005%, the amount of corrosion is determined by the amount of corrosion when the mixing ratio of manganese (Mi) and sulfur (S) (Mn/8) is 60.95.13.
It was found that the mixing ratio of manganese (Myu) and sulfur (S) (Mn
/S) and the amount of corrosion. Figure 4 shows that the amount of sulfur is 0.
For steel types with 0.051 to 0.01%, the mixing ratio (Mn, /S) of manganese (M) and sulfur (31) is 28 and 7.
The results of measuring the anode polarization behavior of No. 9 steel in a 5% sulfuric acid solution (H, 5o4) are shown. Manganese (MrL
) and sulfur (S) with a mixing ratio (MrL/S) of 28, the active current is small and the corrosion resistance is large, but the mixing ratio (MrL/S) is 28.
When L/S) is 79, the current value is large and the corrosion resistance is extremely small. As shown in FIG. 5, it can be seen that these trends are similar in corrosion in organic acids.

なお、上記実施例による調整と同時ic 1300±5
0度Cまで加熱し、その温度で2分間以上溶体化処理を
した後、空冷以上の速度で室温まで冷却することにより
、更に耐蝕性を向上させることができる。
In addition, at the same time as the adjustment according to the above embodiment, IC 1300±5
Corrosion resistance can be further improved by heating to 0 degrees Celsius, performing solution treatment at that temperature for 2 minutes or more, and then cooling to room temperature at a rate faster than air cooling.

(ト)  発明の効果 本発明は、硫黄の重量含有率が0.005%未満におい
てマンガンと硫黄の重量混合比(MrLZS)を150
以下とし、モリブデンと銅を合わせた重量含有率を0.
2%以下となして調整し、耐蝕性を高めたものであるか
ら、ニッケル、クロム、モリブデン等の高価な合金元素
を多く添加することなく耐蝕性に優れたステンレス鋼を
提供できるものである。
(G) Effects of the Invention The present invention provides a method in which the weight mixing ratio of manganese and sulfur (MrLZS) is 150 when the weight content of sulfur is less than 0.005%.
The weight content of molybdenum and copper combined is 0.
Since the corrosion resistance is improved by adjusting the content to 2% or less, it is possible to provide stainless steel with excellent corrosion resistance without adding large amounts of expensive alloying elements such as nickel, chromium, and molybdenum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成分処理範囲以外のステンレス鋼の腐
蝕状態を表す顕微鏡写真、第2図は本発明の実施例によ
るステンレス鋼の顕微鏡写真、第3図はステンレス鋼の
腐蝕減少量に及ぼすマンガンと硫黄の混合比(Mユ/S
)の影響を示すグラフ、第4図はアノード分極挙動に及
ぼすMrLZS  比の影響を示すグラフ、第5図は鉄
イオンの溶出量に及ぼすMrLZS 比の影響を示した
グラフである。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 静 夫 第3図 S<0.005%       S=α0051〜0.
010%−Mn/S − 第4図 電流ソ友(mA/cm”) 第5図 −Mn/+−
Fig. 1 is a micrograph showing the corrosion state of stainless steel other than the range of component treatment of the present invention, Fig. 2 is a micrograph of stainless steel according to an example of the present invention, and Fig. 3 is an effect on the amount of corrosion reduction of stainless steel. Mixing ratio of manganese and sulfur (Myu/S
), FIG. 4 is a graph showing the effect of the MrLZS ratio on the anode polarization behavior, and FIG. 5 is a graph showing the effect of the MrLZS ratio on the elution amount of iron ions. Applicant Sanyo Electric Co., Ltd. and 1 other representative Patent attorney Shizuo Sano Figure 3 S<0.005% S=α0051~0.
010%-Mn/S- Fig. 4 Current flow rate (mA/cm") Fig. 5-Mn/+-

Claims (1)

【特許請求の範囲】[Claims] 1、炭素が0.08%以下、シリコンが1.00%以下
、燐が0.04%以下、ニッケルが8.0%乃至10.
5%、及びクロムが18.0%乃至20.0%の各重量
%含有する所謂18−8ステンレス鋼において、硫黄の
重量含有率が0.005%未満で、マンガンと硫黄の重
量混合化(Mn/S)を150以下とし、モリブデンと
銅を合わせた重量含有率を0.2%以下となして調整し
たことを特徴とする耐蝕ステンレス鋼。
1. Carbon is 0.08% or less, silicon is 1.00% or less, phosphorus is 0.04% or less, nickel is 8.0% to 10.
In so-called 18-8 stainless steel containing 5% chromium and 18.0% to 20.0% chromium, the weight content of sulfur is less than 0.005% and the weight mixing of manganese and sulfur ( A corrosion-resistant stainless steel characterized in that it has been adjusted to have a Mn/S) of 150 or less and a combined weight content of molybdenum and copper of 0.2% or less.
JP19332185A 1985-09-02 1985-09-02 Corrosion resistant stainless steel Pending JPS6169949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19332185A JPS6169949A (en) 1985-09-02 1985-09-02 Corrosion resistant stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19332185A JPS6169949A (en) 1985-09-02 1985-09-02 Corrosion resistant stainless steel

Publications (1)

Publication Number Publication Date
JPS6169949A true JPS6169949A (en) 1986-04-10

Family

ID=16305957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19332185A Pending JPS6169949A (en) 1985-09-02 1985-09-02 Corrosion resistant stainless steel

Country Status (1)

Country Link
JP (1) JPS6169949A (en)

Similar Documents

Publication Publication Date Title
US4099966A (en) Austenitic stainless steel
Herbsleb et al. Precipitation of intermetallic compounds, nitrides and carbides in AF 22 duplex steel and their influence on corrosion behavior in acids
Greene et al. Variable corrosion resistance of 18Cr-8Ni stainless steels: Influence of environmental and metallurgical factors
CN109648064A (en) A kind of method of super austenitic stainless steel solidified structure σ interconvertibility
JP2002502464A (en) Nickel-free stainless steel for biomedical applications
JPS6169949A (en) Corrosion resistant stainless steel
CA1236712A (en) Austenitic stainless steel with improved resistance to corrosion by nitric acid
US4217136A (en) Corrosion resistant austenitic stainless steel
JPS61174361A (en) Low carbon martensitic stainless steel excelling in hardenability and rust resistance
JPS5953343B2 (en) Non-magnetic stainless steel and its manufacturing method
JPS5716154A (en) High strength martensite-containing stainless steel having excellent pitting resistance
JP2005179699A (en) Method for inhibiting potential of stainless steel from becoming noble
JPH03260035A (en) Ni-cr series stainless steel improved in corrosion resistance and machinability
KR810001803B1 (en) Austenite stainless steel
JPS63274744A (en) Ni-cr stainless steel improved in corrosion resistance and machinability
CN108728773A (en) A kind of superelevation anti-microbial property austenitic stainless steel applied to Chemical Manufacture
Bala et al. Corrosion Resistance of RE--Fe--B Permanent Magnets With Major Alloying Additions of Chromium, Nickel and Cobalt
JPS63274745A (en) Ni-cr stainless steel improved in corrosion resistance and machinability
CN117107152A (en) Microalloy nickel-saving austenitic stainless steel and manufacturing method thereof
JPS605670B2 (en) Chemical conversion treatment method for zinc and zinc alloys
SU645394A1 (en) Alloying composition
JP3026147B2 (en) Long life C hook for pickling
JPS60251241A (en) Shape memory alloy
JPS63203748A (en) High strength steel having superior resistance to sulfide stress corrosion cracking
JPH02115345A (en) Ferritic stainless steel having excellent corrosion resistance in high concentrated halide