JPS6169298A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS6169298A
JPS6169298A JP59190914A JP19091484A JPS6169298A JP S6169298 A JPS6169298 A JP S6169298A JP 59190914 A JP59190914 A JP 59190914A JP 19091484 A JP19091484 A JP 19091484A JP S6169298 A JPS6169298 A JP S6169298A
Authority
JP
Japan
Prior art keywords
piezoelectric
probe
transducer
layers
acoustic matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59190914A
Other languages
Japanese (ja)
Inventor
Takeshi Inoue
武志 井上
Masanori Suzuki
正則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59190914A priority Critical patent/JPS6169298A/en
Publication of JPS6169298A publication Critical patent/JPS6169298A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Abstract

PURPOSE:To suppress the spurious oxcillation due to the lateral effect of ceram ics by providing a piezoelectric transducer which is polarized reverse alternately in the laminating direction and forming acoustic matching layers on one face of this transducer vertical to the laminating direction. CONSTITUTION:A piezoelectric transducer 10 has a three-layered structure, and electrodes 31 are buried in PbTiO3 piezoelectric ceramics 30. A DC high electric field is applied across external electrodes 32 and 32' to polarize the transducer 10. Acoustic matching layers 11, 12, and 13 and a packing 14 are provided on and under piezoelectric ceramics 30 respectively, and acoustic matching layers are adjusted to about 1/4 of the resonance wavelength. These transducers are arranged at intervals of a prescribed length into a linear array having about 10-13cm length, thus obtaining a probe.

Description

【発明の詳細な説明】 (産業上の利用分野) 不発EAi−i医用超音波診断装置等において使用され
、超音波の送受波を行なう超音波探触子に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an ultrasonic probe that is used in a medical ultrasonic diagnostic device such as an unexploded EAi-i and transmits and receives ultrasonic waves.

(技来技術) 一般に超音波探触子の圧電変換子材料はジルコン・チタ
ン酸鉛系の圧電材料が用いられている。
(Technology) Generally, a zircon/lead titanate-based piezoelectric material is used as the piezoelectric transducer material of an ultrasonic probe.

これらの材料では縦波変換子として使用する場合に摂効
果の結合係数h1が0.2〜0.3と大ききく、このた
め不要振動が発生しやすく、良好な特性を得ることが雌
かしかった。特に超音波診断装置等で使用されるアレイ
形探触子では、横効果による不要機#Jを避けるため、
第6図に示すように矩形板状振動子61の板厚Tに対す
る幅寸法WO比W/Tを0.6以下にする必要があシ、
探触子の高周波化の超音波探触子の構成について説明す
ると61は子である。62.63は音響整合りでちゃ、
圧電セラミックスと音響インピーダンスの大幅に異なる
被検体(人体、水、あるいは鉄鋼)の音響インピーダン
ス整合をとるために設けられたものであジ、探触子の広
帯域、低損失化に寄与するものでちる。整合層の音響イ
ンピーダンスは、通常、圧電セラミックスと被検体の音
響インピーダンスの中間の値に設定される。全体の構成
は所定の間隔をおいて配置される複数の矩形板状振動子
61の上に音響整合層62.63が形成された構成であ
る〇 一方、本多、山下、内田による「チタン酸鉛系圧電セラ
ミック材を用いた超音波探触子」(電子通信学会技術研
究報告US81−20(1981年))あるいは骨内、
中谷、定村によるr PbTiOx系セラミックスの高
周波超音波探触子への応用J(を子通信♀会技術研究報
告tJs84−7(1984年))においてPbTiO
3系圧電セラミック材料を用いた探触子が従来のジルコ
ン・チタン酸鉛を用いたものよ)髪れていることが述べ
られているコ即ち、pbTio、系圧電セラミックス材
料では横効果の結合係数が著しく小さいことによシ、不
要振動が激減し、この材料を超音波探触子に応用した場
合、横効果による振動エネルギーは相当弱く実際tQI
J用する厚みたて振動に殆んど影響を与えることのない
理想に近い送受波特性が期待できるとしている。I’b
TiO。
When these materials are used as longitudinal wave transducers, the coupling coefficient h1 of the interpolation effect is as large as 0.2 to 0.3, and therefore unnecessary vibrations are likely to occur, making it difficult to obtain good characteristics. Ta. In particular, with array type probes used in ultrasound diagnostic equipment, etc., in order to avoid unnecessary #J due to lateral effects,
As shown in FIG. 6, it is necessary to make the width dimension WO ratio W/T to the plate thickness T of the rectangular plate-shaped vibrator 61 0.6 or less.
To explain the structure of the ultrasonic probe for increasing the frequency of the probe, 61 is a child. 62.63 is acoustic matching,
It is designed to match the acoustic impedance of piezoelectric ceramics and objects that have significantly different acoustic impedances (human body, water, or steel), and contributes to the wide band and low loss of the probe. . The acoustic impedance of the matching layer is usually set to a value intermediate between the acoustic impedances of the piezoelectric ceramic and the subject. The overall structure is such that acoustic matching layers 62 and 63 are formed on a plurality of rectangular plate-shaped vibrators 61 arranged at predetermined intervals. "Ultrasonic probe using acid-lead-based piezoelectric ceramic material" (IEICE technical research report US81-20 (1981)) or intraosseous,
Application of PbTiOx Ceramics to High-Frequency Ultrasonic Probes by Nakatani and Sadamura (Application of PbTiOx Ceramics to High-Frequency Ultrasonic Probes J)
It has been reported that probes using 3-series piezoelectric ceramic materials are inferior to those using conventional zircon-lead titanate. Due to the extremely small tQI, unnecessary vibrations are drastically reduced, and when this material is applied to an ultrasonic probe, the vibration energy due to the transverse effect is considerably weak and the actual tQI
It is said that near-ideal wave transmitting and receiving characteristics can be expected with almost no effect on vertical vibrations used in J-use applications. I'b
TiO.

系圧電セラミックスはW/Tが0.6以下では勿論のこ
と、とくにW / Tが1.2〜2.0においてもスプ
リアスの出ない良好な厚みたて振動特性が得られ、矩形
板状振動子を用いたアレイ形探触子の高周波化をはかる
場合極めて有利なものとなっている。
The system piezoelectric ceramics can obtain good thick vertical vibration characteristics with no spurious, not only when W/T is 0.6 or less, but especially when W/T is 1.2 to 2.0, and rectangular plate vibration. This is extremely advantageous when trying to increase the frequency of an array type probe using a probe.

(従来技術の問題点) 前記の如(PbTiOs系圧電セラミックスは電気機械
結合係数の異方性が大きく、実際に利用する厚みたて結
合係数Ktが0.50以上で横効果の結合係数に3□が
0.05以下のものが得られ、超音波探触子の材料とし
て極めて浸れた材料でちるとされている口しかし誘E1
33/ff1oが200程度しかなく、ジルコン・チタ
ン酸鉛系の圧電セラミックス約10分の1にすぎない。
(Problems with the prior art) As mentioned above, (PbTiOs piezoelectric ceramics have a large anisotropy in the electromechanical coupling coefficient, and when the longitudinal coupling coefficient Kt actually used is 0.50 or more, the coupling coefficient of the transverse effect is 3. □ is 0.05 or less, and it is said that the material used for ultrasonic probes is highly immersed.
33/ff1o is only about 200, which is only about one-tenth that of piezoelectric ceramics based on zircon/lead titanate.

とぐに電子走査方式のアレイ形探触子では電極面積が小
さくな9゜PbTiOs系圧電セラミックスを用いた場
合’33/’0が小さいため探触子のインピーダンスは
ジルコン・チタン毀鉛系圧電セラミックスを用いた探触
子と比べて10倍程度大きくなる。超音波探触子は通常
、ケーブルを介して診断装置本体と結合されるために、
PbT iQ、系圧電セラミックスのように誘Tl率の
小さな材料であれば、第1にケーブルの容量の影#をう
けてS/N比が劣化するという欠点がある。第2にPb
Ti O,系圧電セラミックスでは誘電率が小さいこと
により圧電d定数も小さいわけであるから、駆動電圧を
高くしなければ十分な振動振項が得らr、ないという欠
点がある。即ち、pbT ios系圧電セラミックスで
はこのような欠点があるため探触子実用化の@害となっ
ていたつ(発明の目的) 本発明はPbTiO3系圧電セラミックスの有する上記
諸欠点を解消し、インピーダンスが小さくかつスプリア
ス特性に優れたPbTiO3系圧電セラミックスを用い
た超音波探触子を得ることを目的とするものであるり (発明の構成) すなわち、本発明は2以上のPbTiO3光圧4セラミ
ック層と1又は2以上の内部電極層とが交互に積層され
た積層体であって、該積層体の槓j西方向に垂直な2面
及び他の2側面に2つの外部電極が形成されており、谷
内部へ極は一層おきに前記積層体の側面で一方の外部電
極と接続しており、2つの平面状taにはさまれたpb
Tiox系三Iセラミック層ij:等しい厚みを有し、
かつ積ノ査万同に交互に逆向きに分極されている4道の
三′−工侠子と。
In electronic scanning array type probes, when using 9゜PbTiOs piezoelectric ceramics, which have a small electrode area, '33/'0 is small, so the impedance of the probe is reduced by using zircon-titanium-lead-based piezoelectric ceramics. It is about 10 times larger than the probe used. Ultrasonic probes are usually connected to the diagnostic equipment body via cables, so
If the material has a small dielectric constant, such as PbTiQ or piezoelectric ceramics, the first disadvantage is that the S/N ratio is affected by the cable capacitance. Second, Pb
Since the Ti 2 O piezoelectric ceramic has a small dielectric constant and a small piezoelectric d constant, it has the disadvantage that a sufficient vibration vibration term cannot be obtained unless the driving voltage is increased. In other words, pbTiO3-based piezoelectric ceramics have such drawbacks, which have hindered the practical use of probes (objective of the invention). It is an object of the present invention to obtain an ultrasonic probe using PbTiO3-based piezoelectric ceramics that is small and has excellent spurious characteristics (Structure of the Invention). A laminate in which one or more internal electrode layers are alternately stacked, two external electrodes are formed on two sides perpendicular to the west direction of the laminate and two other sides, The poles inside the valley are connected to one external electrode on the side surface of the laminate every other layer, and the PB sandwiched between the two planar ta
Tiox-based three I ceramic layers ij: have equal thickness,
And the four paths of 3'-technical chivalry, which are alternately polarized in opposite directions.

該圧覚変換子の積層方向に垂直な一方の面に形成された
音響整合層とを備えだことを特徴とする超音波探触子で
おるコ (構成の詳細な説明) 本発明のpbTi03系圧電セラミックスを用いた超音
波探触子は、上記の如くセラミックス内部に電極を肩す
る構成とすることによυ従来技術の諸問題を解決してい
る。以下、図面に従って説明するっ 第2図は本発明の探触子に用いるPbTiOs 系圧電
セラミック変換子のグリーンシートの状態における積層
構造の一例を示したもので、以下変換子の構造及び製造
方法の例について詳述する5第2図において20は有機
バインダとpb’rio、系セラミックス粉末からなる
グリーンシートであ)、また21は4電ペーストで、焼
成径内部電極となるものでおる。このようなグリーンシ
ートを図のように積層し、圧着してグリーンシー)ff
層体とする。
An ultrasonic probe characterized by comprising an acoustic matching layer formed on one surface perpendicular to the stacking direction of the pressure transducer (Detailed description of the structure) The pbTi03-based piezoelectric of the present invention Ultrasonic probes using ceramics solve the problems of the prior art by having electrodes placed inside the ceramics as described above. The explanation will be given below with reference to the drawings. Figure 2 shows an example of the laminated structure of the PbTiOs piezoelectric ceramic transducer used in the probe of the present invention in the state of a green sheet. An example will be described in detail in Fig. 5. In Fig. 2, 20 is a green sheet made of an organic binder, pb'rio, and ceramic powder), and 21 is a 4-electrode paste, which becomes the inner electrode with a firing diameter. Stack these green sheets as shown in the figure and press them together to form a green sheet) ff
Make it a layered body.

この場合電極21は一層おきに電気端子を並列に取シ出
すことができるように、導電ペーストが塗布されていな
いギャップ部分22が残されているコ次に前記グリーン
シート積層体を焼成する0然る後第3図に示すように焼
成されたPbTiO3系圧電セラミック積層体の積層方
向に垂直な2面及びyz面に平行な2側面に焼付らbい
は蒸着、メッキ等の方法で電極を施す。この場合は3層
の構造となりているが、それ以外の2層ちるいは4層、
5層等の構造でらっても良い。第3図において30はp
 b T i 03系圧電セラミツクス、31は内部電
極、32.32’は焼成後に設けられた!極であるロ外
部屯極32,32’間に直流高電界を加えて分極を行な
いpb’rio3系セラミックの各JfIを分極し圧電
性を付与するわけであるが、このとき各層間に十分な電
圧が加わυ、かつ分極時にセラミックスに割れが入らな
いように層厚tはギャップt、t’よシ小さく設定する
ことが望ましい。また第3図において矢印は分極方向を
示す。プレイ形探触子に用いられる圧電変換子は第3図
のXZ面に平行にy方向に同って切断することによシ容
易に得ることができるコ 本発明における多WI構造を有する圧電変換子では、例
えば第3図に示す即く積層方向に電極が等間隔に並んで
いるが、このような構造はセラミックス内部において均
一な強度で分極が行われ、高電圧で強勢に振動子を励振
する場合にも一部に電界が集中することはなく、このよ
うな構造は絶縁破壊に対して極めて丈夫な構造であると
言える。
In this case, the electrodes 21 are left with gap portions 22 where no conductive paste is applied so that electrical terminals can be taken out in parallel from every other layer.Next, the green sheet laminate is fired. After that, as shown in Figure 3, electrodes are applied by baking, vapor deposition, plating, etc. on two sides perpendicular to the stacking direction and two sides parallel to the yz plane of the fired PbTiO3 piezoelectric ceramic laminate. . In this case, it has a three-layer structure, but other than that, there are two layers, four layers,
It may have a structure of 5 layers or the like. In Figure 3, 30 is p
b T i 03 series piezoelectric ceramics, 31 is the internal electrode, 32.32' was provided after firing! A high direct current electric field is applied between the external poles 32 and 32', which are the poles, to polarize each JfI of the pb'rio3 ceramic and impart piezoelectricity.At this time, there is sufficient space between each layer. It is desirable that the layer thickness t is set smaller than the gaps t and t' so that the ceramic is not cracked when a voltage is applied υ and the ceramic is polarized. Further, in FIG. 3, arrows indicate polarization directions. The piezoelectric transducer used in the play-type probe can be easily obtained by cutting parallel to the XZ plane and in the y direction as shown in FIG. For example, in a ceramic ceramic, electrodes are arranged at equal intervals in the stacking direction as shown in Figure 3. In this structure, polarization occurs with uniform strength inside the ceramic, and the vibrator is strongly excited with high voltage. Even in the case where the electric field is not concentrated in one part, such a structure can be said to be extremely durable against dielectric breakdown.

また、第3図のようにセラミック層か3EiIの構造に
なっていれば、電極間隔が板厚の3分の1とな)、さら
に電極が並列に接続されるわけであるから実効的な面積
は約3倍となり、対向する2つの面にのみ電極が形成さ
れたPbTiO3圧電セラミックス単板と比べて約9倍
の並列容量が得られる。
Furthermore, if the ceramic layer or 3EiI structure is used as shown in Figure 3, the electrode spacing will be one-third of the plate thickness), and since the electrodes are connected in parallel, the effective area will be reduced. is approximately three times as large, and a parallel capacitance approximately nine times that of a PbTiO3 piezoelectric ceramic single plate in which electrodes are formed only on two opposing surfaces can be obtained.

このような多層構造によシ尖効的な電気機械変換効率が
損われることは全くないわけであるから(変換子の容盆
比γが増大することは全くない)、第3図に示した3層
泣造の変換子のインピーダンスはPbTiO3系圧電セ
ラミックス単板でできた振動子のインピーダンスの約9
分の1となる◎即ち不発明における積層構造を有するP
bTiOx系セラミ2り圧電変換子は層数をiとすると
、それと同一外形寸法を有し、対向する両面に電極の形
成されたPbTiO3系圧電セラミックス単板振動子と
比べてインピーダンスが1 / n  に激減する。ま
た、これはとシもなおさず、本振動子の実効的な比誘電
τ 率’33/’O(振動子の両主面にのみ電極がちるもの
として換算した比誘を率)は2層の場合では約400.
3/プの場合では約1800.4層の場合では3200
,5層の場合では約5oooと積層数の2乗に比例し、
積層数nと実効的な比誘電率E 33 / ’0 =2
0012(11従って本発明における変換子は従来のジ
A・コン・チタン酸鉛系圧;化ラミ、クスでできた振動
子のインピーダンスと比べて同等以下の小舌なインピー
ダンスが得ら八、すなわち同等以上の実効的な比誘電率
か得られるわけである。また、本発明による振動子はP
bTiO3糸玉4セラミックス全使用しているわけであ
るから、本質的に不要4’a 96が少なく良好な厚み
たて共振応答が得られるという長所を有する。
Since such a multilayer structure does not impair the effective electromechanical conversion efficiency at all (it does not increase the container/basin ratio γ of the converter at all), it is shown in Fig. 3. The impedance of the three-layer transducer is approximately 9 times the impedance of the resonator made of a PbTiO3 piezoelectric ceramic single plate.
◎In other words, P with a laminated structure in non-invention
If the number of layers is i, a bTiOx ceramic two-layer piezoelectric transducer has the same external dimensions as the number of layers, and has an impedance of 1/n compared to a PbTiO3 piezoelectric ceramic single-plate resonator with electrodes formed on opposing surfaces. Decrease sharply. In addition, this does not change, and the effective relative permittivity τ of this resonator '33/'O (the relative permittivity calculated assuming that there are electrodes only on both principal surfaces of the resonator) is a two-layer In the case of about 400.
Approximately 1800 in the case of 3/pu. 3200 in the case of 4 layers
, in the case of 5 layers, it is approximately 5ooo and proportional to the square of the number of layers,
Number of stacked layers n and effective dielectric constant E 33 / '0 = 2
0012 (11) Therefore, the transducer of the present invention has a small impedance that is equal to or lower than the impedance of a conventional di-A-con-lead titanate-based vibrator made of plastic laminate or glass. The above effective dielectric constant can be obtained.Furthermore, the resonator according to the present invention has P
Since all of the bTiO3 yarn beads and 4 ceramics are used, it has the advantage that there is essentially less unnecessary 4'a 96 and a good thick resonance response can be obtained.

なお、セラミック層が3層の構造では第3図のように一
方の外部yL極は積層方向に垂直な一方の面と一つのり
11面に形成され、他方の外部電極は積層方向に岳直な
他方の面と・池の一つのti11面に形成される。
In addition, in a structure with three ceramic layers, as shown in Fig. 3, one external yL pole is formed on one surface perpendicular to the lamination direction and one 11 surface, and the other external electrode is formed on the other surface perpendicular to the lamination direction. It is formed on the ti11 side of one of the ponds.

しかしセラミック層が2層、4層等の場合は、一方O外
部混極は示層方向に重直な2つの面と一つの側面に形成
され、他方の外部成極は他の一つの側面に形成される。
However, when the ceramic layer has two layers, four layers, etc., one O external polarization is formed on two planes and one side surface that overlap in the layer direction, and the other external polarization is formed on the other side surface. It is formed.

l百m イjす) φ 本発明に基く超音波探触子の一実施例として第1図(刀
、(イ)に示すミニ音響整合層を有す中心周波数35 
’r11)(zのリニアアレイ医用超音波探触子につい
て述べる。第1図(7)は該探触子の測面図、第1図(
イ)は該探触子の断面図である。この実施例の場合、圧
電変換子10は三層の積層摺造となっており、PbTi
O3糸玉電セ乏ミックス内部に電極31が埋め込まれた
構造となワている。まだセラミツロスはPbo、85C
ao、15Tio、、5(NXn1/3Sb2/3)o
、o503なる組成を用いた。製造は前述のグリーンシ
ートを用いる方法で行なワた。分極は外部電極32゜3
2′間に直流高電界を印加することで行われた口11.
12.13は音#整合層、14はバッキングでおる。音
#整合層は共振波長の約4分の1に調整した口11は音
響インピーダンス1.92X10’Kpm/ s e 
c Oウレタン樹脂、12はエポキシ樹脂に石英ガラス
微粉末を適量配合したもので音響インピーダンス4.1
2X106Kfm/see、 13は音響インピーダン
ス14.2 X 10” K9m/ seeの光学ガラ
スである。作製した一個の三七スσS子の形状は0.6
 n+m Xo、3 mm X 13 mmで心る0次
に該炎じ(子を/i定の間隔をおいて配列し、長さが約
10〜13αのリニアアレイ状に栴成し探触子とした。
As an embodiment of the ultrasonic probe based on the present invention, the center frequency 35 having a mini-acoustic matching layer shown in FIG.
'r11) (Z linear array medical ultrasound probe will be described. Figure 1 (7) is a surface diagram of the probe, Figure 1 (
b) is a sectional view of the probe. In the case of this embodiment, the piezoelectric transducer 10 has a three-layer laminated structure, with PbTi
It has a structure in which an electrode 31 is embedded inside the O3 yarn ball electrode mix. Ceramitsuros is still Pbo, 85C
ao, 15Tio,, 5 (NXn1/3Sb2/3)o
, o503 was used. The production was carried out using the method described above using green sheets. Polarization is external electrode 32°3
2' by applying a high DC electric field between 11.
12 and 13 are sound #matching layers, and 14 is a backing. The sound # matching layer has an acoustic impedance of 1.92 x 10'Kpm/s e
c O urethane resin, No. 12 is an epoxy resin mixed with an appropriate amount of quartz glass fine powder, and has an acoustic impedance of 4.1.
2 x 106 Kfm/see, 13 is an optical glass with an acoustic impedance of 14.2
The 0-order flame beam (n + m did.

これを用いて、水中3crnに置かれたAj”反射板に
向って超音波を放射し、反射して戻ってくる超音波を同
じ探触子で受波したときの周波数特性(ラウンド・トリ
ップ・インサージョンロス)を第4図に実毎で示す。
Using this, the frequency characteristics (round trip, Insertion loss) is shown in Fig. 4.

また、本発明の探触子と同低の榊造全有するか、圧電変
換子として対向する両面にのみ電猛を形成したジルコン
・チタン級鉛系圧電セラミックを用いた従来の探触子の
周波数特性を同様に第4図に点線で示す口通過域特性は
両省とも同様の特性を示しているが、帯域外において従
来の探触子では横効果のスプリアスのため大きなりップ
ル〃1認められる。一方、本発明の探触子ではこのよう
なリップルがない口さらに両探触子の分解能を試験する
ために生体と同等の超音波減衰特性(0,7dB/cn
1/MLb )並びに音響インピーダンスを有するゲル
状物質中に所定間隔に埋め込まれた直径OJmmのナイ
ロン線がどの程度まで分解されて見えるかを評価した。
In addition, the frequency of conventional probes using zircon titanium grade lead-based piezoelectric ceramics that have the same low Sakaki structure as the probe of the present invention, or have electromagnetic waves formed only on opposite surfaces as piezoelectric transducers. The mouth passband characteristics shown by dotted lines in FIG. 4 are similar in both cases, but outside the band a large ripple is observed in the conventional probe due to spurious transverse effects. On the other hand, the probe of the present invention has an ultrasonic attenuation characteristic (0.7 dB/cn) equivalent to that of a living body in order to test the resolution of both probes.
It was evaluated to what extent nylon wires with a diameter of OJmm embedded at predetermined intervals in a gel-like material having acoustic impedance (1/MLb) and acoustic impedance were decomposed and visible.

前記従来の探触子では深さ12ののところで1゜Omm
 !a’]隔に埋め込まれたナイロン祿が分離して見え
たにすさ゛ないが、本発明に従った探触子では0.7m
m間隔に埋め込まれたナイロン線をはっき夛分離して観
ることができた。
The conventional probe has a depth of 1°Omm at depth 12.
! a'] Although the nylon ring embedded in the septum appeared to be separated, the probe according to the present invention was 0.7 m long.
I was able to clearly see the nylon wires embedded at m intervals.

本発明に従う他の実施例とし、グリーンシート表f全体
にギャップ22を残さずに4シペースを塗り、;休る後
、第2図と同様に積層、三層、q成を行い、pb’ri
○、糸玉に磁器績j詣体を製造し、積層体側面に絶縁物
51を形成し外部電極32.3ブを設け、32.32’
間に直流電界を印刀口し分極を行う。このようにして第
5図に示すように内部電極が幅いっばいに広がった形状
の圧電変換子を得ることができる。第5図に示した圧電
変換子は、第3図に示した圧電変換子と比べて若干制動
容量が犬きくな9、それに伴いインピーダンスも若干低
下させることができる。第5図に示した圧“d変換子を
用いて、第1図に示した構造を刊する採げ子を製造した
ところ、第4図の実線で示した特性とほぼ同程度のもの
が得られたりこのように内部IL極が重なる長さは圧電
変換子の長さと同程度(少なくとも80%以上)が望ま
しいコ(発明の効果) 以上述べた如く1本発明に従りた探触子は、PbTiO
3系圧電セラミックスの横効果によるスプリアス振励が
抑圧できるという長所を有し、とのセラミ、ロスの誘電
率が小さく、このためケーブルの容量の影響を受けやす
いといった欠点を、睡気させることができるという【〉
れ7兄侍1猶?有するものであシ、また従来の超音波探
触子と比べて分解能の優れth探触子でらるコ 図面の17+)羊な説明 第1図(7)、(イ)は本発明の一実旅例を示す超音波
探触子の概略図、第2図は本発明の探触子に用いる圧電
変換子部分の積層構造の例を示す図、第3図は本発明に
用いる積丹圧電変梯子の一例を示す斜視図、第4図は超
音波探触子の周′ti、数特惟図、第5図は本発明の他
の実施例を示す図、第6図は従来の超音波探触子の概略
図。
In another embodiment according to the present invention, 4 sheets are coated on the entire green sheet surface f without leaving any gaps 22; after resting, lamination, three layers, and q formation are performed in the same manner as in FIG. 2, and pb'ri
○, a porcelain woven body is manufactured on a ball of yarn, an insulator 51 is formed on the side surface of the laminate, an external electrode 32.3 is provided, 32.32'
A DC electric field is applied in between to polarize. In this way, it is possible to obtain a piezoelectric transducer having a shape in which the internal electrodes are spread out over the entire width, as shown in FIG. The piezoelectric transducer shown in FIG. 5 has a slightly smaller braking capacity9 than the piezoelectric transducer shown in FIG. 3, and the impedance can also be reduced accordingly. Using the pressure transducer shown in Fig. 5, we manufactured a wire having the structure shown in Fig. 1, and obtained properties that were almost the same as those shown by the solid line in Fig. 4. It is desirable that the length of the overlap between the internal IL poles is approximately the same as the length of the piezoelectric transducer (at least 80% or more). (Effects of the Invention) As described above, the probe according to the present invention has , PbTiO
It has the advantage of being able to suppress spurious vibrations due to the transverse effect of piezoelectric ceramics, and has the disadvantage of being easily affected by cable capacitance due to the small dielectric constant of ceramic and loss, which can be easily affected by cable capacitance. I can do it [〉]
Re 7 older samurai 1 kyu? Figures 1 (7) and (a) are part of the present invention. A schematic diagram of an ultrasonic probe showing an actual travel example, FIG. 2 is a diagram showing an example of the laminated structure of the piezoelectric transducer part used in the probe of the present invention, and FIG. 3 is a diagram of the Shakotan piezoelectric transformer used in the present invention. FIG. 4 is a perspective view showing an example of a ladder, FIG. 4 is a diagram showing the circumference of an ultrasonic probe, and FIG. Schematic diagram of the probe.

図において、10は積層圧電変換子、11.12゜13
は音響整合層、14はバッキング、20はグリーンシー
ト、21は導電ペース)、22Hギヤツプ、30はPb
TiOs系圧電セラミックス、31は内部1!極、32
.32’は外部電極、51は絶縁物、61は矩形板状振
動子、62.63は音響整合QN ド)    N)  1 72図 ■ 74図 周  波  数  (MHz) 75図 32′ 泡  宛 手続補正書(自発) 1、事件の表示   昭和59年  特許願第1909
14号2、発明の名称  超音波探触子 3、補正をする者 事件との関係       出 願 人東京品港区芝五
丁目33番1号 <423)   日本電気株式会社 ((表置 関本忠弘 4、代理人 電話 東京(031456−3111(大代表)(連絡
先 日本゛電気昧式会社7キ許部)5o  補正の対象 ・ 明細書の発明の詳細な説明の欄 & 補正の内容 ・ F!A、ms第2頁第7行目に「大ききく」とおる
のを「大きく」と補正する口 ・ BA細書第11頁第5行目にr 35 MHz J
とあるのを「3.5■i」と補正する口 O明細書第12頁第18行目にr Kgm/ sec 
Jとあるのをr Kg/m・sec Jと補正する口・
 明細書第11頁第20行目にr 412X 10’K
gm/ 5eeJとあるのをr 4.12 X 10 
Kg/ln 、5ecJと補正する。
In the figure, 10 is a laminated piezoelectric transducer, 11.12°13
14 is an acoustic matching layer, 14 is a backing, 20 is a green sheet, 21 is a conductive paste), 22H gap, 30 is Pb
TiOs-based piezoelectric ceramics, 31 is internal 1! pole, 32
.. 32' is an external electrode, 51 is an insulator, 61 is a rectangular plate-shaped vibrator, 62.63 is an acoustic matching QN (do) N) 1 Figure 72 ■ Figure 74 Frequency (MHz) Figure 75 Figure 32' Foam Addressing procedure correction Document (spontaneous) 1. Indication of the incident 1982 Patent Application No. 1909
No. 14 No. 2, Title of the invention: Ultrasonic probe 3, Relationship to the amended person's case: Applicant: 5-33-1 Shiba, Shinminato-ku, Tokyo <423) NEC Corporation ((Omote: Tadahiro Sekimoto 4) , Agent phone number: Tokyo (031456-3111 (Main representative) (Contact information: Nippon Electric Power Co., Ltd.) 5o Subject of amendment: Column for detailed explanation of the invention in the specification & Contents of amendment: F!A , ms, page 2, line 7, "largely" is corrected to "large", BA specification, page 11, line 5, r 35 MHz J
Correct the statement to "3.5■i" on page 12, line 18 of the specification: r Kgm/sec
Correct J to r Kg/m・sec J.
r 412X 10'K on page 11, line 20 of the specification
The one that says gm/5eeJ is r 4.12 x 10
Kg/ln, corrected to 5ecJ.

・ 明細書第12頁第1行目にr 14.2x 106
Kgm/ sec Jとあるの’(i−r 14.2X
10 Kg/m2・5ecJと補正する口 、−一)
・ r 14.2x 106 on page 12, line 1 of the specification
Kgm/sec J and Aruno' (ir 14.2X
10 Kg/m2・5ecJ and correction mouth, -1)

Claims (1)

【特許請求の範囲】[Claims] 2以上のPbTiO_3系圧電セラミック層と1又は2
以上の内部電極層とが交互に積層された積層体であって
、該積層体の積層方向に垂直な2面及び他の2側面に2
つの外部電極が形成されており、各内部電極は一層おき
に前記積層体の側面で一方の外部電極と接続しており、
2つの平面状電極にはさまれたPbTiO_3系圧電セ
ラミック層は等しい厚みを有し、かつ積層方向に交互に
逆向きに分極されている構造の圧電変換子と、該圧電変
換子の積層方向に垂直な一方の面に形成された音響整合
層とを備えたことを特徴とする超音波探触子。
2 or more PbTiO_3 piezoelectric ceramic layers and 1 or 2
A laminate in which the above-mentioned internal electrode layers are alternately stacked, and 2
two external electrodes are formed, each internal electrode is connected to one external electrode on the side surface of the laminate at every other layer,
The PbTiO_3 piezoelectric ceramic layer sandwiched between the two planar electrodes has the same thickness, and the piezoelectric transducer has a structure in which the layers are alternately polarized in opposite directions in the stacking direction. An ultrasound probe comprising an acoustic matching layer formed on one vertical surface.
JP59190914A 1984-09-12 1984-09-12 Ultrasonic probe Pending JPS6169298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190914A JPS6169298A (en) 1984-09-12 1984-09-12 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190914A JPS6169298A (en) 1984-09-12 1984-09-12 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS6169298A true JPS6169298A (en) 1986-04-09

Family

ID=16265806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190914A Pending JPS6169298A (en) 1984-09-12 1984-09-12 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS6169298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958327A (en) * 1987-08-31 1990-09-18 Kabushiki Kaisha Toshiba Ultrasonic imaging apparatus
CN103946996A (en) * 2011-09-20 2014-07-23 新宁研究院 Ultrasound transducer and method for making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879590A (en) * 1972-01-24 1973-10-25
JPS5240091A (en) * 1975-09-22 1977-03-28 Siemens Ag Multiilayer element composed of piezooelectric ceramics and method of producing same
JPS5582899A (en) * 1978-12-19 1980-06-21 Matsushita Electric Ind Co Ltd Hydrogen storage apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879590A (en) * 1972-01-24 1973-10-25
JPS5240091A (en) * 1975-09-22 1977-03-28 Siemens Ag Multiilayer element composed of piezooelectric ceramics and method of producing same
JPS5582899A (en) * 1978-12-19 1980-06-21 Matsushita Electric Ind Co Ltd Hydrogen storage apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958327A (en) * 1987-08-31 1990-09-18 Kabushiki Kaisha Toshiba Ultrasonic imaging apparatus
CN103946996A (en) * 2011-09-20 2014-07-23 新宁研究院 Ultrasound transducer and method for making the same
US10471471B2 (en) 2011-09-20 2019-11-12 Sunnybrook Research Institute Ultrasound transducer and method for making the same

Similar Documents

Publication Publication Date Title
US6225728B1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
US6868594B2 (en) Method for making a transducer
US4918350A (en) Energy-trapping-by-frequency lowering-type piezoelectric resonance device
US6552471B1 (en) Multi-piezoelectric layer ultrasonic transducer for medical imaging
JPH02219313A (en) Filter device
JP4802445B2 (en) Multilayer piezoelectric element and manufacturing method thereof
JP2004120283A (en) Ultrasonic wave probe
JP3906126B2 (en) Ultrasonic transducer and manufacturing method thereof
JP2008188415A (en) Piezoelectric element, manufacturing method for it, and ultrasonic probe equipped with the piezoelectric element
JPS6169298A (en) Ultrasonic probe
JP4175535B2 (en) Multilayer piezoelectric vibrator and manufacturing method thereof
JPS6169300A (en) Ultrasonic probe
JPS6169299A (en) Ultrasonic probe
JPH0294579A (en) Electrostrictive porcelain composition for ultrasonic vibrator
US6333590B1 (en) Ultrasonic transducer having laminate structure, ultrasonic probe and production method thereof
JP2000143335A (en) Ceramic material, ultrasonic probe, piezoelectric oscillator and their production
JP3608874B2 (en) Ultrasonic probe
JPS6410998B2 (en)
JP2957537B2 (en) Piezoelectric and piezoelectric devices
Shrout et al. Resonance behavior of internally electroded PZT devices
JP4366913B2 (en) Method for producing oriented ceramics
JP2003133898A (en) Laminated piezoelectric vibrator
JPH04273698A (en) Ultrasonic wave probe
JP6321562B2 (en) Piezoelectric ceramic composition, piezoelectric element, and piezoelectric vibration device
JPS6410999B2 (en)