JPH04273698A - Ultrasonic wave probe - Google Patents

Ultrasonic wave probe

Info

Publication number
JPH04273698A
JPH04273698A JP3034710A JP3471091A JPH04273698A JP H04273698 A JPH04273698 A JP H04273698A JP 3034710 A JP3034710 A JP 3034710A JP 3471091 A JP3471091 A JP 3471091A JP H04273698 A JPH04273698 A JP H04273698A
Authority
JP
Japan
Prior art keywords
piezoelectric
layer
piezoelectric ceramic
composite
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3034710A
Other languages
Japanese (ja)
Inventor
Shinichi Hashimoto
新一 橋本
Mamoru Izumi
守 泉
Shiro Saito
斉藤 史郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3034710A priority Critical patent/JPH04273698A/en
Publication of JPH04273698A publication Critical patent/JPH04273698A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes

Abstract

PURPOSE:To attain broad band processing and high resolution without deteriorating the sensitivity regardless of the use of a composite piezoelectric body. CONSTITUTION:A piezoelectric vibrator is formed to be a laminate structure comprising a piezoelectric ceramic layer 13, a piezoelectric ceramic member 16 and a resin material 17, and the piezoelectric ceramic layer 13 is arranged toward a packing member 11 and the composite piezoelectric layer 14 is arranged toward an ultrasonic wave transmission reception wave side respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、超音波検査装置など
に利用される超音波探触子に係り、特に超音波の送受を
行う圧電振動子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe used in an ultrasonic inspection device, and more particularly to a piezoelectric vibrator for transmitting and receiving ultrasonic waves.

【0002】0002

【従来の技術】超音波探触子は圧電振動子を主体として
構成され、超音波の送受を行うものであり、人体内部を
検査するための医用診断装置や、金属溶接内部の探傷を
目的とした超音波探傷装置などの超音波検査装置に用い
られる。
[Prior Art] Ultrasonic probes are mainly composed of piezoelectric vibrators and transmit and receive ultrasonic waves, and are used as medical diagnostic equipment for inspecting the inside of the human body and for flaw detection inside metal welds. Used in ultrasonic inspection equipment such as ultrasonic flaw detection equipment.

【0003】超音波探触子の圧電振動子には、PZTや
チタン酸鉛系などの圧電セラミック材料が主に用いられ
ているが、最近では圧電セラミックと樹脂からなる複合
圧電体も用いられ始めている。この複合圧電体は、通常
の圧電セラミック材料と同等以上の電気機械結合係数を
有しながら、振動子の音響インピーダンスを下げること
ができるため、圧電セラミック材料と比較して周波数帯
域が広く、パルス幅の狭い良好な超音波パルスを発生で
きるという特長がある。
[0003] Piezoelectric ceramic materials such as PZT and lead titanate are mainly used for piezoelectric vibrators in ultrasound probes, but recently composite piezoelectric materials made of piezoelectric ceramic and resin have also begun to be used. There is. This composite piezoelectric material has an electromechanical coupling coefficient equal to or higher than that of ordinary piezoelectric ceramic materials, and can lower the acoustic impedance of the vibrator, so it has a wider frequency band and pulse width than piezoelectric ceramic materials. It has the advantage of being able to generate narrow and good ultrasonic pulses.

【0004】反面、複合圧電体はその構造から通常の圧
電セラミック材料と比較して静電容量が小さく、電気的
インピーダンスが大きいため、超音波探触子と超音波検
査装置本体とを接続する同軸ケーブルの静電容量分など
による受信系での電圧損失が増大し、感度が低下すると
いう欠点がある。この傾向は、複合圧電体の特徴を引き
出すべく音響インピーダンスを小さくするほど顕著とな
る。
On the other hand, due to its structure, composite piezoelectric materials have lower capacitance and higher electrical impedance than ordinary piezoelectric ceramic materials, so they are difficult to use when coaxially connecting the ultrasonic probe and the main body of the ultrasonic inspection device. The drawback is that the voltage loss in the receiving system increases due to the capacitance of the cable, and the sensitivity decreases. This tendency becomes more pronounced as the acoustic impedance is reduced in order to bring out the characteristics of the composite piezoelectric material.

【0005】複合圧電体の静電容量を通常の圧電セラミ
ック材料のそれに近付けようとする場合、圧電体に占め
る樹脂材料部の割合を小さくすればよい。その場合、具
体的には複合圧電体における圧電セラミック材料部の間
の樹脂材料部の幅を狭くするか、樹脂材料部の間隔を広
くとることになるため、圧電セラミック材料部の幅が広
くなり、不要な共振が増えてしまうとともに、製造も困
難となってくる。
[0005] In order to bring the capacitance of a composite piezoelectric body closer to that of a normal piezoelectric ceramic material, it is sufficient to reduce the proportion of the resin material portion in the piezoelectric body. In that case, specifically, the width of the resin material part between the piezoelectric ceramic material parts in the composite piezoelectric body is narrowed, or the interval between the resin material parts is widened, so the width of the piezoelectric ceramic material part becomes wider. , unnecessary resonance increases and manufacturing becomes difficult.

【0006】また、電子フォーカスを行うアレイ型超音
波探触子においては、高分解能化のために多素子化の傾
向にあり、それに伴い圧電振動子の一素子当たりの超音
波送受波面積は減少し、各素子の電気的インピーダンス
は大きくなる。このため、複合圧電体を用いた場合、電
圧損失の増大はより顕著となる。
[0006] Furthermore, in array-type ultrasound probes that perform electronic focusing, there is a trend toward multi-elements for higher resolution, and as a result, the ultrasound transmission/reception area per piezoelectric transducer element has decreased. However, the electrical impedance of each element increases. Therefore, when a composite piezoelectric material is used, the increase in voltage loss becomes more significant.

【0007】[0007]

【発明が解決しようとする課題】上述したように、超音
波探触子の広帯域化、高分解化のために圧電振動子に複
合圧電体を用いる場合、通常の圧電セラミック材料を用
いた場合に比較して静電容量が小さくなり電気的インピ
ーダンスが増大するため、受信系での電圧損失が増大し
、感度が低下するいう問題があった。本発明は、複合圧
電体を用いながら、感度を低下させることなく、広帯域
化および高分解能化を達成できる超音波探触子を提供す
ることを目的とする。
[Problems to be Solved by the Invention] As mentioned above, when a composite piezoelectric material is used for a piezoelectric vibrator in order to widen the bandwidth and improve resolution of an ultrasonic probe, when a normal piezoelectric ceramic material is used, In comparison, the capacitance is small and the electrical impedance is increased, so there is a problem that the voltage loss in the receiving system increases and the sensitivity decreases. An object of the present invention is to provide an ultrasonic probe that can achieve a wide band and high resolution without reducing sensitivity while using a composite piezoelectric material.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決するため、圧電セラミック材料と樹脂材料とからなる
複合圧電体層を含む圧電振動子を有し、該圧電振動子の
一方の面を超音波送受波面とする超音波探触子において
、圧電振動子の超音波送受波面側の音響インピーダンス
を超音波送受波面と反対側(バッキング材側)のそれよ
り小さくしたことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention has a piezoelectric vibrator including a composite piezoelectric layer made of a piezoelectric ceramic material and a resin material, and has one surface of the piezoelectric vibrator. An ultrasonic probe having an ultrasonic wave transmitting/receiving surface is characterized in that the acoustic impedance on the ultrasonic wave transmitting/receiving surface side of the piezoelectric vibrator is smaller than that on the side opposite to the ultrasonic wave transmitting/receiving surface (backing material side).

【0009】このような超音波探触子は、例えば圧電振
動子を音響インピーダンスの小さい複合圧電体層と、音
響インピーダンスの大きい圧電セラミック層との積層構
造として、複合圧電体層を超音波送受波面側、圧電セラ
ミック層をバッキング材側にそれぞれ配置することによ
って実現される。さらに他の方法として、圧電振動子に
用いられる複合圧電体層に占める樹脂材料部の割合を厚
さ方向において変化させ、樹脂材料部の割合を超音波送
受波面側で多くし、バッキング材側で少なくするように
してもよい。
[0009] Such an ultrasound probe has, for example, a piezoelectric vibrator having a laminated structure of a composite piezoelectric layer with low acoustic impedance and a piezoelectric ceramic layer with high acoustic impedance, and the composite piezoelectric layer is used as an ultrasonic wave transmitting/receiving surface. This is achieved by placing the piezoelectric ceramic layer on the backing material side, respectively. Another method is to change the proportion of the resin material part in the composite piezoelectric layer used in the piezoelectric vibrator in the thickness direction, increasing the proportion of the resin material part on the ultrasonic wave transmitting/receiving surface side, and increasing the proportion of the resin material part on the ultrasonic wave transmission/reception side. You may try to reduce it.

【0010】0010

【作用】本発明における圧電振動子は、超音波送受波面
側の音響インピーダンスが小さいため、全体として送波
される超音波の特性は複合圧電体のそれに近く、広帯域
でパルス幅の狭い超音波が得られる。
[Operation] Since the piezoelectric vibrator of the present invention has a small acoustic impedance on the ultrasonic wave transmitting/receiving surface side, the characteristics of the transmitted ultrasonic wave as a whole are close to those of a composite piezoelectric material, and the ultrasonic wave with a wide band and narrow pulse width is transmitted. can get.

【0011】また、本発明における圧電振動子は、バッ
キング材側に音響インピーダンスの大きい圧電セラミッ
ク層または圧電セラミック材料部の割合が多い複合圧電
体層を配置できるため、その静電容量は圧電セラミック
材料部と樹脂材料部の割合が厚さ方向で均一な通常の複
合圧電体層単層に比較して大きく、圧電セラミック層の
みからなる圧電振動子の静電容量に比較してさほど小さ
くはならない。このため、圧電振動子の電気的インピー
ダンスも、通常の圧電セラミック層単層の場合と同等と
なる。
Furthermore, in the piezoelectric vibrator of the present invention, a piezoelectric ceramic layer having a large acoustic impedance or a composite piezoelectric layer having a large proportion of piezoelectric ceramic material can be disposed on the backing material side. The capacitance is larger than that of a normal single layer composite piezoelectric material layer in which the ratio of part to resin material part is uniform in the thickness direction, and the capacitance is not very small compared to the capacitance of a piezoelectric vibrator made of only a piezoelectric ceramic layer. Therefore, the electrical impedance of the piezoelectric vibrator is also equivalent to that of a normal single layer piezoelectric ceramic layer.

【0012】従って、本発明の超音波探触子は通常の圧
電セラミック単層の圧電振動子と同等の感度を確保しつ
つ、より広帯域でパルス幅の狭い超音波パルスの発生が
可能となる。
Therefore, the ultrasonic probe of the present invention can generate ultrasonic pulses with a broader band and narrower pulse width while ensuring sensitivity equivalent to that of a normal piezoelectric ceramic single-layer piezoelectric vibrator.

【0013】[0013]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は本発明の一実施例に係る超音波探触子の概
略構成を示す斜視図であり、図2は図1のA−A線に沿
う断面図である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of an ultrasonic probe according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line A-A in FIG. 1.

【0014】図1および図2に示す超音波探触子は、バ
ッキング材11上に電極層12を介して圧電セラミック
層13を設け、その上に複合圧電体層14、電極層15
および音響マッチング層18を積層して構成された積層
圧電振動子の構造を有する。圧電セラミック層13は、
圧電セラミック材料のみからなる。複合圧電体層14は
圧電セラミック材料部16と樹脂材料部17からなり、
この例では1−3型複合圧電体層により構成されている
In the ultrasonic probe shown in FIGS. 1 and 2, a piezoelectric ceramic layer 13 is provided on a backing material 11 with an electrode layer 12 interposed therebetween, and a composite piezoelectric layer 14 and an electrode layer 15 are provided thereon.
It has a structure of a laminated piezoelectric vibrator configured by laminating an acoustic matching layer 18 and an acoustic matching layer 18. The piezoelectric ceramic layer 13 is
Consists only of piezoelectric ceramic material. The composite piezoelectric layer 14 consists of a piezoelectric ceramic material portion 16 and a resin material portion 17,
In this example, it is composed of a 1-3 type composite piezoelectric layer.

【0015】すなわち、本実施例における超音波探触子
の圧電振動子は、超音波送受波面側(音響マッチング層
18側)が複合圧電体層14からなり、その音響インピ
ーダンスは超音波送受波面と反対側(バッキング材11
側)に位置する圧電セラミック層13の音響インピーダ
ンスより小さくなっている。
That is, the piezoelectric vibrator of the ultrasonic probe in this embodiment has a composite piezoelectric layer 14 on the ultrasonic wave transmitting/receiving surface side (acoustic matching layer 18 side), and its acoustic impedance is equal to that of the ultrasonic wave transmitting/receiving surface. Opposite side (backing material 11
The acoustic impedance is smaller than the acoustic impedance of the piezoelectric ceramic layer 13 located on the side).

【0016】このような超音波探触子は、例えば次のよ
うな工程で作製される。まず、PZT系の圧電セラミッ
ク層単層からなる圧電振動子を用意し、その厚さ方向の
一部を所定の深さまで2次元にダイヤモンドブレードで
ダイシングする。このダイシングにより形成された溝内
に、エポキシ系の樹脂を充填し硬化させる。次に、表面
を平坦化した後、スパッタ等の方法で電極層を形成し、
さらに音響マッチング層を形成することで、図1および
図2のような超音波探触子が得られる。この場合、圧電
セラミック層13と複合圧電体層14中の圧電セラミッ
ク材料部16とは、一つの圧電セラミック材料により一
体に形成されることになる。
[0016] Such an ultrasonic probe is manufactured, for example, by the following steps. First, a piezoelectric vibrator made of a single PZT-based piezoelectric ceramic layer is prepared, and a portion of the vibrator in the thickness direction is two-dimensionally diced to a predetermined depth using a diamond blade. The grooves formed by this dicing are filled with epoxy resin and cured. Next, after flattening the surface, an electrode layer is formed by a method such as sputtering,
Further, by forming an acoustic matching layer, an ultrasonic probe as shown in FIGS. 1 and 2 can be obtained. In this case, the piezoelectric ceramic layer 13 and the piezoelectric ceramic material portion 16 in the composite piezoelectric layer 14 are integrally formed of one piezoelectric ceramic material.

【0017】なお、この実施例では多数の圧電振動子を
リニアに配列したアレイ型超音波探触子を示しており、
各振動子の間は溝19で分離され、これらの溝19内に
樹脂が充填されている。
Note that this embodiment shows an array type ultrasonic probe in which a large number of piezoelectric vibrators are linearly arranged.
Each vibrator is separated by grooves 19, and these grooves 19 are filled with resin.

【0018】電極層12,15は、超音波探触子の外部
に引き出されたケーブルを介して図示しない超音波検査
装置本体に接続される。この超音波検査装置本体内の送
信回路から、電極層12,15を介して圧電セラミック
層13と複合圧電体層14に直列に駆動電圧が印加され
る。
The electrode layers 12 and 15 are connected to the main body of an ultrasonic testing apparatus (not shown) via a cable led out of the ultrasonic probe. A driving voltage is applied in series to the piezoelectric ceramic layer 13 and the composite piezoelectric layer 14 via the electrode layers 12 and 15 from a transmission circuit within the main body of the ultrasonic inspection apparatus.

【0019】この場合、電極層12,15と圧電セラミ
ック層13および複合圧電体層14からなる圧電振動子
の厚さ方向の静電容量C0 は、圧電セラミック層13
の静電容量C1 と複合圧電体層14の静電容量C2 
との直列合成容量であり、次式で表わされる。       C0 =C1 ・C2 /(C1 +C2
 )                    (1)   一般に、静電容量Cは       C=ε・s/t            
                         
 (2)               ε:比誘電率s:誘電体
層の面積 t:誘電体層の厚さ
In this case, the capacitance C0 in the thickness direction of the piezoelectric vibrator composed of the electrode layers 12 and 15, the piezoelectric ceramic layer 13, and the composite piezoelectric layer 14 is
The capacitance C1 of the composite piezoelectric layer 14 and the capacitance C2 of the composite piezoelectric layer 14
It is the series combined capacitance with and is expressed by the following formula. C0 = C1 ・C2 / (C1 + C2
) (1) Generally, the capacitance C is C=ε・s/t

(2) ε: relative dielectric constant s: area of dielectric layer t: thickness of dielectric layer

【0020】であるから、複合圧電体層14の厚さが適
当な値であれば、複合圧電体層14の誘電率を極端に小
さくしない限り、積層圧電振動子全体の静電容量は圧電
セラミック単層の場合に比較して、極端に小さくなるこ
とはない。これにより複合圧電体層14を用いたことに
よる電気的インピーダンスの増大が抑えられ、受信系で
の電圧損失による感度の低下が防止される。
Therefore, if the thickness of the composite piezoelectric layer 14 is an appropriate value, the capacitance of the entire laminated piezoelectric vibrator will be equal to that of the piezoelectric ceramic unless the dielectric constant of the composite piezoelectric layer 14 is made extremely small. It does not become extremely small compared to the case of a single layer. This suppresses an increase in electrical impedance due to the use of the composite piezoelectric layer 14, and prevents a decrease in sensitivity due to voltage loss in the receiving system.

【0021】また、複合圧電体層14の厚さを圧電振動
子全体の厚さに対して3分の1程度以上にした場合、音
響マッチング層18側から見た見掛け上の音響インピー
ダンスは、複合圧電体層14のそれに近付く。このため
、複合圧電体層14を用いたことによる広帯域化が可能
となる。
Furthermore, when the thickness of the composite piezoelectric layer 14 is set to about one-third or more of the thickness of the entire piezoelectric vibrator, the apparent acoustic impedance seen from the acoustic matching layer 18 side is It approaches that of the piezoelectric layer 14. Therefore, using the composite piezoelectric layer 14 makes it possible to widen the band.

【0022】図3は、本発明の他の実施例に係る超音波
探触子の断面図である。この実施例では、複合圧電体層
14が多層構造とされている。すなわち、複合圧電体層
14は図の例では3層構造からなり、音響マッチング層
18側に近い層ほど樹脂材料部17の割合が多くなって
いる。従って、複合圧電体層14は音響マッチング層1
8側ほど音響インピーダンスが小さい。このような構造
の超音波探触子は、圧電振動子をダイシングするダイヤ
モンドブレードの厚さと切断深さを変えることで容易に
作製できる。
FIG. 3 is a sectional view of an ultrasonic probe according to another embodiment of the present invention. In this embodiment, the composite piezoelectric layer 14 has a multilayer structure. That is, the composite piezoelectric layer 14 has a three-layer structure in the illustrated example, and the layer closer to the acoustic matching layer 18 side has a larger proportion of the resin material portion 17. Therefore, the composite piezoelectric layer 14 is the acoustic matching layer 1
The acoustic impedance is smaller toward the 8th side. An ultrasonic probe having such a structure can be easily manufactured by changing the thickness and cutting depth of the diamond blade used to dice the piezoelectric vibrator.

【0023】この実施例によっても、先の実施例と同様
に圧電振動子全体の静電容量は、通常の複合圧電体層単
層で構成された圧電振動子に比較して大きくなるので、
電気的インピーダンスの増大を抑えて感度の低下を防止
でき、また圧電セラミック層単層の場合に比較して広帯
域化を図ることができる。
In this embodiment, as in the previous embodiment, the capacitance of the entire piezoelectric vibrator is larger than that of a piezoelectric vibrator composed of a single layer of a normal composite piezoelectric material.
It is possible to suppress an increase in electrical impedance and prevent a decrease in sensitivity, and it is also possible to achieve a wider band than in the case of a single piezoelectric ceramic layer.

【0024】図4は、本発明のさらに別の実施例に係る
超音波探触子の断面図である。この実施例では図3の実
施例と異なり、複合圧電体層14における樹脂材料部1
7の割合を厚さ方向に連続的に変化させて、その音響イ
ンピーダンスを音響マッチング層18側ほど小さくして
いる。このような複合圧電体層14は、圧電セラミック
材料部16に形成する溝の形状を楔形とすることで実現
できる。このような形状の溝を形成するには、圧電振動
子のダイシングに用いるダイヤモンドブレードの形状を
楔型とすればよい。この実施例によっても、図3の実施
例と同様の効果が得られることはいうまでもない。
FIG. 4 is a sectional view of an ultrasonic probe according to yet another embodiment of the present invention. In this embodiment, unlike the embodiment shown in FIG.
By changing the ratio of 7 continuously in the thickness direction, the acoustic impedance is made smaller toward the acoustic matching layer 18 side. Such a composite piezoelectric layer 14 can be realized by forming the grooves formed in the piezoelectric ceramic material portion 16 into a wedge shape. In order to form grooves having such a shape, the shape of the diamond blade used for dicing the piezoelectric vibrator may be wedge-shaped. It goes without saying that this embodiment also provides the same effects as the embodiment of FIG. 3.

【0025】[0025]

【発明の効果】本発明による超音波探触子では、圧電セ
ラミック材料と樹脂材料とからなる複合圧電体層を含む
圧電振動子の超音波送受波面側の音響インピーダンスを
超音波送受波面と反対側であるバッキング材側の音響イ
ンピーダンスより小さくしたことにより、全体として送
波される超音波の特性を複合圧電体のそれに近くして、
広帯域でパルス幅の狭い超音波を送信することが可能で
ある。
[Effects of the Invention] In the ultrasonic probe according to the present invention, the acoustic impedance on the ultrasonic wave transmitting/receiving surface side of the piezoelectric vibrator including the composite piezoelectric layer made of a piezoelectric ceramic material and a resin material is adjusted to the side opposite to the ultrasonic wave transmitting/receiving surface. By making the acoustic impedance smaller than that of the backing material, the characteristics of the transmitted ultrasonic wave as a whole are made close to those of the composite piezoelectric material,
It is possible to transmit broadband ultrasonic waves with narrow pulse widths.

【0026】また、バッキング材側に音響インピーダン
スの大きい圧電セラミック層または圧電セラミック材料
部の割合が多い複合圧電体層を配置することにより、圧
電振動子の静電容量を圧電セラミック材料部と樹脂材料
部の割合が厚さ方向で均一な通常の複合圧電体層単層に
比較して大きくし、圧電セラミック層のみからなる圧電
振動子の静電容量に近い値にできるので、圧電振動子の
電気的インピーダンスも通常の圧電セラミック層単層の
場合と同等となる。従って、通常の複合圧電体層単層の
振動子に比べ受信系での電圧損失が小さく、しかも通常
の圧電セラミック単層の圧電振動子と同等のパルスエコ
ー感度が得られる。
Furthermore, by arranging a piezoelectric ceramic layer with a large acoustic impedance or a composite piezoelectric layer having a large proportion of piezoelectric ceramic material parts on the backing material side, the capacitance of the piezoelectric vibrator can be reduced by combining the piezoelectric ceramic material part and the resin material part. The capacitance of the piezoelectric vibrator is larger than that of a normal single-layer composite piezoelectric layer, which is uniform in the thickness direction, and the capacitance can be close to that of a piezoelectric vibrator made of only a piezoelectric ceramic layer. The physical impedance is also equivalent to that of a normal single layer piezoelectric ceramic layer. Therefore, the voltage loss in the receiving system is smaller than that of a normal single-layer composite piezoelectric layer vibrator, and the same pulse echo sensitivity as a normal piezoelectric ceramic single-layer piezoelectric vibrator can be obtained.

【0027】すなわち、本発明によれば感度は通常の圧
電セラミック単層の圧電振動子を用いたものと同程度の
値を維持しつつ、より広帯域でパルス幅の狭い超音波パ
ルスを送信することができる。
That is, according to the present invention, it is possible to transmit ultrasonic pulses with a wider band and narrower pulse width while maintaining the same level of sensitivity as that using a normal piezoelectric ceramic single-layer piezoelectric vibrator. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例に係る超音波探触子の斜
視図
[Fig. 1] A perspective view of an ultrasound probe according to an embodiment of the present invention.

【図2】  図1の超音波探触子のA−A線に沿う断面
[Figure 2] Cross-sectional view of the ultrasound probe in Figure 1 along line A-A

【図3】  本発明の他の実施例に係る超音波探触子
の断面図
[Fig. 3] Cross-sectional view of an ultrasound probe according to another embodiment of the present invention

【図4】  本発明のさらに別の実施例に係る超音波探
触子の断面図。
FIG. 4 is a sectional view of an ultrasound probe according to yet another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…バッキング材                
    12…電極層13…圧電セラミック層    
            14…複合圧電体層 15…電極層                   
       16…圧電セラミック材料部 17…樹脂材料部                 
     18…音響マッチング層
11...Backing material
12... Electrode layer 13... Piezoelectric ceramic layer
14... Composite piezoelectric layer 15... Electrode layer
16...Piezoelectric ceramic material section 17...Resin material section
18...Acoustic matching layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧電セラミック材料と樹脂材料とから
なる複合圧電体層を含む圧電振動子を有し、該圧電振動
子の一方の面を超音波送受波面とする超音波探触子にお
いて、前記圧電振動子は、前記超音波送受波面側の音響
インピーダンスが超音波送受波面と反対側のそれより小
さいことを特徴とする超音波探触子。
1. An ultrasonic probe having a piezoelectric vibrator including a composite piezoelectric layer made of a piezoelectric ceramic material and a resin material, and in which one surface of the piezoelectric vibrator serves as an ultrasonic wave transmission/reception surface. The piezoelectric transducer is an ultrasonic probe characterized in that the acoustic impedance on the side of the ultrasonic wave transmitting/receiving surface is smaller than that on the side opposite to the ultrasonic wave transmitting/receiving surface.
JP3034710A 1991-02-28 1991-02-28 Ultrasonic wave probe Pending JPH04273698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034710A JPH04273698A (en) 1991-02-28 1991-02-28 Ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034710A JPH04273698A (en) 1991-02-28 1991-02-28 Ultrasonic wave probe

Publications (1)

Publication Number Publication Date
JPH04273698A true JPH04273698A (en) 1992-09-29

Family

ID=12421906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034710A Pending JPH04273698A (en) 1991-02-28 1991-02-28 Ultrasonic wave probe

Country Status (1)

Country Link
JP (1) JPH04273698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388378A (en) * 2013-07-31 2013-11-13 上海交通大学 Intelligent reinforcing steel bar based on piezoelectric ceramic crystal and fabrication method thereof
WO2019234969A1 (en) * 2018-06-08 2019-12-12 株式会社日立製作所 Acoustic matching device and acoustic probe system using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388378A (en) * 2013-07-31 2013-11-13 上海交通大学 Intelligent reinforcing steel bar based on piezoelectric ceramic crystal and fabrication method thereof
CN103388378B (en) * 2013-07-31 2016-03-02 上海交通大学 Based on the intelligent reinforcing bar and preparation method thereof of piezoceramics crystal
WO2019234969A1 (en) * 2018-06-08 2019-12-12 株式会社日立製作所 Acoustic matching device and acoustic probe system using same

Similar Documents

Publication Publication Date Title
US5945770A (en) Multilayer ultrasound transducer and the method of manufacture thereof
US6225728B1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
JP2758199B2 (en) Ultrasonic probe
US6552471B1 (en) Multi-piezoelectric layer ultrasonic transducer for medical imaging
US6868594B2 (en) Method for making a transducer
JP4012721B2 (en) Multilayer piezoelectric structure with uniform electric field
EP0451984B1 (en) Ultrasonic probe system
US4326418A (en) Acoustic impedance matching device
US4635484A (en) Ultrasonic transducer system
JPH06261395A (en) Ultrasonic wave converter
Mills et al. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers. II. Thick film technology
JP4118115B2 (en) Ultrasonic probe
JP2692878B2 (en) Ultrasound diagnostic equipment
JPH04273698A (en) Ultrasonic wave probe
JP3280677B2 (en) Ultrasonic probe and manufacturing method thereof
US6333590B1 (en) Ultrasonic transducer having laminate structure, ultrasonic probe and production method thereof
JPH07194517A (en) Ultrasonic probe
JP3934200B2 (en) Ultrasonic probe
JPS60116339A (en) Array type ultrasonic probe and its production
JPS6341022B2 (en)
JP3589063B2 (en) Ultrasonic probe
Snook et al. Design of a high frequency annular array for medical ultrasound
Emery et al. Ultrasonic imaging using a 5-MHz multilayer/single-layer hybrid array for increased signal-to-noise ratio
JP2720731B2 (en) Composite piezoelectric
JPH07108037B2 (en) Ultrasonic probe