JPS6166935A - Optical fiber temperature sensor - Google Patents
Optical fiber temperature sensorInfo
- Publication number
- JPS6166935A JPS6166935A JP59190097A JP19009784A JPS6166935A JP S6166935 A JPS6166935 A JP S6166935A JP 59190097 A JP59190097 A JP 59190097A JP 19009784 A JP19009784 A JP 19009784A JP S6166935 A JPS6166935 A JP S6166935A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- temperature sensor
- sensor
- core
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/08—Protective devices, e.g. casings
- G01K1/12—Protective devices, e.g. casings for preventing damage due to heat overloading
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/12—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
- G01K11/14—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of inorganic materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、光フアイバ温度センサに係り、特に耐熱性
の良好なセンサ伝送路形の光フアイバ温度センサに関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical fiber temperature sensor, and particularly to an optical fiber temperature sensor in the form of a sensor transmission line with good heat resistance.
光ファイバ温間センサには、光フアイバ自身を温度とし
て機能させるセンサ素子形と、光ファイバに別の温度セ
ンサを取り付けるセンサ伝送路形とに大別される(根本
;応用物理、49.1020゜(1980)参照)。さ
らに、センサ伝送路形の光フアイバ温度センサには、光
ファイバの端部に温度センサとしての温度−光反射事変
換器を設けた反射型と、光ファイバの途中に温度センサ
としての温度−光透逸事変換器を膜内た透過型とがある
。Optical fiber warm sensors are broadly divided into sensor element types in which the optical fiber itself functions as a temperature sensor, and sensor transmission line types in which another temperature sensor is attached to the optical fiber (Basic; Applied Physics, 49.1020° (1980)). Furthermore, there are two types of sensor transmission line-type optical fiber temperature sensors: one is a reflective type in which a temperature-to-light reflection converter is installed at the end of the optical fiber as a temperature sensor, and the other is a reflective type in which a temperature-to-light reflection converter is installed as a temperature sensor at the end of the optical fiber. There is a transmission type that has a permeability converter inside the membrane.
この反射型のセンサ伝送路形光ファイバ温度センサとし
ては、例えば第6図に示すような構造のものがある。こ
の光ファイバ温朋センザIFi、光伝送路としての光フ
ァイバ2の一端面KGaAa。As this reflection type sensor transmission line type optical fiber temperature sensor, there is one having a structure as shown in FIG. 6, for example. This optical fiber sensor IFi has one end surface KGaAa of the optical fiber 2 serving as an optical transmission line.
CdTeなどの半導体結晶ウェハ3の−+niに出0゜
薄膜などの反射膜4を形成してなるセンザ部相5を一体
に接着剤6を用いて取り付け、固定したものである。す
なわち、光ファイバ2の接合端面およびセンサ部材5の
接合端面(反射膜4のない方の端面)を精密に研摩した
のち、これら?+111而を互いにピッタリと突き合せ
た状態を保ったまま、エポキシ系、シリコーン系、ポリ
イミド系などの耐熱性の良好な接着剤6で固定する方法
で作られている。A sensor part 5 formed by forming a reflective film 4 such as a 0° thin film on the -+ni of a semiconductor crystal wafer 3 such as CdTe is integrally attached and fixed using an adhesive 6. That is, after precisely polishing the joint end surface of the optical fiber 2 and the joint end surface of the sensor member 5 (the end surface without the reflective film 4), these ? It is made by fixing with a heat-resistant adhesive 6 such as epoxy, silicone, or polyimide, while keeping the +111 and 111 abutted against each other exactly.
しかしながら、このような光ファイバ温度センサ1にあ
っては、光ファイバ2とセンサ部材3との固定に1有機
系接着剤6を用いているので、温度センサとしての耐熱
性が低く、せいぜい300°C程度までしか使用できな
い問題点があった。また、センサ部材5に半導体結晶ウ
エノ・3を用いているのでセンサ部材5がどうしても大
きくなり、小型化を図ることが困難である問題点があり
、ζらに、梢密研琴等の作業が面倒であり、かつ元ファ
イバ2とセンサ部材5との光学的結合効率にバラツキが
生じるなどの欠点もあった。However, in such an optical fiber temperature sensor 1, since the organic adhesive 6 is used to fix the optical fiber 2 and the sensor member 3, the heat resistance as a temperature sensor is low, and at most 30° There was a problem that it could only be used up to level C. In addition, since the semiconductor crystal Ueno-3 is used for the sensor member 5, the sensor member 5 inevitably becomes large, and there is a problem that it is difficult to miniaturize the sensor member 5. This process is troublesome and has drawbacks such as variations in the optical coupling efficiency between the original fiber 2 and the sensor member 5.
そこで、この発明の元ファイバ+&1度センサでは、光
伝送路である元ファイバの端部のコアを1′9T犀の深
はだけ除去し、これによって形成享れた空間に、GaA
s、CdTeなどの半導体結晶寺で代表ばれる温度変化
によって光吸収特性が変化する材料(以下、温度センサ
材料と呼ぶ。)を、例えば分子線エピタキシ法などKよ
って生長、充填し、さらに反射膜を形成することにより
、上記問題点を解決するようKした。Therefore, in the original fiber +&1 degree sensor of this invention, the core at the end of the original fiber, which is the optical transmission line, is removed by a depth of 1'9T, and the space thus formed is filled with GaA
A material (hereinafter referred to as a temperature sensor material) whose light absorption characteristics change with temperature changes, such as semiconductor crystals such as S and CdTe, is grown and filled by a method such as molecular beam epitaxy, and then a reflective film is formed. K was designed to solve the above-mentioned problems by forming the following.
第1図はこの発明のセンサ伝送路形で反射型の光ファイ
バ温度センサの一例を示すもので、図中符号11は光伝
送路である光ファイバである。この光ファイバ1lil
t特に限定これないが、耐熱性の良好な余端コード光フ
ァイバが好適であり、この例でもコア11a、クラッド
11b、アルミニウムコート11oとからなるアルミニ
ウムコート光ファイバが用いられる。この光ファイバ1
1は、検出端となる端部のコアlll鼻が端面表面から
所定の深ζ、通常50〜100μm程度だけ除去され、
そこに形成これた空間に、温度センサ材料12が充填は
れている。この温度センサ材料12としては、温度変化
に伴って、光吸収係数が変化したり、光吸収スペクトル
Kf化が生じたり、蛍光な生じたりする材料が挙げられ
、例えばGaAs。FIG. 1 shows an example of a reflection type optical fiber temperature sensor having a sensor transmission line according to the present invention, and reference numeral 11 in the figure indicates an optical fiber serving as an optical transmission line. 1 liter of this optical fiber
Although there are no particular limitations, a surplus corded optical fiber with good heat resistance is suitable, and in this example, an aluminum coated optical fiber consisting of a core 11a, a cladding 11b, and an aluminum coat 11o is used. This optical fiber 1
1, the core nose at the end that becomes the detection end is removed from the end surface by a predetermined depth ζ, usually about 50 to 100 μm,
The space formed therein is filled with a temperature sensor material 12. Examples of the temperature sensor material 12 include materials whose light absorption coefficient changes, whose light absorption spectrum changes to Kf, or whose fluorescence occurs as the temperature changes, such as GaAs.
CdTe、InAg、CaTe、CaPなどの化合物半
導体結晶が好適である。そして、温度センサ材料12が
充填された残余の空間には、![センサ材料12よりも
屈折率の小さい材料からなる反射膜13がζらに充填さ
れている。この反射膜13としては、S ’ Of +
A etOs + T i Olなどが使用され、そ
の厚さは通常11〜2μm程度とζ)する。上dLシ温
度センサ材料12とこの反射膜13とでセンサ部材14
が構成される。ざらに、この反射膜13を覆い、アルミ
ニウムコート11cにまで延びて端部全面までも被覆す
る保護膜15が設けられている。この保循膜15には、
SiQ。Compound semiconductor crystals such as CdTe, InAg, CaTe, and CaP are suitable. Then, the remaining space filled with the temperature sensor material 12 is filled with! [A reflective film 13 made of a material with a lower refractive index than the sensor material 12 is filled in the area ζ. As this reflective film 13, S'Of +
A etOs + T i Ol or the like is used, and its thickness is usually about 11 to 2 μm. The upper dL temperature sensor material 12 and this reflective film 13 form a sensor member 14.
is configured. A protective film 15 is provided that roughly covers the reflective film 13, extends to the aluminum coat 11c, and covers the entire end portion. This circulation membrane 15 has
SiQ.
A u T T iなどが使用され、その厚ざは通常(
11〜2μm程度ばれる。なお、保m膜15と反射膜1
3とを兼用ζせていずれか一方を省略することもできる
。A u T T i etc. are used, and the thickness is usually (
It is exposed by about 11 to 2 μm. Note that the molar retaining film 15 and the reflective film 1
It is also possible to use both ζ and omit one of them.
つぎに、このような構造のセンサの製造方法について、
第2図ないし第5図を参照して説明する。Next, regarding the manufacturing method of a sensor with such a structure,
This will be explained with reference to FIGS. 2 to 5.
まず、光ファイバ11の端面のクラッドllbおよびア
ルミニウムコート11cを被覆する保護マスク16を設
ける。これKけ、通常のホトリソグラフィによって、シ
リコン族をスパッタリング法を用いて形成することによ
って行われる。つぎに1保護マスク16の形成これた光
ファイバ11端面を、第3図に示すように反応性イオン
エツチング法あるいは反応性イオンビームエツチング法
などKよって、コア11&を所定の深さだけ除去し、空
間17を形成する。ついで、このようにして形成された
空間17に、第4図に示すように温度センサ材料12を
充填するわけであるが、この温度センサ材料12に上記
のQ a As 、 CL T @などの化合物半導体
結晶を用いる場合Ktj:、分子線エピタキシ法(MB
E法)によって、空間17内圧これら結晶を生成せしめ
ることによって行われる。First, a protective mask 16 is provided to cover the clad llb and aluminum coat 11c on the end face of the optical fiber 11. This is done by forming a silicon group by sputtering using ordinary photolithography. Next, the end face of the optical fiber 11 on which the first protective mask 16 has been formed is subjected to a reactive ion etching method or a reactive ion beam etching method, as shown in FIG. 3, to remove the core 11& to a predetermined depth. A space 17 is formed. Next, the space 17 thus formed is filled with the temperature sensor material 12 as shown in FIG. When using semiconductor crystals, Ktj: Molecular beam epitaxy (MB
E method), the internal pressure of the space 17 is made to generate these crystals.
この際、上記空間17内にのみ生長するようにシールド
マスクを設けて行う。つぎに第5図に示すように、Si
O,などからなる反射膜13を、残余の空間17にスパ
ッタリング法などKよって充填する。そして、保護マス
ク16を取り除き、同様にスパッタリング法などKよっ
て810.などからなる保−膜15を設ければ、第1図
に示す目的の光フアイバ温度センサを得る。At this time, a shield mask is provided so that the growth occurs only in the space 17. Next, as shown in FIG.
The remaining space 17 is filled with a reflective film 13 made of O, etc. by K, such as sputtering. Then, the protective mask 16 is removed and 810. By providing the protective film 15 made of the following, the desired optical fiber temperature sensor shown in FIG. 1 can be obtained.
次に、このような温度センサの使用方法を説明する。例
えば、泥IWセンサ材料12にG a A s 。Next, how to use such a temperature sensor will be explained. For example, G a A s in mud IW sensor material 12 .
CaTaなどの化合物半導体結晶を用いた場合には、こ
れらの半導体結晶の吸収端が、第7図に示すように温[
f化に伴って、高波長側も【7くけ低波長側に移動する
。よって、測定用の入射光に発光ダイオード(T、ET
))のα85μmの光を用い、反射−尤のα85pmと
α90μmとでの光強変変化を測定することKより、温
度変化を知ることができる。この他、温度センサ材料1
2KX温度変化に伴って特定波長での吸収係数が変化す
るようなものを用いれば、上記特定波長での反射光強度
を測定することKより温度変化を知ることができる。ま
た、この際温度変化によって吸収係数が変化しない波長
の光をリファランスとして同時に使用すれば、光ファイ
バ11やセンサ部材14に加わる外乱を取り除くことが
でき、高精度の温度測定が可能である。When compound semiconductor crystals such as CaTa are used, the absorption edge of these semiconductor crystals changes as the temperature increases, as shown in FIG.
With the increase in f, the high wavelength side also moves to the lower wavelength side by [7 degrees]. Therefore, a light emitting diode (T, ET
)) By measuring the light intensity change at α85pm and α90μm of reflection-reflection using α85μm light, the temperature change can be known. In addition, temperature sensor material 1
2KX If a material whose absorption coefficient at a specific wavelength changes with temperature change is used, temperature changes can be known from K by measuring the intensity of reflected light at the specific wavelength. Furthermore, if light of a wavelength whose absorption coefficient does not change due to temperature change is simultaneously used as a reference at this time, disturbances applied to the optical fiber 11 and the sensor member 14 can be removed, and highly accurate temperature measurement is possible.
このような構造の温度センサにあっては、光ファイバ1
1の端部のコア11aの空間17内K。In a temperature sensor with such a structure, the optical fiber 1
1 in the space 17 of the core 11a at the end.
温度センサ材料12と反射膜13とからなるセンサ部材
14を封入した構造であるので、光伝送路である光ファ
イバ11とセンサ部材14との取付、固定に接着剤を使
用する必要がなくなり、センサとしての耐熱温度が接着
剤の耐熱温度に右左されずに十分に高くなり、500’
C程度の高温まで測定することが可能となる。また、セ
ンサ部材14が空間17内に封入プれた構造であるので
、検出端の寸法がファイバ11の径と#1ぼ同一となり
、極めて小型化が可能となる。づらに、温度センサ材料
12の充填に分子線エピタキシ法を用いれば、コア11
&とセンサ部材14との光学的に損失の少ない結合が達
成寧れ、光学的結合効率の高く、かつバラツキのないも
のとなる。Since the sensor member 14 made of the temperature sensor material 12 and the reflective film 13 is enclosed, there is no need to use adhesive to attach or fix the sensor member 14 to the optical fiber 11, which is the optical transmission path. The heat resistance temperature of the adhesive becomes sufficiently high regardless of the heat resistance temperature of the adhesive, and the heat resistance temperature of 500'
It becomes possible to measure temperatures up to about C. Further, since the sensor member 14 is enclosed in the space 17, the size of the detection end is approximately the same as the diameter of the fiber 11, making it possible to make it extremely compact. In contrast, if molecular beam epitaxy is used to fill the temperature sensor material 12, the core 11
A coupling between & and the sensor member 14 with little optical loss is achieved, resulting in high optical coupling efficiency and no variation.
コア径80μm1外径150μm1アルミニウコー)径
210μmのアルミニウムコート石英光ファイバを垂直
に切断した。この切断された端面のアルミニウムコート
およびクラッドを檜う金属シリコンよりなる保+iマス
クをスパッタリング法により形成した。ついで、反応性
イオンエツチング法によりコアを端面表面から70μm
の深さだけ除去し、空間を形成した。反応性イオンエツ
チング法のイオンガスにFiCC14を用い、圧力10
−’Torrで行った。ついで、この空間内に分子線エ
ピタキシ装置を用い、GILAs結晶を生長させて、充
填した。この際、上記空間内にのみGaAa結晶が生長
するようにシールドマスクを設けて行った。ついで、保
護マスクを取り除き、光フアイバ端面全体に、、11み
α2μmの810゜膜をスパッタリング法により反射膜
兼保護膜として形成し、光フアイバセンサとした。An aluminum-coated quartz optical fiber with a core diameter of 80 μm, an outer diameter of 150 μm, and an aluminum coated quartz fiber with a diameter of 210 μm was cut vertically. A protective mask made of metal silicon covering the aluminum coating and cladding on the cut end face was formed by sputtering. Next, the core was etched 70 μm from the end surface by reactive ion etching.
The depth was removed to form a space. FiCC14 was used as the ion gas in the reactive ion etching method, and the pressure was 10
-'Torr was used. Then, using a molecular beam epitaxy device, GILAs crystals were grown and filled in this space. At this time, a shield mask was provided so that the GaAa crystal grew only within the space. Next, the protective mask was removed, and an 810° film with a diameter of 11 mm and 2 μm was formed by sputtering on the entire end face of the optical fiber as a reflective film and a protective film, thereby obtaining an optical fiber sensor.
かくして得られた温度センサは、温度変化に対する反射
光の変化がIi線的であり、500″Cの高温まで測定
可能であった。The thus obtained temperature sensor showed a change in reflected light with respect to temperature change in a line Ii manner, and was capable of measuring temperatures up to 500''C.
以上説明[またように、この発明の光フアイバ温度セン
サけ、光ファイバ端部のコアを除去した空間に温度セン
サ材料を充填し、反射膜な設けた反射型センサ伝送路形
のものであるので、光伝送路である光ファイバと、温度
センサ材料と反射膜とからなるセンサ部材との取付に接
勉剤を使用する必要がなくなり、センサとしての耐熱性
が向上し、500℃までの高温か測定できる。また、セ
ンサとしての寸法が光ファイバの径と同一となるので極
めて小型化とすることができる。さらに2温度センサ材
料に半導体結晶を用い、分子線エピタキシ法によって充
填したものでは、光ファイバとセンサ部材との高効率光
学的結合が可能となり、検出感度等の向上が達成できる
。As explained above, the optical fiber temperature sensor of the present invention is of a reflective type sensor transmission line type in which a temperature sensor material is filled in the space from which the core is removed at the end of the optical fiber and a reflective film is provided. , it is no longer necessary to use glue to attach the optical fiber, which is the optical transmission line, and the sensor member, which consists of the temperature sensor material and the reflective film, and the heat resistance of the sensor is improved, allowing it to withstand temperatures up to 500℃. Can be measured. Furthermore, since the dimensions of the sensor are the same as the diameter of the optical fiber, it can be extremely miniaturized. Furthermore, when a semiconductor crystal is used as the two-temperature sensor material and filled by molecular beam epitaxy, highly efficient optical coupling between the optical fiber and the sensor member is possible, and improvements in detection sensitivity and the like can be achieved.
第1図は、この発明の光フアイバ温度センサの一例を示
す概略断面図、第2図ないし第5図は、この発明の光フ
アイバ温度センサの製造方法を工程順に示す概略断面図
、第6図は従来の反射型センサ伝送路形の光フアイバ温
度センサの例を示す概略断面図、第7図は、半導体結晶
の光吸収端の温度変化による移動と発光ダイオードの発
光スペクトルとの関係を示すスペクトラムである。
11・・・・・・毘ファイ/<、1111・・・・・・
コア、12・・・・・・温度センサ材料、13・・・・
・・反射膜、14・・・・・・センサ部材、17・・・
・・・空間。
又コノ
第1図
11c ’、’
第2図
11c 1,1
1c
■
U)
叶、oo とFIG. 1 is a schematic cross-sectional view showing an example of the optical fiber temperature sensor of the present invention, FIGS. 2 to 5 are schematic cross-sectional views showing the manufacturing method of the optical fiber temperature sensor of the present invention in order of steps, and FIG. 7 is a schematic cross-sectional view showing an example of a conventional reflective sensor transmission line type optical fiber temperature sensor, and FIG. 7 is a spectrum showing the relationship between the movement of the light absorption edge of a semiconductor crystal due to temperature change and the emission spectrum of a light emitting diode. It is. 11...Bifai/<, 1111...
Core, 12...Temperature sensor material, 13...
...Reflection film, 14...Sensor member, 17...
···space. Also, Fig. 1 11c ',' Fig. 2 11c 1, 1 1c ■ U)
Kano, oo and
Claims (2)
化に伴つて光吸収特性が変化する材料を充填し、かつこ
の端部に反射膜を形成したことを特徴とする光フアイバ
温度センサ。(1) An optical fiber temperature sensor characterized in that the space at the end of the optical fiber from which the core has been removed is filled with a material whose light absorption characteristics change with temperature changes, and a reflective film is formed on this end. .
法によつて形成されたものであることを特徴とする特許
請求の範囲第1項記載の光フアイバ温度センサ。(2) The optical fiber temperature sensor according to claim 1, wherein the material filled in the space is formed by a molecular beam epitaxy method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59190097A JPS6166935A (en) | 1984-09-11 | 1984-09-11 | Optical fiber temperature sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59190097A JPS6166935A (en) | 1984-09-11 | 1984-09-11 | Optical fiber temperature sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6166935A true JPS6166935A (en) | 1986-04-05 |
Family
ID=16252319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59190097A Pending JPS6166935A (en) | 1984-09-11 | 1984-09-11 | Optical fiber temperature sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6166935A (en) |
-
1984
- 1984-09-11 JP JP59190097A patent/JPS6166935A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940003274B1 (en) | Infrared ray sensor and method of manufacturing the same | |
US5384872A (en) | Optical device and a method of manufacture thereof | |
US4735677A (en) | Method for fabricating hybrid optical integrated circuit | |
US6820487B2 (en) | Reflective moveable diaphragm unit and pressure sensor containing same | |
US20210405347A1 (en) | Micromachined mirror assembly having reflective layers on both sides | |
US11187837B2 (en) | Wafer level microstructures for an optical lens | |
US20120210797A1 (en) | Ultra-miniature fiber-optic pressure sensor system and method of fabrication | |
GB2175086A (en) | Pressure sensitive element | |
JP2000089054A (en) | Manufacture of substrate for hybrid optical integrated circuit utilizing soi optical waveguide | |
JP2007532871A (en) | Optical sensor | |
JP2006013484A (en) | Lid for wafer-scale package and its forming method | |
US20210063638A1 (en) | Temperature insensitive filter | |
CN115808191A (en) | High-temperature self-compensation optical fiber F-P cavity MEMS vibration sensor and manufacturing method thereof | |
JPH0446369B2 (en) | ||
WO2004034007A9 (en) | Fibre optic based semiconductor micro sensors for sensing pressure or temperature, fabrication methods of said sensors, and a method of securing an optical fibre to a silicon block | |
JPS6166935A (en) | Optical fiber temperature sensor | |
WO2020149739A1 (en) | Monolithic semiconductor device for optical sensing | |
CN116295555A (en) | Optical fiber F-P cavity MEMS temperature-pressure composite sensor and preparation method thereof | |
CN206291985U (en) | Tiltedly polish fine low pressure sensor | |
CN111596419A (en) | Optical fiber chip and manufacturing method thereof | |
JPH0231811B2 (en) | ||
JPH0577973B2 (en) | ||
JPS61159123A (en) | Temperature sensor | |
JP6551008B2 (en) | Optical module, optical device | |
CN113720493B (en) | Sensor based on fiber end face micro-nano resonance structure and preparation method thereof |