JPS616627A - Production of electrochromic display element - Google Patents

Production of electrochromic display element

Info

Publication number
JPS616627A
JPS616627A JP12645584A JP12645584A JPS616627A JP S616627 A JPS616627 A JP S616627A JP 12645584 A JP12645584 A JP 12645584A JP 12645584 A JP12645584 A JP 12645584A JP S616627 A JPS616627 A JP S616627A
Authority
JP
Japan
Prior art keywords
substrate
cell
electrolyte solution
dam
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12645584A
Other languages
Japanese (ja)
Other versions
JPH0219445B2 (en
Inventor
Hisashi Nishiyama
久司 西山
Tadatoshi Kamimori
神森 忠敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12645584A priority Critical patent/JPS616627A/en
Publication of JPS616627A publication Critical patent/JPS616627A/en
Publication of JPH0219445B2 publication Critical patent/JPH0219445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells

Abstract

PURPOSE:To obtain an EC element which has good efficiency in working, permits continuous production, is suitable for mass production and is low in production cost by imposing a gel-like electrolyte soln. on the surface of the 1st substrate enclosed with a dam by a sealant and press-sticking the 2nd substrate onto said substrate from above under the reduced pressure to form a cell. CONSTITUTION:The surface of the 2nd substrate 7 presses first the gel-like electrolyte soln. 5 when the substrate 7 is successively pressed from above by a pressing device 9. The soln. 5 is then spread on the surface of the 1st substrate 1 and contacts with the dam 4 which is an outside frame, thus spreading further along the dam 4. The dam 4 is then pressed and compressed as the dam contacts with the surface of the 2nd substrate 7, by which the dam is press-stuck to the four circumferential sides of the substrates 2, 7 thereby forming the cell. The soln. 5 is packed into the cell formed in such a manner. The cell in such a state is held for several minutes in a vacuum vessel, by which the press sticking of the realant forming the dam 4 to both substrates 2, 7 is completed and the secure cell is obtd. The gaseous N2 is thereafter introduced into a vacuum vessel to maintain the state of 1atm therein. The cell is taken out of the vacuum vessel into the atm. The cell in which the electrolyte soln. is thoroughly packed and no foam exists is thus finished.

Description

【発明の詳細な説明】 本発明はエレクトロクロミック素子(以下「io素子」
と略記する)の製造方法に係り、特に電解質溶液として
ゲル状電解質溶液を用いたKO素子の製造方法に関する
[Detailed Description of the Invention] The present invention relates to an electrochromic device (hereinafter referred to as an “IO device”).
The present invention relates to a method for manufacturing a KO element (abbreviated as ), and particularly to a method for manufacturing a KO element using a gel electrolyte solution as an electrolyte solution.

従来11i0素子の電解質溶液としては、有機溶媒トシ
て、例えばプロピレンカーボネイト、電解質として、例
えば沃化リチクム(bj工)、あるいは過塩素酸リチウ
ムにフェロセンを加えたもの等を用いる溶液型のものが
多く用いられて来た。しかるに、溶液型のものはFiO
素子の基板が割れた場合に電解質溶液が飛散してしまっ
たり、外部から基板が押圧された時に基板の内面に形成
された対向する電極が相互に接触してショートしてしま
うという事故が起りやすいという欠点を有していた。更
に、溶液型のものを用いた[0素子の製造方法としては
、電極“及び少くとも一方の基板の電極面上にはEC物
質層を形成した2枚の基板の一方に注入孔を開けておき
、これらを電極側表面を対向させ周辺をシール材で封止
しセルを形成した後、あるいはシール部にあらかじめ注
入孔を設けておき、セルを形成した後、該注入孔より電
解質溶液をセル中に注入し充填した後に前記注入孔を閉
塞する方法が通常用いられているが、この方法によると
セル中に気泡が残存しゃすく、また、電解質溶液が前記
注入孔よりあふれ出てオーバーフローしやすく、このオ
ーバーフo −した電解質溶液を注入孔閉塞後に除去、
洗浄しなければならないという欠点も有していた。
Conventional electrolyte solutions for 11i0 elements are often solution-type solutions that use organic solvents such as propylene carbonate, and electrolytes such as lyticum iodide (BJ) or lithium perchlorate with ferrocene added. It has been used. However, the solution type is FiO
Accidents are likely to occur, such as when the electrolyte solution scatters if the element's substrate breaks, or when the substrate is pressed from the outside, opposing electrodes formed on the inner surface of the substrate come into contact with each other and cause a short circuit. It had the following drawback. Furthermore, as a manufacturing method for the [0 element] using a solution type, an injection hole is made in one of two substrates on which an EC material layer is formed on the electrode surface of at least one substrate. After forming a cell by placing these with the electrode side surfaces facing each other and sealing the periphery with a sealing material, or by making an injection hole in the sealing part in advance and forming a cell, pour the electrolyte solution through the injection hole into the cell. A method is usually used in which the injection hole is closed after filling the cell, but with this method, air bubbles remain in the cell, and the electrolyte solution tends to overflow from the injection hole. , remove this overflowing electrolyte solution after blocking the injection hole,
It also had the disadvantage of requiring cleaning.

このため、近年は前記溶液型のものに適当なゲル化剤を
添加しゲル状にした電解質溶液を用いて上記の欠点を解
消したEC素子が検討されているが、このゲル状電解質
溶液を用いたEC素子の製造方法においても電解質溶液
をいかにして基板間に挿入するかが問題となっている。
For this reason, in recent years, EC devices have been studied that eliminate the above drawbacks by using an electrolyte solution that is made into a gel by adding an appropriate gelling agent to the solution type electrolyte solution. Even in the manufacturing method of the EC element, the problem is how to insert the electrolyte solution between the substrates.

即ち、電解質溶液がゲル状であるため、前記セルを形成
した後に該注入孔よりゲル状電解質溶液を注入する事が
難しい。このため、従来はゲル状電解質溶液を加熱し、
いったん粘度を下げて注入孔からFtO素子のセル中に
注入した後に冷却して再び粘度を上げるという方法が考
えられていた。しかし、この方法は作業能率が悪く注入
に時間がかかり量産に適さないという欠点があった。ま
た、基板にシール材を塗布してセルを形成する前に基板
間にゲル状電解質溶液を挾持して押しつぶし、外部には
み出した電解質溶液を剥ぎ取った後に周辺を洗浄しシー
ル材でシールしセルを形成する方法も考えられているが
、外部へはみ出す電解質溶液の形態が一様でなく剥離作
業の能率化が難しく、やはり量産には適さないものであ
った。かつ、周辺シールが不完全となり耐久性も不十分
であった。
That is, since the electrolyte solution is in the form of a gel, it is difficult to inject the gel-like electrolyte solution through the injection hole after forming the cell. For this reason, conventionally, a gel electrolyte solution is heated,
A method has been considered in which the viscosity is lowered and then injected into the cell of the FtO element through the injection hole, and then cooled and the viscosity increased again. However, this method has the drawback of poor work efficiency and the time required for injection, making it unsuitable for mass production. In addition, before applying a sealant to the substrates to form a cell, the gel electrolyte solution is sandwiched between the substrates and crushed, and after peeling off the electrolyte solution that has protruded to the outside, the surrounding area is cleaned and sealed with a sealant, and the cells are sealed. However, the form of the electrolyte solution that protrudes to the outside is not uniform, making it difficult to streamline the peeling process, and this method is not suitable for mass production. Moreover, the peripheral seal was incomplete and the durability was insufficient.

本発明は、この様な従来のFliO素子の製造方法の欠
点を解消するためになされたものであり、作業能率が良
く連続生産が可能で量産に適し、生産コストも安くなる
EC素子の製造方法を提供することを目的とする。
The present invention was made to eliminate the drawbacks of the conventional FliO element manufacturing method, and provides a method for manufacturing EC elements that has good work efficiency, allows continuous production, is suitable for mass production, and has low production costs. The purpose is to provide

即ち、本発明になるIC素子の製造方法は、第1の電極
基板の電極を形成した側の表面上の周辺位置にシール材
により外枠をなす堤を形成する工程と、該堤に囲繞され
た前記第1の基板の表面上にゲル状電解質溶液を載置す
る工程と、第2の電極基板を該第2の基板の電極を形成
した側の表面が前記第1の基板の電極を形成した側の表
面と対向するように前記ゲル状電解質溶液上に載置する
工程と、該第2の基板を前記第1の基板方向へ押圧する
工程とを有し、該第2の基板を前記ゲル状電解質溶液上
に載置する前記工程及び該第2の基板を前記第1の基板
方向へ押圧する前記工程を減圧下で行うことを特徴とす
る。
That is, the method for manufacturing an IC element according to the present invention includes the steps of forming a bank forming an outer frame using a sealing material at a peripheral position on the surface of the first electrode substrate on the side on which the electrode is formed; a step of placing a gel electrolyte solution on the surface of the first substrate; and a step of placing a gel electrolyte solution on the surface of the first substrate; placing the second substrate on the gel electrolyte solution so as to face the surface of the first substrate; and pressing the second substrate in the direction of the first substrate. The method is characterized in that the step of placing the second substrate on the gel electrolyte solution and the step of pressing the second substrate toward the first substrate are performed under reduced pressure.

以下、本発明のEC素子の製造方法を図面を参照しなが
ら詳細に説明する 第1図ないし第12図は本発明の代表的方法を示す側面
図(一部上面図)である。第1図はシール材により外枠
をなす堤4を第1の基板2上に形成する工程を示し、第
2図は堤4の形成された第1の基板2の上面図である。
Hereinafter, the method for manufacturing an EC element of the present invention will be explained in detail with reference to the drawings. FIGS. 1 to 12 are side views (partial top views) showing a typical method of the present invention. FIG. 1 shows a step of forming a bank 4 forming an outer frame using a sealing material on the first substrate 2, and FIG. 2 is a top view of the first substrate 2 on which the bank 4 is formed.

図において、基板載置台1上に載置されたガラス又はプ
ラスチック等からなる第1の基板20表面には、図示し
ない電極、及び場合により該電極上に不図示のEC物質
層、が形成されている。この第1の基板2上に、例えば
ディスペンサー、スクリーン印刷器等のシール材供給装
置3により一定量のシール材を供給して、第2図の上面
図に示すように、該第1の基板20周辺位置に所定の幅
と厚みを有する外枠をなす堤4を形成する。
In the figure, an electrode (not shown) and an EC material layer (not shown) are formed on the surface of a first substrate 20 made of glass, plastic, etc. placed on a substrate mounting table 1. There is. A certain amount of sealing material is supplied onto the first substrate 2 by a sealing material supplying device 3 such as a dispenser or a screen printer, and the first substrate 20 is coated as shown in the top view of FIG. A bank 4 forming an outer frame having a predetermined width and thickness is formed at a peripheral position.

該堤4は、シール材供給装置3によらず、枠状フィルム
シートを載置し、あるいは糸状高分子材料を複数本より
合わせて載置しても良い。
The embankment 4 may be placed with a frame-shaped film sheet, or with a plurality of thread-like polymeric materials twisted together, without depending on the sealing material supply device 3.

電極としては、酸化錫(snow)あるいは酸化インジ
ウム・酸化錫(工To)等や、本発明のmo素子を調光
ミラーとして用いる場合には、反射性の窒化チタン等の
金属等を電極として用いても良い。BO物質としては、
酸化タングステン(WOs)、酸化モリブデン(MOO
2)等を用いる。また、第1の基板2の端部に半田を接
着し、電極に電圧を供給する給電線の接続端子として利
用すると便利である。
As the electrode, tin oxide (snow) or indium oxide/tin oxide (To) can be used, and when the MO element of the present invention is used as a light control mirror, a reflective metal such as titanium nitride can be used as the electrode. It's okay. As a BO substance,
Tungsten oxides (WOs), molybdenum oxides (MOOs)
2) etc. It is also convenient to bond solder to the end of the first substrate 2 and use it as a connection terminal for a power supply line that supplies voltage to the electrodes.

シール材としては、80℃ないし200℃で熱圧着可能
なポリマーで、接着力が大きく、ガス(特に酸素ガス)
の透過性が小さく、耐湿・候性が良く、耐薬品性が良く
、更に、82の基板を押圧した際につぶれて広がらず組
成が密となるものが望まれる。この様な素材をフィルム
状あるいは糸状にして、又は溶融して第1の基板2上に
塗布して堤4を形成するのである。この様な特性を有す
る素材としては、例えばエチレンビニルアセテート(I
VA)、ポリエチレン(PI!i)、ナイロン、ウレタ
ン、シリコン、塩化ビニリデン、エチレンアクリル酸エ
チル、エチレンビニルアルコール、エチレンアクlJ#
lilが望ましい。更に、これらの材料にシランカップ
リング材や無機あるいは有機のフィラー等を充填すれば
接着力、ガス透過性等の面でより良好な特性が得られる
。また、第1の基板2に予めプライマ処理を施しておけ
ば更に望ましい特性が得られる。
As a sealing material, it is a polymer that can be thermocompressed at 80°C to 200°C, has strong adhesive strength, and is suitable for gases (especially oxygen gas).
It is desired that the material has low permeability, good moisture and weather resistance, good chemical resistance, and has a dense composition that does not collapse and spread when the substrate 82 is pressed. The embankment 4 is formed by forming such a material into a film or thread form, or melting it and applying it onto the first substrate 2. Examples of materials with such characteristics include ethylene vinyl acetate (I
VA), polyethylene (PI!i), nylon, urethane, silicone, vinylidene chloride, ethylene ethyl acrylate, ethylene vinyl alcohol, ethylene acrylate J#
lil is preferred. Furthermore, if these materials are filled with a silane coupling agent, inorganic or organic filler, etc., better properties in terms of adhesive strength, gas permeability, etc. can be obtained. Furthermore, if the first substrate 2 is subjected to primer treatment in advance, more desirable characteristics can be obtained.

堤4の横幅は’nc素子の大きさにより最適の寸法が異
なるが、通常の小型の素子であるならば2蝙程度が適当
であり、堤4の高さく膜厚)は、50μmないし数■程
度が適当である。更に望ましくは、対向電響を形成した
第2の基板で該堤4を押圧して圧着した場合に膜厚が5
0μmないし100μm程度となるのが良く、このため
には60μmないし200/Jm程度に堤4の高さを形
成するのが−良い。
The optimum width of the embankment 4 varies depending on the size of the NC element, but for a normal small element, about 2 mm is appropriate, and the height of the embankment 4 (film thickness) is 50 μm to several inches. The degree is appropriate. More desirably, when the bank 4 is pressed and bonded with the second substrate on which the opposing electric conductor is formed, the film thickness is 5.
The height of the embankment 4 is preferably about 0 μm to 100 μm, and for this purpose, the height of the embankment 4 is preferably about 60 μm to 200 μm.

第3図は、堤4に囲繞された第1の基板20表面上にゲ
ル状電解質溶液5を載置する工程を示し、第4図ないし
第10図はこの工程が終了した状態の第1の基板2の上
面図である。
FIG. 3 shows the step of placing the gel electrolyte solution 5 on the surface of the first substrate 20 surrounded by the embankment 4, and FIGS. 4 to 10 show the first substrate after this step. FIG. 2 is a top view of the substrate 2. FIG.

図において、ゲル状電解質溶液は、ディスペンサー等の
電解質溶液供給装置6により一定量が第1の基板2の堤
4により囲繞された表面上に載置される。ゲル状電解質
溶液5は、印刷法、転写法、ナイフコート法等により、
第1の基板2上の堤4により囲繞された全表面上に均一
に塗布しても良いが、このようにした場合には、第2の
基板を載置した場合に気泡(後述するように、わずかに
N2ガスの存在する真空中で行うのでN2ガスの気泡と
なる)が残り易い。従って、第3図ないし第11図に示
すように、第1の基板2の上面中央部に電解質溶液5を
盛り上げて、中央部の電解質溶液を第2の基板で押し広
げるようにするのが望ましい。この際、電解質溶液5の
第1の基板20表面上への載置方法としては、第4図に
示すように、はぼ矩形状に一様に載置するもの、第5図
に示すように、点状に一様に分離して載置するもの、第
6図ないし第8図に示すように円状又は人手状に一様に
載置するもの、第9図及び第10図に示すように、中央
部に比較的大きな塊状に載置し、更に周辺部に小さな塊
状に載置するもの等多種の載置の仕方が考えられるが、
中央部に比較的大きな塊を有し、かつ四隅部近傍に該塊
状の電解質溶液の広がりの不足を補う小さな塊を設ける
方が気泡は残らなくなる。従って、以上の第4図ないし
第10図の載置方法では図番の大きい載置方法(即ち、
第4図の載置方法よりは第10図の載置方法)がより気
泡が残存し難く望ましい。また、この際、電解質溶液5
の第1の基板2上への載置は酸化を防ぐために窒素ガス
中で行い、電解質溶液5の粘度はs、o OOOPBな
いし5o、oooopsa度が望ましく、粘度の調節は
電解質溶液5を加熱または冷却あるいは溶媒により希釈
して行う。
In the figure, a predetermined amount of the gel electrolyte solution is placed on the surface of the first substrate 2 surrounded by the bank 4 by an electrolyte solution supply device 6 such as a dispenser. The gel electrolyte solution 5 is prepared by printing, transfer, knife coating, etc.
It may be applied uniformly over the entire surface surrounded by the bank 4 on the first substrate 2, but in this case, when the second substrate is placed, air bubbles (as described later) Since the process is carried out in a vacuum with a slight amount of N2 gas present, N2 gas bubbles (N2 gas bubbles) tend to remain. Therefore, as shown in FIGS. 3 to 11, it is desirable to swell the electrolyte solution 5 at the center of the upper surface of the first substrate 2 and spread the electrolyte solution at the center with the second substrate. . At this time, the electrolyte solution 5 can be placed on the surface of the first substrate 20 by placing it uniformly in a rectangular shape as shown in FIG. , those that are placed uniformly in dotted shapes, those that are placed uniformly in a circular or manual shape as shown in Figures 6 to 8, and those that are placed uniformly in a circular or manual shape as shown in Figures 9 and 10. Various methods of placement are possible, such as placing it in a relatively large block at the center and placing it in smaller blocks at the periphery.
It is better to have a relatively large lump in the center and provide small lumps near the four corners to compensate for the lack of spreading of the lump-like electrolyte solution, so that no air bubbles remain. Therefore, in the above-described mounting methods shown in FIGS. 4 to 10, the mounting method with the larger figure number (i.e.,
The mounting method shown in FIG. 10) is more preferable than the mounting method shown in FIG. 4 because air bubbles are less likely to remain. In addition, at this time, the electrolyte solution 5
The electrolyte solution 5 is placed on the first substrate 2 in a nitrogen gas atmosphere to prevent oxidation.The viscosity of the electrolyte solution 5 is desirably from s, oOOOPB to 5o, ooooopsa, and the viscosity is adjusted by heating or heating the electrolyte solution 5. This is done by cooling or diluting with a solvent.

電解質溶液の材質としては、γ−ブチロラクトン(γ−
BIJ) 、プロピレンカーボネイト、ブチルアルコー
ル等の有機溶媒に、該有機溶媒に溶解してゲル化する樹
脂、例えば、ウレタン樹脂、アクリル酸樹脂、酸化樹脂
その他の樹脂又これらに限定されないことは言うまでも
ない。
The material for the electrolyte solution is γ-butyrolactone (γ-
BIJ), propylene carbonate, butyl alcohol, etc., resins that dissolve in the organic solvent and form a gel, such as urethane resins, acrylic acid resins, oxidized resins, and other resins, and needless to say are not limited to these.

第11図は、表面に電極を形成した第2の基板7をゲル
状電解質溶液5の上に電極面を第1の基板2の電極面と
対向させて載置する工程を示す。該第2の基板7は、基
板ホルダー8中に素ガス雰囲気下で行い、残留窒素ガス
の圧力が10 Torrないし60 Torr程度札保
つのが望ましい。また、基板載置台の温度は50℃程度
が望ましい。真空度が高すぎるか、温度が高すぎると電
解質溶液5中の溶媒が気化し発泡し始め、真空度が低す
ぎると第2の基板7を押圧してセルを形成するときにセ
ル中に気泡が残留する可能性が高くなるためである。
FIG. 11 shows the step of placing the second substrate 7 on which electrodes are formed on the gel electrolyte solution 5 with the electrode surface facing the electrode surface of the first substrate 2. As shown in FIG. The second substrate 7 is placed in a substrate holder 8 under a gas atmosphere, and it is desirable to maintain the residual nitrogen gas pressure at about 10 Torr to 60 Torr. Further, the temperature of the substrate mounting table is preferably about 50°C. If the degree of vacuum is too high or the temperature is too high, the solvent in the electrolyte solution 5 will vaporize and begin to foam; if the degree of vacuum is too low, bubbles will form in the cells when pressing the second substrate 7 to form the cells. This is because there is a higher possibility that the remaining particles will remain.

第2の基板7に形成する電極は、第1の基板2の電極と
同様に、8nO*や工TOある〜・はTiN等の金属な
どを用いる。また、第1の基板2の電極上にmC物質層
を形成しない場合には、この第2の基板7の電極上にW
on等のBO物質層を形成する。なお、電極、EO物質
層ともに、第1の基板2のときと同様に、図示しない。
As with the electrodes on the first substrate 2, the electrodes formed on the second substrate 7 are made of metal such as 8nO* or TiN. Furthermore, if the mC material layer is not formed on the electrode of the first substrate 2, a W layer is formed on the electrode of the second substrate 7.
A BO material layer such as on is formed. Note that, like the first substrate 2, both the electrode and the EO material layer are not shown.

第12図は、第2の基板7を第1の基板2方でN8ガス
圧が10 Torrないし60 Torrの真空中で行
い、公知の押圧装置9により第2の基板7を第1の基板
2上に圧着し両差板の四周辺を2の基板7を第1の基板
2に圧着する圧力はIK4/atないし7 Kf/−程
度とすることが、電解質溶液の拡がり、シール材の各基
板2.7へり圧着の上で望ましい。
In FIG. 12, the second substrate 7 is pressed against the first substrate 2 in a vacuum with an N8 gas pressure of 10 Torr to 60 Torr, and the second substrate 7 is pressed against the first substrate 2 using a known pressing device 9. The pressure to press the second substrate 7 to the first substrate 2 around the four peripheries of both difference plates should be approximately IK4/at to 7 Kf/- to prevent the spread of the electrolyte solution and the sealing material on each substrate. 2.7 Desirable on edge crimp.

押圧装置9により第2の基板7を上方より押圧して行く
と、該基板7の表面は、まずゲル状電解質溶液5を押圧
し、該電解質溶液5は第1の基板10表面上で展延し、
外枠となる堤4に当接し、前場4に沿って更に展延する
。次いで堤4が第2の基板70表面に接し押圧されて圧
縮し基板2,7の四周辺に圧着しセルを形成する。該第
1及び第2の基板−2,7間のギャップ状電解質溶液5
の量により規制される。かくして、第1.第2の基板2
.7と堤4により形成することにより堤4を形成するシ
ール材の両差気圧の状態にし、該セルを真空1中より大
気中へ取り出すことにより、セル中に気泡が残存した場
合でも、該気泡は大気圧により消失せしめられ、電解質
溶液が完全に充填され気泡の存在しないセルが出来上る
When the second substrate 7 is pressed from above by the pressing device 9, the surface of the substrate 7 first presses the gel-like electrolyte solution 5, and the electrolyte solution 5 is spread on the surface of the first substrate 10. death,
It comes into contact with the embankment 4 that serves as the outer frame, and further extends along the front area 4. Next, the embankment 4 comes into contact with the surface of the second substrate 70, is compressed, and is pressed to the four peripheries of the substrates 2 and 7 to form a cell. A gap-shaped electrolyte solution 5 between the first and second substrates 2 and 7
regulated by the amount of Thus, the first. Second board 2
.. 7 and the embankment 4 to create a state of differential pressure between the sealing material forming the embankment 4, and by taking out the cell from the vacuum 1 into the atmosphere, even if air bubbles remain in the cell, the air bubbles are removed. is quenched by atmospheric pressure, leaving a cell completely filled with electrolyte solution and free of air bubbles.

なお、以上の工程でic素子のセルは完成し、シール材
による堤4のみでも十分な耐久性が得られるが、第13
図に断面図を示すように、シール材による堤4の外側に
更に2次シール材層10を形成すればより強固なセルと
なり耐久性が増大する。2次シール材10は、ブチルゴ
ム。
Note that the cell of the IC element is completed through the above steps, and sufficient durability can be obtained with only the barrier 4 made of sealing material.
As shown in the cross-sectional view in the figure, if a secondary sealing material layer 10 is further formed on the outside of the sealing material bank 4, the cells become stronger and the durability increases. The secondary sealing material 10 is butyl rubber.

フッ素樹脂、塩化ビニリデン樹脂、エポキシ等の素材を
用い、融着等の方法で形成すれば良い。
It may be formed using a material such as fluororesin, vinylidene chloride resin, or epoxy by a method such as fusion bonding.

なお、第13図の符号11は半田層を示し、第1、第2
の基板2.7の端部に形成し、外部電源に接続する給電
線を半田付けするのに用いる。
Note that the reference numeral 11 in FIG. 13 indicates a solder layer, and the first and second
It is formed at the end of the substrate 2.7 and is used to solder a power supply line connected to an external power source.

以下、本発明のEO素子の製造方法を具体的実施例を示
し更に詳細に説明する。
Hereinafter, the method for manufacturing an EO element of the present invention will be explained in more detail by showing specific examples.

実施例】 脱酸素および脱水した0゜75MLi工、γ−ブチロラ
クトン溶液50 mlに脱水したポリビニルブチラー/
I/25fをN2ガス雰囲気下で溶解しゲル状電解質溶
液を調整した。10crn四方のガラス基板上に電極と
して工To膜のみを蒸着して形成した基板と1.TTO
膜上にEC物質層としてWOa層を、更に蒸着法により
形成した基板を作成し、各基板の端部にガラスに溶着可
能な半田を付着させ、第13図に示す様K、半田層11
を形成した。この際工TO膜の面抵抗は10Ω、WOs
層の厚みは5.ooaXとした。
Example Deoxygenated and dehydrated 0°75MLi, dehydrated polyvinyl butylar/gamma-butyrolactone solution 50 ml
I/25f was dissolved in an N2 gas atmosphere to prepare a gel electrolyte solution. 1. A substrate formed by depositing only a To film as an electrode on a 10 crn square glass substrate. T.T.O.
A WOa layer is further formed as an EC material layer on the film by a vapor deposition method to prepare a substrate, and solder that can be welded to glass is adhered to the edge of each substrate to form a solder layer 11 as shown in FIG.
was formed. At this time, the sheet resistance of the TO film is 10Ω, and the WOs
The thickness of the layer is 5. It was set as ooaX.

次にシール材として厚さ100μmのEVAフィルムを
用い、第14図に示すように前記基板と同じ大きさの中
央部を穿孔した矩形の枠状に整形した。この際、枠部の
幅dは2〒とした。
Next, an EVA film having a thickness of 100 μm was used as a sealing material, and as shown in FIG. 14, it was shaped into a rectangular frame with a hole in the center having the same size as the substrate. At this time, the width d of the frame portion was set to 2〒.

このIVAフィルムの枠を前記工TO膜を形成した第1
の基板上に載置し堤とした。
The frame of this IVA film was used as the first film on which the TO film was formed.
It was placed on a substrate and used as an embankment.

次に、この第1の基板上の堤で囲繞された表面上に、第
8図に示すパターンで、ディスペンサーより前記ゲル状
電解質溶液を0.55f塗布し槽 た。この工程は真空番中にN2ガスを充填した不活性雰
囲気下で行った。
Next, 0.55 f of the gel electrolyte solution was applied from a dispenser onto the surface of the first substrate surrounded by the bank in the pattern shown in FIG. 8. This step was performed under an inert atmosphere filled with N2 gas in a vacuum chamber.

次に、N2ガスを脱気し30 Torrとし、前記第1
の基板の上に、工TO膜とWon層を形成した第2の基
板のWon層形成面を前記第1の基板の工TO膜形成面
と対向させ、前記ゲル状電解質溶液の塊の上に載置し、
抑圧装置により背面より押圧した。この際の押圧力は5
 Kg/cdとし、真槽 空番中のシール材部を11o’Cに加熱しながら3分間
加圧した。
Next, the N2 gas was degassed to 30 Torr, and the first
The WON layer forming surface of the second substrate on which the WTO film and the Won layer were formed is opposed to the WTO film forming surface of the first substrate, and the WON layer forming surface of the second substrate is placed on the mass of the gel electrolyte solution. Place it,
It was pressed from behind using a suppression device. The pressing force at this time is 5
Kg/cd, and pressurized for 3 minutes while heating the sealing material part in the vacuum tank to 11 o'C.

その後N2ガスを導入し、真空番中の圧を大気圧とし、
そのまま放置し冷却しシール材を内基板に固着した。
After that, N2 gas was introduced and the pressure in the vacuum chamber was set to atmospheric pressure.
It was left as it was to cool and the sealing material was fixed to the inner board.

前記基板の端面の半田層に外部′に源接続用の給電線を
半田付けし、第13図に示すように、端面に二次シール
材1oとしてエポキシ接着剤で密閉してEC素子を作成
した。
A power supply line for external source connection was soldered to the solder layer on the end face of the board, and as shown in Fig. 13, the end face was sealed with epoxy adhesive as a secondary sealing material 1o to create an EC element. .

実施例2 実施例1と同様はゲル状電解質溶液を調整し、また、実
施例1と同様に、表面に工To膜のみ、又はITO膜と
WOs層を蒸着t7端部処半田層を形成した2枚のガラ
ス基板を用意し、該基板のうちの1枚の工To膜を形成
した表面の四周辺上にホットメルトタイプのFiVAを
ディスペンサーにより厚み100μm1幅2■に塗布し
堤を形成した。
Example 2 In the same manner as in Example 1, a gel electrolyte solution was prepared, and in the same manner as in Example 1, a To film alone or an ITO film and a WOs layer were evaporated on the surface, and a solder layer was formed at the t7 end. Two glass substrates were prepared, and hot melt type FiVA was applied with a dispenser to a thickness of 100 μm and a width of 2 cm on the four peripheries of the surface on which the To film was formed on one of the substrates to form a bank.

槽 この堤を形成した第】の基板を真空番中に入れ、上記ゲ
ル状電解質溶液を加熱して粘度を下げてからディスペン
サーにより、前記基板の堤に囲繞された表面上に第9図
に示すようなパターンに電解質酢液を塗布した。このよ
うに粘度を下げることにより電解質溶液の第1の基板上
への塗布を容易に行うことができた。
The substrate with the bank formed therein is placed in a vacuum chamber, and the gelled electrolyte solution is heated to reduce its viscosity, and then applied to the surface of the substrate surrounded by the bank using a dispenser as shown in FIG. Electrolyte vinegar solution was applied in a similar pattern. By lowering the viscosity in this way, the electrolyte solution could be easily applied onto the first substrate.

実施例1と同様に、もう1枚のガラス基板を真壁状態で
上記ゲル状電解質浴液上に載置押圧し、大気圧中で保持
した後、端部に給電線を半田付けした。
In the same manner as in Example 1, another glass substrate was placed and pressed in a straight-walled state on the gel electrolyte bath solution and held at atmospheric pressure, and then a power supply line was soldered to the end.

次に周辺部をホットメルトタイプのブチルゴムで2次シ
ールしEC素子を製造した。
Next, the peripheral portion was secondarily sealed with hot melt type butyl rubber to produce an EC element.

実施例3 実施例2のホットメルトタイプのBVAに代えテトラヒ
ドラフラン(THF) 、酢酸ブチル、シクロヘキサン
。ジクロロエタン、零奏タキキ中之キシレン、四基化炭
素等の溶媒にFiVAを溶解し、これにシランカップリ
ング材を加えたものを用いた。この様にして作成したシ
ール材は、ホットメルトタイプのKVAに比してより強
固な接着力が得られた。
Example 3 The hot melt type BVA of Example 2 was replaced with tetrahydrofuran (THF), butyl acetate, and cyclohexane. FiVA was dissolved in a solvent such as dichloroethane, xylene, and carbon tetracarbon, and a silane coupling material was added thereto. The sealing material prepared in this way had stronger adhesive strength than hot melt type KVA.

実施例4 実施例2のホットメルトタイプのmv人に代え、ホット
メルトタイプのIVAにポリ塩化ビニリデンを加えブレ
ンドしたシール材を用いた。
Example 4 Instead of the hot melt type mv material of Example 2, a sealing material made by blending hot melt type IVA with polyvinylidene chloride was used.

このシール材は、耐湿性、耐酸素透過性において優れた
特性を示した。
This sealing material showed excellent properties in terms of moisture resistance and oxygen permeation resistance.

実施例5 実施例2と同様にゲル状電解質溶液とガラス基板を作成
し、該ガラス基板の一方の四周辺上に、第15図に示す
ように、ホットメルトタイプのブチルゴムをディスペン
サーにより塗布し第1の外枠12を形成し、該第1の外
枠12の内側にホットメルトタイプのBVAを同様にデ
ィスペンサーにより塗布して第2の外枠13を形成し二
重の堤を形成した。この後は、第1及び第2の基板の外
側に2次シールを施さないという点を除いては、実施例
2と同様にしてme素子を製造した。
Example 5 A gel electrolyte solution and a glass substrate were prepared in the same manner as in Example 2, and hot melt type butyl rubber was applied using a dispenser onto one of the four peripheries of the glass substrate as shown in FIG. A second outer frame 13 was formed by applying hot-melt type BVA to the inside of the first outer frame 12 using a dispenser, thereby forming a double bank. After this, an me element was manufactured in the same manner as in Example 2, except that no secondary sealing was applied to the outside of the first and second substrates.

この実施例では二重の堤を形成することにより、基板の
外側端面に2次シールを施すことなく高いシール性能が
得られた。
In this example, by forming a double bank, high sealing performance was obtained without applying a secondary seal to the outer end surface of the substrate.

以上説明したように、本発明のEC素子の製造方法にお
いては、第1の基板の表面上の周辺位置にシール材によ
り外枠をなす堤を形成し、前場に囲繞された第1の基板
の表面上にゲル状電解質溶液を載置し、この上から第2
の基板を減圧下で圧着してセルを形成するようにしたの
で、電解質溶液がセル外にはみ出すことがなく、従って
、はみ出した電解質溶液を剥離洗浄する工程が不要であ
り、また、ゲル状電解質溶液を加熱して、いったん粘度
を下げてセルに注入するという工程も不要で、極めて作
業能率の良いものである。更にセル中に気泡が残留せず
、従って、残留気泡により電解質あるいはレドックス剤
が酸化されEC素子が劣化するということ基板上に載置
し第2の基板を押圧しセルを形成していくことによつ℃
、連続生産性に優れ量産に適し生産コストも安くなると
いう効果が得られる。
As explained above, in the method for manufacturing an EC element of the present invention, a bank forming an outer frame is formed using a sealing material at a peripheral position on the surface of the first substrate, and the first substrate surrounded by the front surface is A gel electrolyte solution is placed on the surface, and a second
Since the cell is formed by pressing the substrates together under reduced pressure, the electrolyte solution does not protrude outside the cell, so there is no need to remove and clean the protruding electrolyte solution. There is no need to heat the solution to lower its viscosity before injecting it into the cell, making it extremely efficient. Furthermore, no air bubbles remain in the cell, and therefore, the electrolyte or redox agent is oxidized by the remaining air bubbles, causing deterioration of the EC element. Yotsu℃
, it has excellent continuous productivity and is suitable for mass production, resulting in lower production costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第12図は本発明のEC素子の製造法の代
表的例を示す側面(一部上面)図、第13図は2次シー
ル材を塗布した状態を示す断面図、第14図は堤の一実
施例を示す上面図、第15図は堤の他の実施例を示す上
面図である。 1・・・基板載置台、2,7・・・基板、3・・・シー
ル材供給装置、4・・・堤、5・・・ゲル状電解質溶液
、6・・・電解質溶液供給装置、8・・・基板ホルダー
、9・・・押圧装置、10・・・2次シール材層、11
・・・半田層。 以上 第 1 図          頻 27第3 図  
         第47第5図      第6図 第7図    雅8図 弗9図    繍10図 繍 12  図 宵 14  図 第 15  図
1 to 12 are side (partially top) views showing a typical example of the method for manufacturing an EC element of the present invention, FIG. 13 is a sectional view showing a state in which the secondary sealant is applied, and FIG. 14 15 is a top view showing one embodiment of the embankment, and FIG. 15 is a top view showing another embodiment of the embankment. DESCRIPTION OF SYMBOLS 1... Substrate mounting stand, 2, 7... Substrate, 3... Seal material supply device, 4... Bank, 5... Gel-like electrolyte solution, 6... Electrolyte solution supply device, 8 ... Substrate holder, 9... Pressing device, 10... Secondary sealing material layer, 11
...Solder layer. Above is Figure 1 Frequency 27 Figure 3
Fig. 47 Fig. 5 Fig. 6 Fig. 7 Miyabi 8 Fig. 9 Fig. 10 Embroidery 12 Fig. Yoi 14 Fig. 15

Claims (2)

【特許請求の範囲】[Claims] (1)表面に電極を形成した第1、第2の基板の少くと
も一方の電極面上には更にEC物質層を形成し、該第1
、第2の基板の電極を形成した側の面を内側にして間に
ゲル状電解質を挾持して封止するエレクトロクロミック
素子の製造方法において、前記第1の基板の電極を形成
した側の表面上の周辺位置にシール材により外枠をなす
堤を形成する工程と、該堤に囲繞された前記第1の基板
の表面上にゲル状電解質溶液を載置する工程と、前記第
2の基板を該第2の基板の電極を形成した側の表面が前
記第1の基板の電極を形成した側の表面と対向するよう
に前記ゲル状電解質溶液上に載置する工程と、該第2の
基板を前記第1の基板方向へ押圧する工程とを有し、該
第2の基板を前記ゲル状電解質溶液上に載置する前記工
程及び該第2の基板を前記第1の基板方向へ押圧する前
記工程を減圧下で行うことを特徴とするエレクトロクロ
ミック素子の製造方法。
(1) Further forming an EC material layer on at least one electrode surface of the first and second substrates having electrodes formed thereon;
, in the method for manufacturing an electrochromic device, in which the surface of the second substrate on which the electrode is formed is placed inside and sealed by sandwiching a gel electrolyte therebetween, the surface of the first substrate on the side on which the electrode is formed; forming a bank forming an outer frame using a sealing material at a peripheral position above the bank; placing a gel electrolyte solution on the surface of the first substrate surrounded by the bank; and a step of placing a gel electrolyte solution on the surface of the first substrate surrounded by the bank. on the gel electrolyte solution so that the surface of the second substrate on which the electrode is formed faces the surface of the first substrate on which the electrode is formed; pressing the substrate toward the first substrate; placing the second substrate on the gel electrolyte solution; and pressing the second substrate toward the first substrate. A method for manufacturing an electrochromic device, characterized in that the step is performed under reduced pressure.
(2)第1の基板の電極を形成した側の表面上の周辺位
置にシール材により外枠をなす堤を形成する工程は、該
第1の基板の電極を形成した側の表面上の周辺位置上に
形成する第1の外枠と該第1の外枠の内側に形成する第
2の外枠とにより二重の堤を形成する工程である特許請
求の範囲第1項記載のエレクトロクロミック素子の製造
方法。
(2) The step of forming a bank forming an outer frame using a sealing material at a peripheral position on the surface of the first substrate on the side where the electrodes are formed is a step of forming a bank forming an outer frame with a sealing material around the surface of the first substrate on the side where the electrodes are formed. The electrochromic device according to claim 1, which is a step of forming a double bank by a first outer frame formed on a position and a second outer frame formed inside the first outer frame. Method of manufacturing elements.
JP12645584A 1984-06-21 1984-06-21 Production of electrochromic display element Granted JPS616627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12645584A JPS616627A (en) 1984-06-21 1984-06-21 Production of electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12645584A JPS616627A (en) 1984-06-21 1984-06-21 Production of electrochromic display element

Publications (2)

Publication Number Publication Date
JPS616627A true JPS616627A (en) 1986-01-13
JPH0219445B2 JPH0219445B2 (en) 1990-05-01

Family

ID=14935643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12645584A Granted JPS616627A (en) 1984-06-21 1984-06-21 Production of electrochromic display element

Country Status (1)

Country Link
JP (1) JPS616627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666805A1 (en) * 1990-09-14 1992-03-20 Saint Gobain Vitrage Int PROCESS FOR OBTAINING ELECTROCHROMIC VITRAGES ELECTROCHROME WINDOWS.
JP2014063194A (en) * 1999-10-29 2014-04-10 Semiconductor Energy Lab Co Ltd Electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920115B2 (en) * 2011-04-04 2012-04-18 芝浦メカトロニクス株式会社 Solution coating apparatus and coating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666805A1 (en) * 1990-09-14 1992-03-20 Saint Gobain Vitrage Int PROCESS FOR OBTAINING ELECTROCHROMIC VITRAGES ELECTROCHROME WINDOWS.
US5244557A (en) * 1990-09-14 1993-09-14 Saint Gobain Vitrage International Method for forming electrochromic glazings
JP2014063194A (en) * 1999-10-29 2014-04-10 Semiconductor Energy Lab Co Ltd Electronic device

Also Published As

Publication number Publication date
JPH0219445B2 (en) 1990-05-01

Similar Documents

Publication Publication Date Title
US4761061A (en) Method for fabrication of electrochromic device and the same fabricated by the method
US7666049B2 (en) Electrodeposition display panel manufacturing method, electrodeposition display panel, and electrodeposition display device
JPH10239694A (en) Production of liquid crystal display device
JPH0121482B2 (en)
JPS616627A (en) Production of electrochromic display element
JPS61213827A (en) Production of electrochromic element
US20020018174A1 (en) Method of fabricating a liquid crystal display cell
JP3503192B2 (en) Manufacturing method of liquid crystal display device
JPS6270819A (en) Production of electrochromic element
JPS6270820A (en) Production of electrochromic element
JP2000284296A (en) Liquid crystal display device
JPS63139322A (en) Production of electrochromic element
JP3108963B2 (en) Manufacturing method of ferroelectric liquid crystal device
JP4286352B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JPH01213955A (en) Manufacture of flat type battery
CN114545688B (en) Display panel and alignment film preparation method
JPS6327695B2 (en)
JPS60175033A (en) Production for liquid crystal display element
JPS5934285B2 (en) How to inject liquid crystal into a cell
CN217689693U (en) Novel light adjusting film
JPS59192230A (en) Liquid crystal display element
JPS63139323A (en) Production of electrochromic element
JP3041559B2 (en) Manufacturing method of electro-optical device
JPS61103123A (en) Production of liquid crystal display panel
JP2000199911A (en) Production of liquid crystal display device and its apparatus thereof