JPH0219445B2 - - Google Patents

Info

Publication number
JPH0219445B2
JPH0219445B2 JP12645584A JP12645584A JPH0219445B2 JP H0219445 B2 JPH0219445 B2 JP H0219445B2 JP 12645584 A JP12645584 A JP 12645584A JP 12645584 A JP12645584 A JP 12645584A JP H0219445 B2 JPH0219445 B2 JP H0219445B2
Authority
JP
Japan
Prior art keywords
substrate
electrolyte solution
bank
outer frame
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12645584A
Other languages
Japanese (ja)
Other versions
JPS616627A (en
Inventor
Hisashi Nishama
Tadatoshi Kamimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12645584A priority Critical patent/JPS616627A/en
Publication of JPS616627A publication Critical patent/JPS616627A/en
Publication of JPH0219445B2 publication Critical patent/JPH0219445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells

Description

【発明の詳細な説明】 本発明はエレクトロクロミツク素子(以下
「EC素子」と略記する)の製造方法に係り、特に
電解質溶液としてゲル状電解質溶液を用いたEC
素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrochromic device (hereinafter abbreviated as "EC device"), and particularly relates to a method for manufacturing an electrochromic device using a gel electrolyte solution as an electrolyte solution.
The present invention relates to a method for manufacturing an element.

従来EC素子の電解質溶液としては、有機溶媒
として、例えばプロピレンカーボネイト、電解質
として、例えば沃化リチウム(LiI)、あるいは過
塩素酸リチウムにフエロセンを加えたもの等を用
いる溶液型のものが多く用いられて来た。しかる
に、溶液型のものはEC素子の基板が割れた場合
に電解質溶液が飛散してしまつたり、外部から基
板が押圧された時に基板の内面に形成された対向
する電極が相互に接触してシヨートしてしまうと
いう事故が起りやすいという欠点を有していた。
更に、溶液型のものを用いたEC素子の製造方法
としては、電極及び少くとも一方の基板の電極面
上にはEC物質層を形成した2枚の基板の一方に
注入孔を開けておき、これらを電極側表面を対向
させ周辺をシール材で封止しセルを形成した後、
あるいはシール部にあらかじめ注入孔を設けてお
き、セルを形成した後、該注入孔より電解質溶液
をセル中に注入し充填した後に前記注入孔を閉塞
する方法が通常用いられているが、この方法によ
るとセル中に気泡が残存しやすく、また、電解質
溶液が前記注入孔よりあふれ出てオーバーフロー
しやすく、このオーバーフローした電解質溶液を
注入孔閉塞後に除去、洗浄しなければならないと
いう欠点も有していた。
Conventionally, electrolyte solutions for EC devices are often solution-type solutions that use propylene carbonate as an organic solvent, and lithium iodide (LiI) as an electrolyte, or a mixture of lithium perchlorate and ferrocene. I came. However, with solution type devices, if the substrate of the EC element breaks, the electrolyte solution may scatter, or when the substrate is pressed from the outside, opposing electrodes formed on the inner surface of the substrate may come into contact with each other. It had the disadvantage of being prone to accidents such as shooting.
Furthermore, as a method for manufacturing an EC element using a solution type, an injection hole is made in one of two substrates on which an EC material layer is formed on the electrode and the electrode surface of at least one of the substrates. After forming a cell by placing these with the electrode side surfaces facing each other and sealing the periphery with a sealing material,
Alternatively, a method is usually used in which an injection hole is provided in the sealing part in advance, and after the cell is formed, an electrolyte solution is injected into the cell through the injection hole, and after the cell is filled, the injection hole is closed. According to the above, bubbles tend to remain in the cell, and the electrolyte solution tends to overflow from the injection hole, and this overflowing electrolyte solution must be removed and washed after the injection hole is closed. Ta.

このため、近年は前記溶液型のものに適当なゲ
ル化剤を添加しゲル状にした電解質溶液を用いて
上記の欠点を解消したEC素子が検討されている
が、このゲル状電解質溶液を用いたEC素子の製
造方法においても電解質溶液をいかにして基板間
に挿入するかが問題となつている。即ち、電解質
溶液がゲル状であるため、前記セルを形成した後
に該注入孔よりゲル状電解質溶液を注入する事が
難しい。このため、従来はゲル状電解質溶液を加
熱し、いつたん粘度を下げて注入孔からEC素子
のセル中に注入した後に冷却して再び粘度を上げ
るという方法が考えられていた。しかし、この方
法は作業能率が悪く注入に時間がかかり量産に適
さないという欠点があつた。また、基板にシール
材を塗布してセルを形成する前に基板間にゲル状
電解質溶液を挾持して押しつぶし、外部にはみ出
した電解質溶液を剥ぎ取つた後に周辺を洗浄しシ
ール材でシールしセルを形成する方法も考えられ
ているが、外部へはみ出す電解質溶液の形態が一
様でなく剥離作業の能率化が難しく、やはり量産
には適さないものであつた。かつ、周辺シールが
不完全となり耐久性も不十分であつた。
For this reason, in recent years, EC devices have been studied that solve the above drawbacks by using an electrolyte solution that is made into a gel by adding an appropriate gelling agent to the solution-type electrolyte solution. Even in the manufacturing method of EC devices, the problem is how to insert the electrolyte solution between the substrates. That is, since the electrolyte solution is in the form of a gel, it is difficult to inject the gel-like electrolyte solution through the injection hole after forming the cell. For this reason, conventional methods have been considered in which the gel-like electrolyte solution is heated, the viscosity is lowered, the solution is injected into the cell of the EC element through the injection hole, and then the solution is cooled and the viscosity is increased again. However, this method had the drawback of poor work efficiency and long injection time, making it unsuitable for mass production. In addition, before applying a sealant to the substrates to form a cell, the gel electrolyte solution is sandwiched between the substrates and crushed, and after peeling off the electrolyte solution that has protruded to the outside, the surrounding area is cleaned and sealed with a sealant, and the cells are sealed. However, the form of the electrolyte solution that protrudes outside is not uniform, making it difficult to streamline the stripping process, and this method is not suitable for mass production. Moreover, the peripheral seal was incomplete and the durability was insufficient.

本発明は、この様な従来のEC素子の製造方法
の欠点を解消するためになされたものであり、作
業能率が良く連続生産が可能で量産に適し、生産
コストも安くなるEC素子の製造方法を提供する
ことを目的とする。
The present invention was made to eliminate the drawbacks of the conventional EC element manufacturing method, and provides a method for manufacturing EC elements that has good work efficiency, allows continuous production, is suitable for mass production, and has low production costs. The purpose is to provide

即ち、本発明になるEC素子の製造方法は、第
1の電極基板の電極を形成した側の表面上の周辺
位置にシール材により外枠をなす堤を形成する工
程と、該堤に囲繞された前記第1の基板の表面上
にゲル状電解質溶液を載置する工程と、第2の電
極基板を該第2の基板の電極を形成した側の表面
が前記第1の基板の電極を形成した側の表面と対
向するように前記ゲル状電解質溶液上に載置する
工程と、該第2の基板を前記第1の基板方向へ押
圧する工程とを有し、該第2の基板を前記ゲル状
電解質溶液上に載置する前記工程及び該第2の基
板を前記第1の基板方向へ押圧する前記工程を減
圧下で行うことを特徴とする。
That is, the method for manufacturing an EC element according to the present invention includes the steps of forming a bank forming an outer frame using a sealing material at a peripheral position on the surface of the first electrode substrate on the side on which the electrode is formed, and forming a bank surrounded by the bank. a step of placing a gel electrolyte solution on the surface of the first substrate; and a step of placing a gel electrolyte solution on the surface of the first substrate; placing the second substrate on the gel electrolyte solution so as to face the surface of the first substrate; and pressing the second substrate in the direction of the first substrate. The method is characterized in that the step of placing the second substrate on the gel electrolyte solution and the step of pressing the second substrate toward the first substrate are performed under reduced pressure.

以下、本発明のEC素子の製造方法を図面を参
照しながら詳細に説明する。
Hereinafter, the method for manufacturing an EC element of the present invention will be explained in detail with reference to the drawings.

第1図ないし第12図は本発明の代表的方法を
示す側面図(一部上面図)である。第1図はシー
ル材により外枠をなす堤4を第1の基板2上に形
成する工程を示し、第2図は堤4の形成された第
1の基板2の上面図である。図において、基板載
置台1上に載置されたガラス又はプラスチツク等
からなる第1の基板2の表面には、図示しない電
極、及び場合により該電極上に不図示のEC物質
層、が形成されている。この第1の基板2上に、
例えばデイスペンサー、スクリーン印刷器等のシ
ール材供給装置3により一定量のシール材を供給
して、第2図の上面図に示すように、該第1の基
板2の周辺位置に所定の幅と厚みを有する外枠を
なす堤4を形成する。該堤4は、シール材供給装
置3によらず、枠状フイルムシートを載置し、あ
るいは糸状高分子材料を複数本より合わせて載置
しても良い。
1 to 12 are side views (partially top views) showing a typical method of the present invention. FIG. 1 shows a step of forming a bank 4 forming an outer frame using a sealing material on the first substrate 2, and FIG. 2 is a top view of the first substrate 2 on which the bank 4 is formed. In the figure, an electrode (not shown) and an EC material layer (not shown) are formed on the surface of a first substrate 2 made of glass or plastic placed on a substrate mounting table 1. ing. On this first substrate 2,
For example, a certain amount of sealant is supplied by a sealant supply device 3 such as a dispenser or a screen printer to form a predetermined width around the first substrate 2 as shown in the top view of FIG. A bank 4 forming a thick outer frame is formed. The embankment 4 may be placed with a frame-shaped film sheet or with a plurality of thread-like polymeric materials twisted together, instead of using the sealing material supply device 3.

電極としては、酸化錫(SnO2)あるいは酸化
インジウム・酸化錫(ITO)等や、本発明のEC
素子を調光ミラーとして用いる場合には、反射性
の窒化チタン等の金属等を電極として用いても良
い。EC物質としては、酸化タングステン
(WO3)、酸化モリブデン(MoO2)等を用いる。
また、第1の基板2の端部に半田を接着し、電極
に電圧を供給する給電線の接続端子として利用す
ると便利である。
The electrode may be made of tin oxide (SnO 2 ), indium oxide/tin oxide (ITO), or the EC of the present invention.
When the element is used as a light control mirror, a reflective metal such as titanium nitride or the like may be used as the electrode. As the EC substance, tungsten oxide (WO 3 ), molybdenum oxide (MoO 2 ), etc. are used.
It is also convenient to bond solder to the end of the first substrate 2 and use it as a connection terminal for a power supply line that supplies voltage to the electrodes.

シール材としては、80℃ないし200℃で熱圧着
可能なポリマーで、接着力が大きく、ガス(特に
酸素ガス)の透過性が小さく、耐湿・候性が良
く、耐薬品性が良く、更に、第2の基板を押圧し
た際につぶれて広がらず組成が密となるものが望
まれる。この様な素材をフイルム状あるいは糸状
にして、又は溶融して第1の基板2上に塗布して
堤4を形成するのである。この様な特性を有する
素材としては、例えばエチレンビニルアセテート
(EVA)、ポリエチレン(PE)、ナイロン、ウレ
タン、シリコンン、塩化ビニリデン、エチレンア
クリル酸エチル、エチレンビニルアルコール、エ
チレンアクリル酸等が望ましい。更に、これらの
材料にシランカツプリング材や無機あるいは有機
のフイラー等を充填すれば接着力、ガス透過性等
の面でより良好な特性が得られる。また、第1の
基板2に予めプライマ処理を施しておけば更に望
ましい特性が得られる。
As a sealing material, it is a polymer that can be thermocompressed at 80℃ to 200℃, has high adhesive strength, low gas (especially oxygen gas) permeability, good moisture and weather resistance, and good chemical resistance. It is desired that the composition is dense and does not collapse and spread when the second substrate is pressed. The embankment 4 is formed by forming such a material into a film or thread, or melting it and applying it onto the first substrate 2. Desirable materials having such characteristics include, for example, ethylene vinyl acetate (EVA), polyethylene (PE), nylon, urethane, silicone, vinylidene chloride, ethylene ethyl acrylate, ethylene vinyl alcohol, and ethylene acrylic acid. Furthermore, if these materials are filled with a silane coupling material, an inorganic or organic filler, etc., better properties in terms of adhesive strength, gas permeability, etc. can be obtained. Furthermore, if the first substrate 2 is subjected to primer treatment in advance, more desirable characteristics can be obtained.

堤4の横幅はEC素子の大きさにより最適の寸
法が異なるが、通常の小型の素子であるならば2
mm程度が適当であり、堤4の高さ(膜厚)は、
50μmないし数mm程度が適当である。更に望まし
くは、対向電極を形成した第2の基板で該堤4を
押圧して圧着した場合に膜厚が50μmないし
100μm程度となるのが良く、このためには60μm
ないし200μm程度に堤4の高さを形成するのが良
い。
The optimal width of the embankment 4 varies depending on the size of the EC element, but if it is a normal small element, it is 2.
The appropriate height (film thickness) of the embankment 4 is approximately mm.
Approximately 50 μm to several mm is appropriate. More preferably, when the bank 4 is pressed and bonded with the second substrate on which the counter electrode is formed, the film thickness is 50 μm or more.
It is best to have a thickness of about 100μm, and for this purpose 60μm
It is preferable to form the height of the bank 4 to be about 200 μm or so.

第3図は、堤4に囲繞された第1の基板2の表
面上にゲル状電解質溶液5を載置する工程を示
し、第4図ないし第10図はこの工程が終了した
状態の第1の基板2の上面図である。
FIG. 3 shows the step of placing the gel electrolyte solution 5 on the surface of the first substrate 2 surrounded by the embankment 4, and FIGS. 4 to 10 show the first substrate after this step. FIG. 2 is a top view of the substrate 2 of FIG.

図において、ゲル状電解質溶液は、デイスペン
サー等の電解質溶液供給装置6により一定量が第
1の基板2の堤4により囲繞された表面上に載置
される。ゲル状電解質溶液5は、印刷法、転写
法、ナイフコート法等により、第1の基板2上の
堤4により囲繞された全表面上に均一に塗布して
も良いが、このようにした場合には、第2の基板
を載置した場合に気泡(後述するように、わずか
にN2ガスの存在する真空中で行うのでN2ガスの
気泡となる)が残り易い。従つて、第3図ないし
第11図に示すように、第1の基板2の上面中央
部に電解質溶液5を盛り上げて、中央部の電解質
溶液を第2の基板で押し広げるようにするのが望
ましい。この際、電解質溶液5の第1の基板2の
表面上への載置方法としては、第4図に示すよう
に、ほぼ矩形状に一様に載置するもの、第5図に
示すように、点状に一様に分離して載置するも
の、第6図ないし第8図に示すように円状又は人
手状に一様に載置するもの、第9図及び第10図
に示すように、中央部に比較的大きな塊状に載置
し、更に周辺部に小さな塊状に載置するもの等多
種の載置の仕方が考えられるが、中央部に比較的
大きな塊を有し、かつ四隅部近傍に該塊状の電解
質溶液の広がりの不足を補う小さな塊を設ける方
が気泡は残らなくなる。従つて、以上の第4図な
いし第10図の載置方法では図番の大きい載置方
法(即ち、第4図の載置方法よりは第10図の載
置方法)がより気泡が残存し難く望ましい。ま
た、この際、電解質溶液5の第1の基板2上への
載置は酸化を防ぐために窒素ガス中で行い、電解
質溶液5の粘度は5000CPSないし50000CPS程度
が望ましく、粘度の調節は電解質溶液5を加熱ま
たは冷却あるいは溶媒により希釈して行う。
In the figure, a predetermined amount of the gel electrolyte solution is placed on the surface of the first substrate 2 surrounded by the banks 4 by an electrolyte solution supply device 6 such as a dispenser. The gel electrolyte solution 5 may be applied uniformly over the entire surface of the first substrate 2 surrounded by the banks 4 by a printing method, a transfer method, a knife coating method, etc.; When the second substrate is placed on the substrate, bubbles (as described later, the process is performed in a vacuum where a slight amount of N 2 gas is present, so they become N 2 gas bubbles) are likely to remain. Therefore, as shown in FIGS. 3 to 11, it is recommended to swell the electrolyte solution 5 at the center of the upper surface of the first substrate 2 and spread the electrolyte solution at the center with the second substrate. desirable. At this time, the electrolyte solution 5 can be placed on the surface of the first substrate 2 by placing it uniformly in a substantially rectangular shape as shown in FIG. , those that are placed uniformly in dotted shapes, those that are placed uniformly in a circular or manual shape as shown in Figures 6 to 8, and those that are placed uniformly in a circular or manual shape as shown in Figures 9 and 10. There are various ways of placing the material, such as placing it in a relatively large lump in the center and placing it in smaller lumps on the periphery. If a small lump is provided near the area to compensate for the lack of spreading of the lumpy electrolyte solution, air bubbles will not remain. Therefore, among the mounting methods shown in Figs. 4 to 10 above, the mounting method with the larger drawing number (that is, the mounting method shown in Fig. 10 rather than the mounting method shown in Fig. 4) leaves more air bubbles. difficult and desirable. At this time, the electrolyte solution 5 is placed on the first substrate 2 in a nitrogen gas atmosphere to prevent oxidation, and the viscosity of the electrolyte solution 5 is preferably about 5000 CPS to 50000 CPS. This is done by heating, cooling, or diluting with a solvent.

電解質溶液の材質としては、γ―ブチロラクト
ン(γ−BL)、プロピレンカーボネイト、ブチル
アルコール等の有機溶媒に、該有機溶媒に溶解し
てゲル化する樹脂、例えば、ウレタン樹脂、アク
リル酸樹脂、酸化樹脂その他の樹脂又はそれらの
共重合体等が加えられたゲル状電解質溶液であ
り、さらにこれにレドツクス剤特にLiIを加えた
もの等を用いることが好ましいが、これらに限定
されないことは言うまでもない。
The material for the electrolyte solution is γ-butyrolactone (γ-BL), propylene carbonate, butyl alcohol, or other organic solvent, and a resin that dissolves in the organic solvent to form a gel, such as urethane resin, acrylic acid resin, or oxidized resin. It is preferable to use a gel-like electrolyte solution to which other resins or copolymers thereof are added, and further a redox agent, particularly LiI, is used, but it goes without saying that the solution is not limited to these.

第11図は、表面に電極を形成した第2の基板
7をゲル状電解質溶液5の上に電極面を第1の基
板2の電極面と対向させて載置する工程を示す。
該第2の基板7は、基板ホルダー8中に保持さ
れ、次々とゲル状電解質溶液5の上に供給され
る。この工程は図示しない真空槽中で窒素ガス雰
囲気下で行い、残留窒素ガスの圧力が10Torrな
いし60Torr程度に保つのが望ましい。また、基
板載置台の温度は50℃程度が望ましい。真空度が
高すぎるか、温度が高すぎると電解質溶液5中の
溶媒が気化し発泡し始め、真空度が低すぎると第
2の基板7を押圧してセルを形成するときにセル
中に気泡が残留する可能性が高くなるためであ
る。
FIG. 11 shows the step of placing the second substrate 7 on which electrodes are formed on the gel electrolyte solution 5 with the electrode surface facing the electrode surface of the first substrate 2. As shown in FIG.
The second substrates 7 are held in a substrate holder 8 and are supplied onto the gel electrolyte solution 5 one after another. This process is carried out in a vacuum chamber (not shown) under a nitrogen gas atmosphere, and it is desirable to maintain the pressure of the residual nitrogen gas at about 10 Torr to 60 Torr. Further, the temperature of the substrate mounting table is preferably about 50°C. If the degree of vacuum is too high or the temperature is too high, the solvent in the electrolyte solution 5 will vaporize and begin to foam; if the degree of vacuum is too low, bubbles will form in the cells when pressing the second substrate 7 to form the cells. This is because there is a higher possibility that the remaining particles will remain.

第2の基板7に形成する電極は、第1の基板2
の電極と同様に、SnO2やITOあるはTiN等の金
属などを用いる。また、第1の基板2の電極上に
EC物質層を形成しない場合には、この第2の基
板7の電極上にWO3等のEC物質層を形成する。
なお、電極、EC物質層ともに、第1の基板2の
ときと同様に、図示しない。
The electrodes formed on the second substrate 7 are the same as those on the first substrate 2.
As with the electrodes, metals such as SnO 2 , ITO, or TiN are used. Moreover, on the electrode of the first substrate 2
If an EC material layer is not formed, an EC material layer such as WO 3 is formed on the electrode of this second substrate 7.
Note that, like the first substrate 2, both the electrode and the EC material layer are not shown.

第12図は、第2の基板7を第1の基板2方向
へ背面より押圧する工程を示す。この工程は、第
11図の工程と同様に、図示しない真空槽中で
N2ガス圧が10Torrないし60Torrの真空中で行
い、公知の押圧装置9により第2の基板7を第1
の基板2上に圧着し両基板の四周辺をシール材で
封着しセルを形成する。この際、真空槽中の温度
は80℃ないし200℃とし、第2の基板7を第1の
基板2に圧着する圧力は1Kg/cm2ないし7Kg/cm2
程度とすることが、電解質溶液の拡がり、シール
材の各基板2,7への圧着の上で望ましい。
FIG. 12 shows the process of pressing the second substrate 7 toward the first substrate 2 from the back side. This process is carried out in a vacuum chamber (not shown), similar to the process shown in FIG.
The process is carried out in a vacuum with an N 2 gas pressure of 10 Torr to 60 Torr, and the second substrate 7 is pressed onto the first substrate using a known pressing device 9.
The four peripheries of both substrates are sealed with a sealing material to form a cell. At this time, the temperature in the vacuum chamber is 80°C to 200°C, and the pressure for bonding the second substrate 7 to the first substrate 2 is 1Kg/cm 2 to 7Kg/cm 2 .
It is desirable to maintain a certain level in terms of the spread of the electrolyte solution and the pressure bonding of the sealing material to each substrate 2, 7.

押圧装置9により第2の基板7を上方より押圧
して行くと、該基板7の表面は、まずゲル状電解
質溶液5を押圧し、該電解質溶液5は第1の基板
1の表面上で展延し、外枠となる堤4に当接し、
該堤4に沿つて更に展延する。次いで堤4が第2
の基板7の表面に接し押圧されて圧縮し基板2,
7の四周辺に圧着しセルを形成する。該第1及び
第2の基板2,7間のギヤツプの大きさは、第2
の基板7の押圧される圧力、真空槽のシール材部
の温度、堤4の高さ、ゲル状電解質溶液5の量に
より規制される。かくして、第1、第2の基板
2,7と堤4により形成されるセル中にゲル状電
解質溶液5が充填されたが、この状態のセルを数
分間真空槽中で保持することにより堤4を形成す
るシール材の両基板2,7への圧着が完了し、強
固なセルとなる。また、この後、N2ガスを真空
槽中に導入し1気圧の状態にし、該セルを真空槽
中より大気中へ取り出すことにより、セル中に気
泡が残存した場合でも、該気泡は大気圧により消
失せしめられ、電解質溶液が完全に充填され気泡
の存在しないセルが出来上る。
When the second substrate 7 is pressed from above by the pressing device 9, the surface of the substrate 7 first presses the gel-like electrolyte solution 5, and the electrolyte solution 5 spreads on the surface of the first substrate 1. It extends and comes into contact with the embankment 4 which becomes the outer frame,
It further extends along the embankment 4. Then dam 4 is the second
The substrate 2 is compressed by being pressed against the surface of the substrate 7,
Press the four peripheries of No. 7 to form a cell. The size of the gap between the first and second substrates 2 and 7 is
It is regulated by the pressure with which the substrate 7 is pressed, the temperature of the sealing material part of the vacuum chamber, the height of the embankment 4, and the amount of gel electrolyte solution 5. In this way, the cell formed by the first and second substrates 2, 7 and the bank 4 was filled with the gel electrolyte solution 5, and by keeping the cell in this state in a vacuum chamber for several minutes, the bank 4 was filled. The pressure bonding of the sealing material forming the cell to both substrates 2 and 7 is completed, and a strong cell is formed. In addition, after this, N2 gas is introduced into the vacuum chamber to bring the pressure to 1 atmosphere, and the cell is taken out from the vacuum chamber into the atmosphere. The cells are completely filled with the electrolyte solution and have no air bubbles.

なお、以上の工程でEC素子のセルは完成し、
シール材による堤4のみでも十分な耐久性が得ら
れるが、第13図に断面図を示すように、シール
材による堤4の外側に更に2次シール材層10を
形成すればより強固なセルとなり耐久性が増大す
る。2次シール材10は、ブチルゴム、フツ素樹
脂、塩化ビニリデン樹脂、エポキシ等の素材を用
い、融着等の方法で形成すれば良い。なお、第1
3図の符号11は半田層を示し、第1,第2の基
板2,7の端部に形成し、外部電源に接続する給
電線を半田付けするのに用いる。
The EC element cell is completed through the above steps.
Sufficient durability can be obtained with only the sealing material bank 4, but as shown in the cross-sectional view in FIG. This increases durability. The secondary sealing material 10 may be formed using a material such as butyl rubber, fluororesin, vinylidene chloride resin, or epoxy by a method such as fusion bonding. In addition, the first
Reference numeral 11 in FIG. 3 indicates a solder layer, which is formed at the ends of the first and second substrates 2 and 7 and is used to solder a power supply line connected to an external power source.

以下、本発明のEC素子の製造方法を具体的実
施例を示し更に詳細に説明する。
Hereinafter, the method for manufacturing an EC element of the present invention will be explained in more detail by showing specific examples.

実施例 1 脱酸素および脱水した0.75M LiI,γ―ブチロ
ラクトン溶液50mlに脱水したポリビニルブチラー
ル25gをN2ガス雰囲気下で溶解しゲル状電解質溶
液を調整した。10cm四方のガラス基板上に電極と
してITO膜のみを蒸着して形成した基板と、ITO
膜上にEC物質層としてWO3層を、更に蒸着法に
より形成した基板を作成し、各基板の端部にガラ
スに溶着可能な半田を付着させ、第13図に示す
様に、半田層11を形成した。この際ITO膜の面
抵抗は10Ω、WO3層の厚みは5000Åとした。
Example 1 A gel electrolyte solution was prepared by dissolving 25 g of dehydrated polyvinyl butyral in 50 ml of a deoxygenated and dehydrated 0.75M LiI, γ-butyrolactone solution under an N 2 gas atmosphere. A substrate formed by depositing only an ITO film as an electrode on a 10 cm square glass substrate, and
A substrate is prepared by forming three layers of WO as an EC material layer on the film by a vapor deposition method, and solder that can be welded to glass is attached to the edge of each substrate, as shown in FIG. was formed. At this time, the sheet resistance of the ITO film was 10Ω, and the thickness of the WO 3 layer was 5000 Å.

次にシール材として厚さ100μmのEVAフイル
ムを用い、第14図に示すように前記基板と同じ
大きさの中央部を穿孔した矩形の枠状に整形し
た。この際、枠部の幅dは2mmとした。この
EVAフイルムの枠を前記ITO膜を形成した第1
の基板上に載置し堤とした。
Next, an EVA film with a thickness of 100 μm was used as a sealing material, and as shown in FIG. 14, it was shaped into a rectangular frame with a hole in the center of the same size as the substrate. At this time, the width d of the frame was 2 mm. this
The frame of the EVA film is the first layer on which the ITO film is formed.
It was placed on a substrate and used as an embankment.

次に、この第1の基板上の堤で囲繞された表面
上に、第8図に示すパターンで、デイスペンサー
より前記ゲル状電解質溶液を0.55g塗布した。こ
の工程は真空槽中にN2ガスを充填した不活性雰
囲気下で行つた。
Next, 0.55 g of the gel electrolyte solution was applied from a dispenser onto the surface of the first substrate surrounded by the bank in the pattern shown in FIG. This step was performed under an inert atmosphere filled with N2 gas in a vacuum chamber.

次に、N2ガスを脱気し30Torrとし、前記第1
の基板の上に、ITO膜とWO3層を形成した第2
の基板のWO3層形成面を前記第1の基板のITO
膜形成面と対向させ、前記ゲル状電解質溶液の塊
の上に載置し、押圧装置により背面より押圧し
た。この際の押圧力は5Kg/cm2とし、真空槽中の
シール材部を110℃に加熱しながら3分間加圧し
た。
Next, the N 2 gas is degassed to 30 Torr, and the first
The second substrate was formed with an ITO film and three WO layers.
The WO 3 layer forming surface of the substrate is replaced with the ITO layer of the first substrate.
It was placed on top of the mass of the gel electrolyte solution, facing the membrane forming surface, and pressed from the back side with a pressing device. The pressing force at this time was 5 kg/cm 2 , and the sealing material portion in the vacuum chamber was heated to 110° C. and pressurized for 3 minutes.

その後N2ガスを導入し、真空槽中の圧を大気
圧とし、そのまま放置し冷却しシール材を両基板
に固着した。
Thereafter, N 2 gas was introduced to bring the pressure inside the vacuum chamber to atmospheric pressure, and the chamber was left to cool, thereby fixing the sealing material to both substrates.

前記基板の端面の半田層に外部電源接続用の給
電線を半田付けし、第13図に示すように、端面
に二次シール材10としてエポキシ接着剤で密閉
してEC素子を作成した。
A power supply line for connecting an external power source was soldered to the solder layer on the end surface of the substrate, and the end surface was sealed with epoxy adhesive as a secondary sealant 10, as shown in FIG. 13, to produce an EC element.

実施例 2 実施例1と同様にゲル状電解質溶液を調整し、
また、実施例1と同様に、表面にITO膜のみ、又
はITO膜のWO3層を蒸着し端部に半田層を形成
した2枚のガラス基板を用意し、該基板のうちの
1枚のITO膜を形成した表面の四周辺上にホツト
メルトタイプのEVAをデイスペンサーにより厚
み100μm、幅2mmに塗布し堤を形成した。
Example 2 A gel electrolyte solution was prepared in the same manner as in Example 1,
In addition, in the same manner as in Example 1, two glass substrates were prepared on which only an ITO film or three WO layers of an ITO film were deposited and a solder layer was formed on the edges. A hot-melt type EVA was applied using a dispenser to a thickness of 100 μm and a width of 2 mm on the four peripheries of the surface on which the ITO film was formed to form banks.

この堤を形成した第1の基板を真空槽中に入
れ、上記ゲル状電解質溶液を加熱して粘度を下げ
てからデイスペンサーにより、前記基板の堤に囲
繞された表面上に第9図に示すようなパターンに
電解質溶液を塗布した。このように粘度を下げる
ことにより電解質溶液の第1の基板上への塗布を
容易に行うことができた。
The first substrate on which the bank has been formed is placed in a vacuum chamber, and the gelled electrolyte solution is heated to lower its viscosity, and then a dispenser is used to apply the gelled electrolyte solution onto the surface of the substrate surrounded by the bank as shown in FIG. The electrolyte solution was applied in a similar pattern. By lowering the viscosity in this way, the electrolyte solution could be easily applied onto the first substrate.

実施例1と同様に、もう1枚のガラス基板を真
空状態で上記ゲル状電解質溶液上に載置押圧し、
大気圧中で保持した後、端部に給電線を半田付け
した。
Similarly to Example 1, another glass substrate was placed and pressed on the gel electrolyte solution in a vacuum state,
After holding at atmospheric pressure, a power supply line was soldered to the end.

次に周辺部をホツトメルトタイプのブチルゴム
で2次シールしEC素子を製造した。
Next, the periphery was secondarily sealed with hot melt type butyl rubber to produce an EC element.

実施例 3 実施例2のホツトメルトタイプのEVAに代え、
テナラヒドラフラン(THF)、酢酸ブチル、シク
ロヘキサン、ジクロロエタン、キシレン、四塩化
炭素等の溶媒にEVAを溶解し、これにシランカ
ツプリング材を加えたものを用いた。この様にし
て作成したシール材は、ホツトメルトタイプの
EVAに比してより強固な接着力が得られた。
Example 3 Instead of the hot melt type EVA of Example 2,
EVA was dissolved in a solvent such as tenalahydrofuran (THF), butyl acetate, cyclohexane, dichloroethane, xylene, carbon tetrachloride, etc., and a silane coupling material was added to the solution. The seal material created in this way is a hot melt type.
Stronger adhesive strength was obtained compared to EVA.

実施例 4 実施例2のホツトメルトタイプのEVAに代え、
ホツトメルトタイプのEVAにポリ塩化ビニリデ
ンを加えブレンドしたシール材を用いた。このシ
ール材は、耐湿性、耐酸素透過性において優れた
特性を示した。
Example 4 Instead of the hot melt type EVA of Example 2,
We used a sealing material that is a blend of hot melt type EVA and polyvinylidene chloride. This sealing material showed excellent properties in terms of moisture resistance and oxygen permeation resistance.

実施例 5 実施例2と同様にゲル状電解質溶液とガラス基
板を作成し、該ガラス基板の一方の四周辺上に、
第15図に示すように、ホツトメルトタイプのブ
チルゴムをデイスペンサーにより塗布し第1の外
枠12を形成し、該第1の外枠12の内側にホツ
トメルトタイプのEVAを同様にデイスペンサー
により塗布して第2の外枠13を形成し二重の堤
を形成した。この後は、第1及び第2の基板の外
側に2次シールを施さないという点を除いては、
実施例2と同様にしてEC素子を製造した。
Example 5 A gel electrolyte solution and a glass substrate were created in the same manner as in Example 2, and on one of the four peripheries of the glass substrate,
As shown in FIG. 15, hot melt type butyl rubber is applied using a dispenser to form a first outer frame 12, and hot melt type EVA is applied to the inside of the first outer frame 12 using a dispenser as well. The second outer frame 13 was formed by applying the second outer frame 13 to form a double bank. After this, no secondary seals are applied to the outside of the first and second substrates.
An EC element was manufactured in the same manner as in Example 2.

この実施例では二重の堤を形成することによ
り、基板の外側端面に2次シールを施すことなく
高いシール性能が得られた。
In this example, by forming a double bank, high sealing performance was obtained without applying a secondary seal to the outer end surface of the substrate.

以上説明したように、本発明のEC素子の製造
方法においては、第1の基板の表面上の周辺位置
にシール材により外枠をなす堤を形成し、該堤に
囲繞された第1の基板の表面上にゲル状電解質溶
液を載置し、この上から第2の基板を減圧下で圧
着してセルを形成するようにしたので、電解質溶
液がセル外にはみ出すことがなく、従つて、はみ
出した電解質溶液を剥離洗浄する工程が不要であ
り、また、ゲル状電解質溶液を加熱して、いつた
ん粘度を下げてセルに注入するという工程も不要
で、極めて作業能率の良いものである。更にセル
中に気泡が残留せず、従つて、残留気泡により電
解質あるいはレドツクス剤が酸化されEC素子が
劣化するということもなく、真空槽中で次々と電
解質溶液を第1の基板上に載置し第2の基板を押
圧しセルを形成していくことによつて、連続生産
性に優れ量産に適し生産コストも安くなるという
効果が得られる。
As explained above, in the method for manufacturing an EC element of the present invention, a bank forming an outer frame is formed using a sealing material at a peripheral position on the surface of the first substrate, and the first substrate surrounded by the bank is A gel-like electrolyte solution is placed on the surface of the cell, and a second substrate is pressed onto the cell under reduced pressure to form a cell, so that the electrolyte solution does not protrude outside the cell. There is no need to remove and clean the protruding electrolyte solution, and there is no need to heat the gel electrolyte solution to lower its viscosity before injecting it into the cell, resulting in extremely high work efficiency. Furthermore, no air bubbles remain in the cell, and therefore, the electrolyte solution or redox agent will not be oxidized by the remaining air bubbles and the EC element will not deteriorate, and the electrolyte solution is placed one after another on the first substrate in a vacuum chamber. By pressing the second substrate to form cells, it is possible to achieve the effect that continuous productivity is excellent and it is suitable for mass production and production costs are also reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第12図は本発明のEC素子の製
造法の代表的例を示す側面(一部上面)図、第1
3図は2次シール材を塗布した状態を示す断面
図、第14図は堤の一実施例を示す上面図、第1
5図は堤の他の実施例を示す上面図である。 1…基板載置台、2,7…基板、3…シール材
供給装置、4…堤、5…ゲル状電解質溶液、6…
電解質溶液供給装置、8…基板ホルダー、9…押
圧装置、10…2次シール材層、11…半田層。
Figures 1 to 12 are side (partially top) views showing typical examples of the method for manufacturing the EC element of the present invention;
Figure 3 is a sectional view showing the state in which the secondary sealant is applied, Figure 14 is a top view showing one embodiment of the embankment, and Figure 1
FIG. 5 is a top view showing another embodiment of the embankment. DESCRIPTION OF SYMBOLS 1... Substrate mounting stand, 2, 7... Substrate, 3... Seal material supply device, 4... Bank, 5... Gel electrolyte solution, 6...
Electrolyte solution supply device, 8... Substrate holder, 9... Pressing device, 10... Secondary sealing material layer, 11... Solder layer.

Claims (1)

【特許請求の範囲】 1 表面に電極を形成した第1、第2の基板の少
くとも一方の電極面上には更にEC物質層を形成
し、該第1、第2の基板の電極を形成した側の面
を内側にして間にゲル状電解質を挾持して封止す
るエレクトロクロミツク素子の製造方法におい
て、前記第1の基板の電極を形成した側の表面上
の周辺位置にシール材により外枠をなす堤を形成
する工程と、該堤に囲繞された前記第1の基板の
表面上にゲル状電解質溶液を載置する工程と、前
記第2の基板を該第2の基板の電極を形成した側
の表面が前記第1の基板の電極を形成した側の表
面と対向するように前記ゲル状電解質溶液上に載
置する工程と、該第2の基板を前記第1の基板方
向へ押圧する工程とを有し、該第2の基板を前記
ゲル状電解質溶液上に載置する前記工程及び該第
2の基板を前記第1の基板方向へ押圧する前記工
程を減圧下で行うことを特徴とするエレクトロク
ロミツク素子の製造方法。 2 第1の基板の電極を形成した側の表面上の周
辺位置にシール材により外枠をなす堤を形成する
工程は、該第1の基板の電極を形成した側の表面
上の周辺位置上に形成する第1の外枠と該第1の
外枠の内側に形成する第2の外枠とにより二重の
堤を形成する工程である特許請求の範囲第1項記
載のエレクトロクロミツク素子の製造方法。
[Claims] 1. An EC material layer is further formed on at least one electrode surface of the first and second substrates on which electrodes are formed, and the electrodes of the first and second substrates are formed. In the method for manufacturing an electrochromic device, the electrochromic device is sealed by sandwiching and sandwiching a gel electrolyte with the surface of the first substrate facing inside, wherein a sealing material is used at a peripheral position on the surface of the first substrate on which the electrode is formed. forming a bank forming an outer frame; placing a gel electrolyte solution on the surface of the first substrate surrounded by the bank; and placing the second substrate on an electrode of the second substrate. placing the second substrate on the gel electrolyte solution so that the surface on which the electrodes are formed faces the surface of the first substrate on which the electrodes are formed; and placing the second substrate in the direction of the first substrate. The step of placing the second substrate on the gel electrolyte solution and the step of pressing the second substrate toward the first substrate are performed under reduced pressure. A method for manufacturing an electrochromic device characterized by the following. 2. The step of forming a bank forming an outer frame using a sealing material at a peripheral position on the surface of the first substrate on the side where the electrodes are formed is performed at a peripheral position on the surface of the first substrate on the side where the electrodes are formed. The electrochromic device according to claim 1, which is a step of forming a double bank by a first outer frame formed on the inside of the first outer frame and a second outer frame formed inside the first outer frame. manufacturing method.
JP12645584A 1984-06-21 1984-06-21 Production of electrochromic display element Granted JPS616627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12645584A JPS616627A (en) 1984-06-21 1984-06-21 Production of electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12645584A JPS616627A (en) 1984-06-21 1984-06-21 Production of electrochromic display element

Publications (2)

Publication Number Publication Date
JPS616627A JPS616627A (en) 1986-01-13
JPH0219445B2 true JPH0219445B2 (en) 1990-05-01

Family

ID=14935643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12645584A Granted JPS616627A (en) 1984-06-21 1984-06-21 Production of electrochromic display element

Country Status (1)

Country Link
JP (1) JPS616627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183385A (en) * 2011-04-04 2011-09-22 Shibaura Mechatronics Corp Apparatus and method for applying solution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666805B1 (en) * 1990-09-14 1992-10-30 Saint Gobain Vitrage Int PROCESS FOR OBTAINING ELECTROCHROMIC WINDOWS. ELECTROCHROMIC WINDOWS.
US6384427B1 (en) * 1999-10-29 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183385A (en) * 2011-04-04 2011-09-22 Shibaura Mechatronics Corp Apparatus and method for applying solution

Also Published As

Publication number Publication date
JPS616627A (en) 1986-01-13

Similar Documents

Publication Publication Date Title
US4761061A (en) Method for fabrication of electrochromic device and the same fabricated by the method
US7666049B2 (en) Electrodeposition display panel manufacturing method, electrodeposition display panel, and electrodeposition display device
JP7304939B2 (en) METHOD FOR MANUFACTURING SOLID STATE ELECTROCHROMIC DEVICE, SOLID STATE ELECTROCHROMIC DEVICE AND USE THEREOF
CN212322035U (en) Electrochromic skylight
US4177552A (en) Method of making laminar batteries
JP4651347B2 (en) Photoelectric conversion device and photovoltaic device using the same
JPH0219445B2 (en)
JPS61213827A (en) Production of electrochromic element
US6803986B2 (en) Method of fabricating a liquid crystal display cell
JPS6270819A (en) Production of electrochromic element
JPS6270820A (en) Production of electrochromic element
JPS63139322A (en) Production of electrochromic element
JP2000284296A (en) Liquid crystal display device
JPH01213955A (en) Manufacture of flat type battery
JPS63139323A (en) Production of electrochromic element
JPS63158528A (en) Electrochromic element
WO2022156659A1 (en) Electrochromic apparatus and method for preparing same, and electronic device
JP2539819B2 (en) Electrochromic element
JP2600270B2 (en) Electrochromic element
JPS6327695B2 (en)
JP2610125B2 (en) Method for manufacturing flexible electro-optical element
JPS59192230A (en) Liquid crystal display element
JPS63139321A (en) Electrochromic element
JP2534144Y2 (en) Liquid crystal display device
JPH0831394A (en) Manufacture of flat alkaline storage battery