JPS6166009A - Combustion device - Google Patents

Combustion device

Info

Publication number
JPS6166009A
JPS6166009A JP18675084A JP18675084A JPS6166009A JP S6166009 A JPS6166009 A JP S6166009A JP 18675084 A JP18675084 A JP 18675084A JP 18675084 A JP18675084 A JP 18675084A JP S6166009 A JPS6166009 A JP S6166009A
Authority
JP
Japan
Prior art keywords
combustion
heat
upstream
temperature
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18675084A
Other languages
Japanese (ja)
Other versions
JPH0128848B2 (en
Inventor
Jiro Suzuki
次郎 鈴木
Atsushi Nishino
敦 西野
Yasuhiro Takeuchi
康弘 竹内
Koreyoshi Ono
之良 小野
Masato Hosaka
正人 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18675084A priority Critical patent/JPS6166009A/en
Priority to CA000490057A priority patent/CA1254122A/en
Priority to US06/772,937 priority patent/US4676737A/en
Priority to AU47160/85A priority patent/AU558647B2/en
Publication of JPS6166009A publication Critical patent/JPS6166009A/en
Publication of JPH0128848B2 publication Critical patent/JPH0128848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To improve radiation efficiency and the variable width of a combustion quantity by a method wherein the device is provided with a combustion body having the catalytic substance of the platinum series for a heat-resistant material having many combustion holes, means to supply the mixture of fuel gas and air to the combustion body and a heat permeating plate provided on the surface opposed to the upstream surface of the combustion body. CONSTITUTION:Premixing gas is burnt at the upstream surface 3b of the combustion body 3 and the upstream portion A of combustion holes 3a. The combustion body 34 is heated by above heat of combustion and radiation heat is discharged out of an upstream surface 3b. Further, the heat of exhaust gas after combustion is transferred to the combustion body 3 at the downstream portion (b) of the combustion hole 3a. The temperature of the upstream surface 3b is more risen by this heat and the radiation heat is discharged efficiently. The radiation heat is radiated to the body to be heated through the premixing gas layer and the heat permeating plate 2 by the heat permeating plate 2 provided in the direction of the upstream surface 3b. According to this method, the temperature in the combustion chamber 1l does not cause to ascend abnormally, therefore, backfire does not cause and the variable width of the combustion quantity may be increased even if the temperature of the upstream 36 become high temperature as the premixing gas is not preheated abnormally.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は暖房器具、乾燥装置等に用いられる燃焼装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a combustion device used in heating appliances, drying devices, and the like.

従来例の構成とその問題点 従来、高輻射を得る目的の燃焼装置とじてンユバンクバ
ーナ、触媒燃焼バーナの2種類が知られている。
Conventional Structures and Problems Conventionally, two types of combustion devices for obtaining high radiation have been known: a fuel bank burner and a catalytic combustion burner.

特にシュバンクバーナが輻射を目的とするバーナとして
一般的であるが、このシュバンク方式には2つの欠点が
ある。第1に輻射率に限界があること、第2に燃焼量の
調節ができないことである。
In particular, the Schwunk burner is common as a burner for the purpose of radiation, but this Schwunk method has two drawbacks. Firstly, there is a limit to the emissivity, and secondly, the amount of combustion cannot be adjusted.

この2つの欠点の原因は基本的に一つの理由によるもの
で、即ち逆火現象によって生じているといってよい。シ
ュバンク方式では逆火全防止する為に燃焼体の燃焼孔を
極めて小径のものとし、混合気の燃焼速度以上の流速全
燃焼孔内で保つようにしているが、この為、常に火炎は
燃焼体の下流に生じる。もし上記速度がアンバランスに
なれば火炎は上流へ伝播し、いわゆる逆火を生ずるもの
である。このような理由で混合気の流速を変えることが
難しく燃焼量全変化させることは困難であった。又、同
時に火炎が燃焼体の下流の面で常に生じる為に、燃焼熱
は十分に燃焼体へ伝わらず、排熱として逸散する。これ
がシュバンク方式の輻射効率が約30〜40%で限界と
なっている理由である。
These two drawbacks are basically caused by one reason, namely the flashback phenomenon. In the Schwank system, in order to completely prevent backfire, the combustion hole of the combustion body is made extremely small in diameter, and the flow velocity is maintained within the combustion hole at a rate higher than the combustion speed of the air-fuel mixture. occurs downstream of If the speeds become unbalanced, the flame will propagate upstream, causing what is called a flashback. For these reasons, it has been difficult to change the flow rate of the air-fuel mixture, and it has been difficult to completely change the combustion amount. At the same time, since flame is always generated on the downstream side of the combustion body, combustion heat is not sufficiently transmitted to the combustion body and is dissipated as waste heat. This is the reason why the radiation efficiency of the Schwank method is limited to approximately 30 to 40%.

かかる欠点を解消する目的で近年とみに研究されている
第2の従来例として解媒燃焼方式があげられる。
A second conventional example that has been studied extensively in recent years in order to eliminate such drawbacks is the decomposer combustion method.

以下に代表的触媒燃焼方式の一例を説明する。An example of a typical catalytic combustion system will be explained below.

燃焼体はアルミナ等の耐熱性繊維で作られた不織布で、
燃焼用の触媒が担持されている。この燃焼体で上流より
流れてきた予混合ガスが燃焼する。
The combustion body is a non-woven fabric made of heat-resistant fibers such as alumina.
A combustion catalyst is supported. The premixed gas flowing from upstream is combusted in this combustion body.

触媒の作用により、燃焼は比較的低温である燃焼体の上
流より始まり、燃焼は燃焼部の下流で完結する。この方
式では触媒の作用により低温で燃焼させることができる
為に逆火を起こしにくい特徴をもつ。この為、燃焼量の
変化が可能である。又、燃焼が燃焼体の下流面でのみ行
なわれるシュバンク方式に比較して、燃焼体全体で燃焼
が行なわれる触媒燃焼方式では燃焼熱が良好に燃焼部を
加熱し輻射効率を高めることが可能であり、約50%の
輻射効率が得られる。しかし触媒燃焼方式のこのような
利点にもかかわらず、家庭用、産業用の輻射加熱源とし
てシュバンク方式がいまた主流である理由は、高価な触
媒を用いた割には輻射効率の上昇が少なく、また、燃焼
量の可変幅もそれ程太キ〈ハならないというコストパフ
ォーマンスの悪さである。
Due to the action of the catalyst, combustion begins upstream of the combustion body, where the temperature is relatively low, and combustion is completed downstream of the combustion section. This method has the characteristic of being less likely to cause backfires because it can be burned at a low temperature due to the action of a catalyst. Therefore, it is possible to change the amount of combustion. In addition, compared to the Schwank method where combustion occurs only on the downstream side of the combustion body, the catalytic combustion method where combustion occurs throughout the combustion body allows the heat of combustion to heat the combustion part better and improve radiation efficiency. There is a radiation efficiency of about 50%. However, despite these advantages of the catalytic combustion method, the reason why the Schwank method is still the mainstream radiant heating source for home and industrial use is that the increase in radiant efficiency is small even though it uses an expensive catalyst. In addition, the variable range of combustion amount is not very wide, resulting in poor cost performance.

発明の目的 本発明は触媒を用いた燃焼装置の輻射効率と燃焼量全変
化の抜本的向上を図ることを目的とするものである。
OBJECT OF THE INVENTION The object of the present invention is to drastically improve the radiation efficiency and the total change in combustion amount of a combustion device using a catalyst.

発明の構成 上記目的を達するため、本発明の燃焼装置は厚手方向に
ガスを通過する多数の燃焼孔を有する耐熱材料に、白金
、パラジウム等の白金族系の触媒を担持させた燃焼体と
、前記燃焼体へ燃料ガスと空気の混合気を供給する手段
と、前記燃焼体上流面と相対する面に設けた熱透過性板
を備えてなるものである。
Structure of the Invention In order to achieve the above object, the combustion device of the present invention includes a combustion body in which a platinum group catalyst such as platinum or palladium is supported on a heat-resistant material having a large number of combustion holes through which gas passes in the thickness direction; The apparatus includes means for supplying a mixture of fuel gas and air to the combustion body, and a heat-permeable plate provided on a surface facing the upstream surface of the combustion body.

実施例の説明 以下、本発明の実施例について添付図面を参照して説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図において、1は燃焼箱であり、前後面が開口している
。2は燃焼箱1の前面開口を内側から塞ぐように設けら
れた熱透過性板、3は燃焼箱1の後面開口を内側から塞
ぐように設けられた燃焼体であり、アルミナ、シリカ、
セメント系等の耐熱材料で作られ、厚手方向に丸形、四
角形等の任意の形状の燃焼孔3aが多数形成され、表面
には白金、パラジウム等の白金属系の触媒が担持しであ
る。なお、燃焼体の触媒担持量は熱透過性板側(上流面
3b側)を犬とし、その反対ψす(下流面3c側)を小
としである。4は予混合器であり、燃料管5を通って流
入するガス燃料、又は液体燃料と送風機6により送風さ
れる空気とを混合し、予混合ガスを生成する。なお、こ
の予混合器4は液体燃料が供給される場合には気化用の
ヒータ又は霧化用装置、例えば超音波振動子等が内蔵さ
れている。7は予混合器4と燃焼箱1とを連結した予混
合管であり、予混合器4で生成された予混合ガスが予混
合管T内を通り、燃焼箱1の底面に設けられた孔9を通
り、燃焼箱1内で熱透過性板2と燃焼体3の間に供給さ
れる。1Qは燃焼体3に巻回された電熱ヒータであシ、
燃焼体3をあらかじめ所定の触媒活性温度にまで加熱す
る。11は燃焼体3の下流面3Cに対向して略平行に配
置された熱反射板であり、燃焼体3との間に排気通路が
形成されている。
In the figure, 1 is a combustion box, and the front and rear surfaces are open. 2 is a heat permeable plate provided to close the front opening of the combustion box 1 from the inside, and 3 is a combustion body provided to close the rear opening of the combustion box 1 from the inside.
It is made of a heat-resistant material such as cement, and has a large number of combustion holes 3a of arbitrary shapes such as round or square in the thickness direction, and a platinum metal catalyst such as platinum or palladium is supported on the surface. The amount of catalyst supported on the combustion body is large on the heat permeable plate side (upstream surface 3b side) and small on the opposite side ψ (downstream surface 3c side). A premixer 4 mixes the gaseous fuel or liquid fuel flowing through the fuel pipe 5 with the air blown by the blower 6 to generate a premixed gas. Note that, when liquid fuel is supplied, the premixer 4 has a built-in heater for vaporization or a device for atomization, such as an ultrasonic vibrator. 7 is a premixing tube that connects the premixer 4 and the combustion box 1, and the premixed gas generated in the premixer 4 passes through the premixing tube T and passes through the hole provided in the bottom of the combustion box 1. 9 and is supplied between the heat permeable plate 2 and the combustion body 3 in the combustion box 1 . 1Q is an electric heater wound around the combustion body 3,
The combustion body 3 is heated in advance to a predetermined catalyst activation temperature. Reference numeral 11 denotes a heat reflecting plate disposed substantially parallel to the downstream surface 3C of the combustion body 3, and an exhaust passage is formed between the heat reflection plate 11 and the combustion body 3.

以上の構成において点火時には燃焼体4を、燃焼体4に
設けられた電熱ヒータ10で予じめ所定の触媒活性温度
まで加熱する。所定温度に達した後、燃料管5より燃料
、送風機6より空気を送り、予混合器4で発生した予混
合ガスを予混合管7を通し、燃焼箱1内に供給し、燃焼
全開始させる。
In the above configuration, at the time of ignition, the combustion body 4 is heated in advance to a predetermined catalyst activation temperature by the electric heater 10 provided in the combustion body 4. After reaching a predetermined temperature, fuel is sent from the fuel pipe 5 and air is sent from the blower 6, and the premixed gas generated in the premixer 4 is supplied into the combustion box 1 through the premixing pipe 7, and combustion is started completely. .

燃焼は触媒の作用により、燃焼体3の上流面3bより始
捷り、燃焼孔3a内で燃焼しつつ、下流面3Cに至るま
でに燃焼は終了している。なお、触謀燃焼では酸化反応
はミクロ的に触媒の表層で生じている為に、いわゆるフ
レームレス燃焼をしている。従って燃焼体3の下流面3
cよりさらに下流に流れた未燃成分はいわゆる外炎がな
いためほとんど酸化しない。このために本装置において
は、反応は必ず燃焼体3の下流面3c以前に終了させな
ければならないし、予混合ガスの空気量も必ず予じめ必
要量以上の空燃比としておかなければならない。
Due to the action of the catalyst, combustion starts from the upstream surface 3b of the combustion body 3, continues to burn within the combustion hole 3a, and ends by the time it reaches the downstream surface 3C. In tactile combustion, the oxidation reaction occurs microscopically on the surface of the catalyst, resulting in so-called flameless combustion. Therefore, the downstream face 3 of the combustion body 3
The unburned components flowing further downstream from c are hardly oxidized because there is no so-called external flame. For this reason, in this apparatus, the reaction must be completed before the downstream surface 3c of the combustion body 3, and the air amount of the premixed gas must be set to an air-fuel ratio that is greater than the required amount in advance.

次に本装置が輻射効率が高く、かつ燃焼量の可変巾が犬
なる理由を第2図を用いて説明する。
Next, the reason why this device has high radiation efficiency and a wide variable range of combustion amount will be explained with reference to FIG.

予混合ガスは燃焼体3の上流面3b及び燃焼孔3aの上
流部aで燃焼する。この燃焼熱は燃焼体3を加熱し、上
流面3bより輻射熱を放出する。
The premixed gas is combusted on the upstream surface 3b of the combustion body 3 and the upstream portion a of the combustion hole 3a. This combustion heat heats the combustion body 3 and emits radiant heat from the upstream surface 3b.

更に燃焼後の排気ガス燃焼孔3aの下流部すでその熱を
燃焼体3へ伝達する。この熱によって更に上流面3bの
温度が上昇し効率的に輻射撚を放出する0燃焼孔3aの
下流部分すで熱をとられた排気は低温となって下流面3
c方向へ抜ける。又、本装置では上流面3b方向に熱透
過性板2を設けており、謳射熱は予混合ガス層及び熱透
過は板2を通過して被加熱体へ放射される。従来のシュ
バンク方式、あるいは触媒燃焼方式と全く異なる点はこ
の構造、すなわち、燃焼体3の上流面3bより輻射を得
る構成にある。燃焼体の下流面より輻射をとる従来の方
式では、高温の輻射面より、必ずその温度以上に高い排
気ガスが発生し、大きな熱量が排気温として損失してし
まう。それに対し、本装置では高温の輻射面より出た、
高温の排気ガスが熱交換により、再び輻射に変換され、
残りを低温の排気ガスとして放出する為に高い輻射効率
を得ている。
Furthermore, the heat of the exhaust gas after combustion is transferred to the combustion body 3 already downstream of the combustion hole 3a. This heat further increases the temperature of the upstream surface 3b and efficiently releases the radiant twist.
Exit in direction c. Further, in this device, a heat permeable plate 2 is provided in the direction of the upstream surface 3b, and the radiant heat passes through the premixed gas layer and the heat permeates through the plate 2, and is radiated to the object to be heated. This structure is completely different from the conventional Schwunk method or catalytic combustion method, that is, the structure obtains radiation from the upstream surface 3b of the combustion body 3. In the conventional method in which radiation is taken from the downstream surface of the combustion body, exhaust gas whose temperature is higher than that is always generated from the high-temperature radiation surface, and a large amount of heat is lost as exhaust temperature. In contrast, with this device, the radiation emitted from the high-temperature radiation surface
High-temperature exhaust gas is converted back into radiation through heat exchange,
High radiation efficiency is achieved because the remainder is released as low-temperature exhaust gas.

また、主輻射面を上流側面とし、その輻射が熱透過性板
2を通過する為に、燃焼室1内は異常に温度上昇するこ
とはない。なお、熱透過性板2には、例えば石英ガラス
、硅酸ガラス、マイカ等熱透過率の高い材料を用いてい
る。このように予混合ガスを異常に予熱することがない
為に上流面3bの温度が高温化しても逆火することはな
い。これが本装置における可変巾の増加する理由である
Furthermore, since the main radiation surface is the upstream side surface and the radiation passes through the heat-transmissive plate 2, the temperature inside the combustion chamber 1 will not rise abnormally. The heat transmitting plate 2 is made of a material with high heat transmittance, such as quartz glass, silicate glass, or mica. Since the premixed gas is not preheated abnormally in this way, flashback will not occur even if the temperature of the upstream surface 3b increases. This is the reason why the variable width in this device increases.

ちなみに、触媒面が高温となっても予混合ガスは容易に
発火するものではない。よく知られているように予混合
ガスを高温に加熱すれば自発着火する。又混合ガスに火
炎が触れれば引火する。触媒はフレームレス燃焼をする
為に、予混合ガスを発火させることはあっても引火させ
ることはないものであるが、特に本装置に用いている白
金族系の触媒は触媒面が高温となっても、これに触れる
予混合ガスを発火させにくいものである。これは触媒の
発火抑制作用として知られている事実である。
Incidentally, even if the catalyst surface becomes high temperature, the premixed gas does not easily ignite. As is well known, if a premixed gas is heated to a high temperature, it will spontaneously ignite. Also, if a flame comes into contact with the mixed gas, it will catch fire. Because the catalyst performs flameless combustion, it may ignite the premixed gas but not cause it to catch fire. However, the platinum group catalyst used in this device in particular has a high temperature on the catalyst surface. However, it is difficult to ignite the premixed gas that comes into contact with it. This is a fact known as the ignition suppressing effect of catalysts.

このような効果を可変幅の拡大の一因である。このよう
に、本装置は予混合ガスが過熱されない構成であり、触
媒の発火抑制の構成で逆火しにくく、更に低温で触媒活
性が保たれる白金族系の触媒の作用により大燃焼量から
小燃焼量の可変幅を拡大できたものである。
This effect is one of the reasons for the expansion of the variable range. In this way, this device has a structure that prevents the premixed gas from being overheated, and the structure that suppresses ignition of the catalyst makes it difficult to cause backfire.Furthermore, the action of the platinum group catalyst, which maintains catalytic activity at low temperatures, reduces the amount of combustion. This allows the variable range of small combustion amount to be expanded.

また燃焼体3での燃焼は予混合ガスの濃度、速度の如何
にかかわらず、触媒の上流面3bより開始することは前
述したが、もし流速が早くなると、次第に燃焼は下流面
3C方向で激しくなってくる。
Furthermore, as mentioned above, combustion in the combustion body 3 starts from the upstream surface 3b of the catalyst regardless of the concentration and speed of the premixed gas, but if the flow speed increases, combustion will gradually become more intense in the direction of the downstream surface 3C. It's coming.

酸化反応はむろん上流で予混合ガスと触媒が接触した時
より始まるが、主な反応帯は流速に従って下流へ移動す
る傾向をもつ。これらの現象は燃焼孔3aの流速が予混
合ガスの火炎伝播速度超えた時から生じるものである。
The oxidation reaction naturally begins upstream when the premixed gas and catalyst come into contact, but the main reaction zone tends to move downstream according to the flow velocity. These phenomena occur when the flow velocity of the combustion hole 3a exceeds the flame propagation velocity of the premixed gas.

しかし、本装置では前述の如く逆火を起しにくい構成で
あるので逆火防止の為に速い流速で与える必要は全くな
い。そして、燃焼孔3a内の流速をその予混合気のもつ
火炎伝播速度より小とし、主燃焼域を上流面3bとする
ことにより高輻射率とすることができる。一般的にはこ
のような高温面に再燃焼性予混合ガスが触れれば発火、
この場合には逆火といわれる現象を生じ、装置は極めて
危険な状態になるが、前述の通り本装置では極めて高い
密度で燃焼しない限り、このようなことはない。従って
低流速を与えて上流面3bを高温とし、熱交換作用によ
り高い輻射効率が得られる。なお、上述の燃焼孔3aの
混合気流速は混合気量を燃焼体3の燃焼孔3aの平均面
積で除した値を示す。
However, as described above, this device has a configuration that makes it difficult to cause flashback, so there is no need to apply a high flow rate to prevent flashback. A high emissivity can be achieved by making the flow velocity in the combustion hole 3a smaller than the flame propagation velocity of the premixture, and by setting the main combustion region at the upstream surface 3b. In general, if re-combustible premixed gas comes into contact with such a high-temperature surface, it will ignite.
In this case, a phenomenon called backfire occurs and the device becomes extremely dangerous, but as mentioned above, this does not occur with this device unless it burns at an extremely high density. Therefore, by providing a low flow rate, the upstream surface 3b is heated to a high temperature, and high radiation efficiency can be obtained due to the heat exchange action. Note that the above-mentioned air-fuel mixture flow rate of the combustion hole 3a is a value obtained by dividing the amount of air-fuel mixture by the average area of the combustion hole 3a of the combustion body 3.

また燃焼体3の触媒の担持量の分布を上流に犬とし、下
流に小としたもので、触媒燃焼を行う部分が主に上流面
3b及び燃焼孔3aの上流方向のみで行われる。従って
、主に排気熱を回収することを目的とした燃焼孔3aの
下流には基本的に触媒は不要である。従って上流方向の
みに触媒を用いれば、触媒量を節約できる。あるいは同
一量の触媒を用いるならば、上流側に犬〈担持させた方
がより触媒燃焼の特性は向上する。下流方向には基本的
には触媒は不要であるが、上流で完全に燃焼しきれなか
った微量のC○等の未燃成分を浄化する目的で小量担持
させた方が、高輻射率とは異担持量で十分である。
Further, the distribution of the amount of catalyst supported in the combustion body 3 is narrower in the upstream and smaller in the downstream, and catalytic combustion is performed mainly only in the upstream face 3b and the upstream direction of the combustion hole 3a. Therefore, there is basically no need for a catalyst downstream of the combustion hole 3a whose main purpose is to recover exhaust heat. Therefore, by using a catalyst only in the upstream direction, the amount of catalyst can be saved. Alternatively, if the same amount of catalyst is used, the catalytic combustion characteristics will be improved if the catalyst is supported on the upstream side. Basically, a catalyst is not required in the downstream direction, but it is better to support a small amount of it to purify unburned components such as trace amounts of C○ that were not completely combusted upstream. Different loadings are sufficient.

また、燃焼体3の上流面3bより放射する輻射熱は、熱
透過性板2を通過して被加熱物を加温しているが、輻射
の一部は熱透過性板2に吸収あるいは反射して、逆方向
すなわち下流方向へ向かう。
In addition, the radiant heat emitted from the upstream surface 3b of the combustion body 3 passes through the heat-transmissive plate 2 and heats the object to be heated, but a part of the radiation is absorbed or reflected by the heat-transparent plate 2. and head in the opposite direction, that is, downstream.

この逆方向へ向って燃焼孔3aを介して放射する輻射、
及び燃焼体3の下流面3cより発生する輻射は被加熱物
と逆方向へ向っているわけである。
Radiation radiated in the opposite direction through the combustion hole 3a,
The radiation generated from the downstream surface 3c of the combustion body 3 is directed in the opposite direction to the object to be heated.

しかし、燃焼体3と略平行に設けられた熱反射板11に
より下流方向へ向った輻射を再び前方へ燃焼孔3aを介
して戻す。この戻った熱の一部はやはり熱透過性板2、
燃焼体3、熱反射板110間で相互反射を繰り返すが、
熱透過性板2が常に輻射の一部を透過させる為、燃焼箱
1内の温度が異常に高くならず逆火は起しにくい。又、
熱反射板11は、アルミ、ステンレス等の鏡面であって
、反射率の高い材料、あるいは吸収率の高い材料であっ
て裏面より熱を放散しない構成としているものでもよく
、下流方向へ向った輻射を反射ないし2次輻射で上流へ
戻す機能るもつものであればよい。この熱反射板11に
より輻射は前方へ集中的に放出され被加熱物を効果的に
加温する。
However, due to the heat reflecting plate 11 provided substantially parallel to the combustion body 3, the radiation directed downstream is returned to the front through the combustion hole 3a. A part of this returned heat is also transferred to the heat transmitting plate 2,
Although mutual reflection is repeated between the combustion body 3 and the heat reflection plate 110,
Since the heat permeable plate 2 always transmits a portion of the radiation, the temperature inside the combustion box 1 does not become abnormally high and backfire is unlikely to occur. or,
The heat reflecting plate 11 may be a mirror surface made of aluminum, stainless steel, etc., and may be made of a material with high reflectivity or a material with high absorption rate, and is configured not to dissipate heat from the back surface, so that it does not dissipate heat toward the downstream direction. Any material that has the function of returning upstream energy by reflection or secondary radiation may be used. Radiation is emitted forward in a concentrated manner by the heat reflecting plate 11, effectively heating the object to be heated.

なお、熱透過性板11はガラス等の熱膨張率の低い、か
つ強度の弱い透過性材料よりなり、例えば金属製の燃焼
箱1との気密を保持することは難しく、完全にする為に
はシール材等を多量に使用しなくてはならない。かっオ
ーシールが悪いと予混合ガスが漏れ、臭気の発生等、衛
生上具合の悪いものとなるが、第3図の如く排気経路1
2による自然ドラフト力によって燃焼箱1内を負圧とし
たり、第4図の如く送風機6の吸引力によって燃焼箱1
内を負圧としたりすることによって多少の隙間があって
も予混合ガスが漏れない。
Note that the heat permeable plate 11 is made of a transparent material with a low coefficient of thermal expansion and weak strength such as glass, and it is difficult to maintain airtightness with the combustion box 1 made of metal, for example. A large amount of sealing material, etc. must be used. If the O-seal is bad, the premixed gas will leak, causing odor and other hygienic conditions.
The pressure inside the combustion box 1 is made negative by the natural draft force caused by
By creating a negative pressure inside, the premixed gas will not leak even if there are some gaps.

発明の効果 以上の説明から明らかなように本発明によれば極めて高
い輻射効率が得られ、従って赤外線による快適な暖房効
果、あるいは強力な乾燥効果が得られ、また、燃焼量の
可変幅が広く、必要に応じて燃焼量を調節しうる利便性
、排気温か低いことにする安全性、等が向上する。
Effects of the Invention As is clear from the above explanation, according to the present invention, an extremely high radiation efficiency can be obtained, and therefore a comfortable heating effect or a strong drying effect can be obtained using infrared rays, and the combustion amount can be varied over a wide range. , the convenience of adjusting the combustion amount as needed, the safety of lowering the exhaust temperature, etc. are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す燃焼装置の一部欠截斜
視図、第2図aは同要部断面図、第2図すは第2図aの
A部における拡大断面図、第3図は同燃焼装置の他の要
部断面図、第十図は本発明の他の実施例における要部断
面図である。 2・・・・・熱透過性板、3 ・・燃焼体、3a・・・
・・・燃焼孔、3b・・・・・・上流面、3C・・・・
・・下流面、12・・・・・・熱反射板。
FIG. 1 is a partially cutaway perspective view of a combustion device showing an embodiment of the present invention, FIG. 2 a is a sectional view of the same essential part, and FIG. FIG. 3 is a sectional view of another main part of the same combustion apparatus, and FIG. 10 is a sectional view of the main part of another embodiment of the present invention. 2... Heat permeable plate, 3... Combustion body, 3a...
... Combustion hole, 3b... Upstream surface, 3C...
...Downstream surface, 12...Heat reflecting plate.

Claims (5)

【特許請求の範囲】[Claims] (1)多数の燃焼孔を有する耐熱材料に、白金族系の触
媒を担持させた燃焼体と、前記燃焼体へ燃料と空気の混
合気を供給する手段と、前記燃焼体上流面と相対する面
に設けた熱透過性板とを備えた燃焼装置。
(1) A combustion body in which a platinum group catalyst is supported on a heat-resistant material having a large number of combustion holes; a means for supplying a mixture of fuel and air to the combustion body; A combustion device equipped with a heat permeable plate provided on the surface.
(2)燃焼体の燃焼孔における混合気の流速を、混合気
の燃焼速度より低くした特許請求の範囲第1項記載の燃
焼装置。
(2) The combustion device according to claim 1, wherein the flow velocity of the mixture in the combustion hole of the combustion body is lower than the combustion velocity of the mixture.
(3)燃焼体の触媒担持量を上流面側に大、下流面側に
小とした特許請求の範囲第1項または第2項記載の燃焼
装置。
(3) The combustion device according to claim 1 or 2, wherein the amount of catalyst supported on the combustion body is large on the upstream side and small on the downstream side.
(4)燃焼体の下流面と略平行に熱反射板を設け、両者
の間に排気通路を形成した特許請求の範囲第1項記載の
燃焼装置。
(4) The combustion device according to claim 1, wherein a heat reflecting plate is provided substantially parallel to the downstream surface of the combustion body, and an exhaust passage is formed between the two.
(5)混合気の経路を大気に対して負圧とする構成とし
た特許請求の範囲第1項記載の燃焼装置。
(5) The combustion device according to claim 1, wherein the air-fuel mixture path is configured to have a negative pressure with respect to the atmosphere.
JP18675084A 1984-09-06 1984-09-06 Combustion device Granted JPS6166009A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18675084A JPS6166009A (en) 1984-09-06 1984-09-06 Combustion device
CA000490057A CA1254122A (en) 1984-09-06 1985-09-05 Burner
US06/772,937 US4676737A (en) 1984-09-06 1985-09-05 Burner
AU47160/85A AU558647B2 (en) 1984-09-06 1985-09-06 Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18675084A JPS6166009A (en) 1984-09-06 1984-09-06 Combustion device

Publications (2)

Publication Number Publication Date
JPS6166009A true JPS6166009A (en) 1986-04-04
JPH0128848B2 JPH0128848B2 (en) 1989-06-06

Family

ID=16193986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18675084A Granted JPS6166009A (en) 1984-09-06 1984-09-06 Combustion device

Country Status (1)

Country Link
JP (1) JPS6166009A (en)

Also Published As

Publication number Publication date
JPH0128848B2 (en) 1989-06-06

Similar Documents

Publication Publication Date Title
US4519770A (en) Firetube boiler heater system
JPH1026315A (en) Catalytic combustor and method for catalytic combustion
US4676737A (en) Burner
JPS6166009A (en) Combustion device
JPH0933007A (en) Combustion device
GB2080700A (en) Catalytic combustion system with fiber matrix burner
JP2567992B2 (en) Catalytic combustion device
JP3678855B2 (en) Catalytic combustion device
JPS61246512A (en) Burner
JPH1122924A (en) Catalystic combustion device
RU2137041C1 (en) Heating device
JP3524722B2 (en) Catalytic combustion device
JPS63226509A (en) Catalytic combustion device
JP2506943B2 (en) Catalytic combustion device and combustion catalyst body
JPS6186508A (en) Combustion device
JPS58136905A (en) Burner
JP2655939B2 (en) Catalytic combustion device
JP3860262B2 (en) Catalytic combustion device
JPH08587Y2 (en) Catalytic combustion device
JP2539573Y2 (en) Catalytic combustion device
JPH01306712A (en) Device for catalytic combustion
JPS62297615A (en) Burning device
JPS61140715A (en) Catalyst type combustion appliance
JP2001065805A (en) Combustion device
JPS61291820A (en) Catalytic burner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees