JP3678855B2 - Catalytic combustion device - Google Patents

Catalytic combustion device Download PDF

Info

Publication number
JP3678855B2
JP3678855B2 JP24005296A JP24005296A JP3678855B2 JP 3678855 B2 JP3678855 B2 JP 3678855B2 JP 24005296 A JP24005296 A JP 24005296A JP 24005296 A JP24005296 A JP 24005296A JP 3678855 B2 JP3678855 B2 JP 3678855B2
Authority
JP
Japan
Prior art keywords
catalyst
catalyst body
infrared
catalytic combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24005296A
Other languages
Japanese (ja)
Other versions
JPH1089634A (en
Inventor
龍夫 藤田
猛 富澤
次郎 鈴木
浩直 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24005296A priority Critical patent/JP3678855B2/en
Publication of JPH1089634A publication Critical patent/JPH1089634A/en
Application granted granted Critical
Publication of JP3678855B2 publication Critical patent/JP3678855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gas Burners (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として、家庭用、または業務用の給湯、暖房に適用する触媒燃焼装置に関するものである。
【0002】
【従来の技術】
白金やパラジウム等の貴金属触媒をコージライト等の坦体に担持した触媒体を触媒燃焼させ、熱交換部を設けて燃焼熱を暖房等に利用する触媒燃焼装置が提案されている(例えば、特願平4−302347)。ハニカム状の触媒体の混合気上流側に触媒体からの輻射を受けるように熱交換部を設置しており、触媒燃焼開始時は予熱バーナで火炎燃焼させて触媒体を活性化温度以上に加熱した後、混合気の供給を停止して予熱バーナの火炎を消炎させ、再び、混合気を供給して触媒燃焼させていた。
【0003】
【発明が解決しようとする課題】
従来例の触媒燃焼装置には以下に説明する課題がある。まず、触媒燃焼は燃焼温度が低いため、熱交換量を増加させようとすると、触媒体が大きくなり、機器全体として小型化を実現し難かった。触媒体が大きくなると、特に低燃焼量領域で燃焼安定性が不十分となりやすく、燃焼量可変範囲を拡大し難くなる。また、触媒燃焼開始時に予熱バーナで火炎燃焼させた後、混合気の供給を停止して予熱バーナの火炎を消炎させ、再び、混合気を供給して触媒燃焼させる方法は制御が複雑になりやすいとともに、火炎燃焼時に窒素酸化物(NOx)が発生するという課題があった。
【0004】
本発明は、伝熱性能の高効率化、機器の小型化が可能となり、低コスト化を図ることができ、また、広範囲な輻射暖房が可能となり、放射効率も向上する触媒燃焼装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するため、第一の手段として、燃料と空気の混合ガス供給部と、混合ガス供給部の流れ方向下流に設けた通気性を有する触媒体と、触媒体の混合気の流れ方向上流側に触媒体と対面して設けた赤外線透過体と、触媒体に赤外線透過体を介して対面する熱交換部を有する輻射受熱体と、赤外線透過体と輻射受熱体の間に形成され、触媒体を通過した燃焼ガスを流すように触媒体の下流と連通する排気通路を設けた触媒燃焼装置とする。
【0006】
第二の手段として、第一の手段において、赤外線透過体がなく、赤外線吸収体を設けた触媒燃焼装置とする。
【0007】
第三の手段として、燃料と空気の混合ガス供給部と、混合ガス供給部の流れ方向下流に設けた通気性を有する2枚の平面状の触媒体と、触媒体の外側に設けた2つの赤外線透過体、または赤外線吸収体と、触媒体と赤外線透過体、または赤外線吸収体の間に形成した2つの混合気経路を設けた触媒燃焼装置とする。
【0008】
第四の手段として、触媒体に赤外線透過体、または赤外線吸収体を介して対面する熱交換部を有する輻射受熱体と、赤外線透過体、または赤外線吸収体と輻射受熱体の間に形成され、触媒体の下流と連通する排気経路を設けた第三の手段の触媒燃焼装置とする。
【0009】
第五の手段として、2枚の平面状の触媒体と、2枚の触媒体の下流側に位置させた補助触媒体と、2枚の触媒体と補助触媒体の間に位置させた電気ヒーターを設け、燃焼開始時に電気ヒーターに通電し、触媒体及び補助触媒体を加熱した後、電気ヒーターへの通電を停止し、所定時間後、混合気を供給して触媒燃焼を開始する第三、第四の触媒燃焼装置とする。
【0010】
【発明の実施の形態】
(実施の形態1)
以下、本発明の実施の形態について図面を参照して説明する。図1は実施の形態1の断面図である。実施の形態1の触媒燃焼装置の主要部は、触媒体1、触媒体支持2、固定板3、燃焼室壁4、電気ヒーター5、補助触媒体6、補助触媒体支持7、輻射受熱体8、熱交換部9、赤外線透過体10、赤外線透過体支持11、排気経路12、排気孔13で構成している。触媒体1、補助触媒体6は通気性を有するコージライトハニカムを担体とし、パラジウム、白金等の貴金属系触媒を担持したものである。
【0011】
触媒体1は2枚設けられ、混合気上流側が外側になるように所定距離を設けて傾斜して対向させている。補助触媒体6は触媒体1の下流側に設けられ、電気ヒーター5は触媒体1と補助触媒体6の間に位置させている。輻射受熱体8は触媒体1の上流側に輻射を受けやすいように触媒体1に対向して設けており、輻射受熱体8には熱交換部9を設置している。赤外線透過体10はガラスで形成しており、赤外線透過体10と複写受熱体8との間を排気経路12としている。触媒体1の上流側には、混合気経路14、仕切板15、混合気噴出孔16、混合ガス供給部17を設けている。
【0012】
次に、本実施の形態の動作について説明を行なう。まず、燃焼開始時には電気ヒーター5に通電し、触媒体1、または補助触媒体6を活性化温度以上に加熱した後、電気ヒーター5への通電を停止し、電気ヒーター5の表面温度を着火温度未満とした後、混合気を触媒体1へ供給して触媒燃焼させる。混合気は混合ガス供給部17を通り、混合気噴出孔16から噴出される。触媒燃焼時に触媒体1の上流面が赤熱され、上流側に放射エネルギーが射出される。この放射エネルギーは赤外線透過体10を透過し、輻射受熱体8で吸収されて再び熱エネルギーに変換されることにより、触媒体1から輻射受熱体8へ放射伝熱される。その後、熱伝導により、輻射受熱体8に設けた熱交換部9で被加熱流体へ伝熱される。放射伝熱は混合気の流れを乱さないため、触媒体1上流面における燃焼反応が阻害されることがなく、被加熱流体への熱交換量を増加させても燃焼安定性を確保することができる。
【0013】
触媒体1を通過した燃焼ガスは補助触媒体6で浄化された後、赤外線透過体10の外側の排気経路12を通り、排気孔13から排出される。排気経路12では、燃焼ガスの熱が対流熱伝達により、輻射受熱体8へ伝熱される。すなわち、輻射受熱体8への伝熱は、触媒体1からの放射伝熱と燃焼ガスからの対流熱伝達が共存する形態をとることになる。この構成により、伝熱性能の高効率化、機器の小型化が可能となる。
【0014】
このように、混合ガス供給部17と、混合ガス供給部17の流れ方向下流に設けた通気性を有する2枚の平面状の触媒体1と、触媒体1の外側に設けた2つの赤外線透過体10と、触媒体1と赤外線透過体10の間に形成した2つの混合気経路14を設けることにより、触媒燃焼装置として、小型化を図ることができるとともに、機器の前面と後面に放射エネルギーを射出するため、広範囲な輻射暖房が可能となる。さらに、触媒体1を2枚、対向させることにより、触媒体1下流側を保温領域とし、排気損失や放熱損失を低減して触媒体1上流側への放射エネルギーを増大させることができるため、放射効率が向上する。
【0015】
触媒体1に赤外線透過体10を介して対面する熱交換部9を有する輻射受熱体8と、赤外線透過体10と輻射受熱体8の間に形成され、触媒体1の下流と連通する排気経路12を設け、2枚の平面状の触媒体1と、触媒体1の外側に設けた2つの赤外線透過体10と、触媒体1と赤外線透過体10の間に形成した2つの混合気経路14を設けることにより、高負荷タイプの熱交換一体型触媒燃焼器を実現することができる。
【0016】
触媒体1を傾斜して対向させることにより、混合気の濃度分布、流速分布を改善し、触媒反応を均一化することができる。浄化用としての補助触媒体6の設置も容易となる。
【0017】
2枚の平面状の触媒体1と、2枚の触媒体1の下流側に位置させた補助触媒体6と、2枚の触媒体1と補助触媒体6の間に位置させた電気ヒーター5を設け、燃焼開始時に電気ヒーター5に通電し、触媒体1及び補助触媒体6を加熱した後、電気ヒーター5への通電を停止し、所定時間後、混合気を供給して触媒燃焼を開始することにより、電気ヒーター5近傍での異常発火やNOxの発生もなく、触媒体1と補助触媒体6の間を保温領域とし、立ち上げ時間を短縮することができる。さらに、立ち上げ時には、触媒体1の上流温度は上昇しないため、輻射受熱体8へ熱が移動することもなく、電気ヒーター5の熱を効率良く、立ち上げに活かすことができる。
【0018】
輻射受熱体8を金属板とし、受熱面側を高輻射材で被覆することにより、触媒体1からの放射伝熱効率を一層、向上させることができる。
【0019】
輻射受熱体8の排気経路側に排気熱を受熱する突出部(図示せず)を形成することにより、伝熱面積を増加させて対流熱伝達性能を高め、高効率化を図ることができる。
【0020】
(実施の形態2)
次に、本発明の実施の形態2について説明する。図2は実施の形態2の断面図である。実施の形態2の触媒燃焼装置には赤外線透過体10がなく、赤外線吸収体18を設けている。赤外線吸収体18としては、表面を酸化させたステンレス鋼を用いているが、輻射率が高く、耐熱性が優れているものであれば良い。
【0021】
実施の形態2では、触媒体1からの放射エネルギーを赤外線吸収体18で吸収した後、赤外線吸収体18からの放射エネルギーを輻射受熱体8で吸収し、熱エネルギーに変換するため、触媒体1から赤外線吸収体18への放射伝熱と、赤外線吸収体18から輻射受熱体8への放射伝熱が存在することになる。赤外線透過体10(ガラス)でも、放射エネルギーを100%透過できるわけではないため、赤外線吸収体18を高温にすることにより、触媒体1から輻射受熱体8への放射伝熱効率を赤外線透過体10を用いた場合に近づけることも可能である。実施の形態2では、赤外線透過体10(ガラス)を設置する必要がないため、低コスト化を図りやすくなる。
【0022】
赤外線吸収体18を金属板とし、両面を高輻射材で被覆することにより、触媒体1から輻射受熱体8への放射伝熱効率を一層、向上させることができる。
【0023】
【発明の効果】
以上述べたところから明らかなように、本発明の触媒燃焼装置によれば、次のような効果を得ることができる。
【0024】
触媒体の混合気上流側に赤外線透過体、排気経路を介して、輻射受熱体を設けることにより、触媒体からの放射伝熱と燃焼ガスからの対流熱伝達が共存する伝熱形態をとり、伝熱性能の高効率化、機器の小型化が可能となる。
【0025】
赤外線透過体(ガラス)を用いずに赤外線吸収体により、低コスト化を図ることもできる。
【0026】
触媒体を2枚、混合気上流側が外側になるように所定距離を設けて対向させることにより、小型化を図ることができるとともに、機器の前面と後面に放射エネルギーを射出するため、広範囲な輻射暖房が可能となり、放射効率も向上する。
【0027】
2枚の触媒体と補助触媒体の間に電気ヒーターを設け、燃焼開始時に電気ヒーターに通電し、触媒体、または補助触媒体を加熱した後、電気ヒーターへの通電を停止し、所定時間後、混合気を供給して触媒燃焼させることにより、電気ヒーター近傍での異常発火やNOxの発生もなく、触媒体と補助触媒体の間を保温領域とし、立ち上げ時間を短縮することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の触媒燃焼装置の断面図
【図2】本発明の実施の形態2の触媒燃焼装置の断面図
【符号の説明】
1 触媒体
5 電気ヒーター
6 補助触媒体
8 輻射受熱体
9 熱交換部
10 赤外線透過体
12 排気経路
18 赤外線吸収体
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a catalytic combustion apparatus applied to domestic or commercial hot water supply and heating.
[0002]
[Prior art]
There has been proposed a catalytic combustion apparatus in which a catalyst body in which a noble metal catalyst such as platinum or palladium is supported on a carrier such as cordierite is catalytically combusted and a heat exchange part is provided to use the combustion heat for heating or the like (for example, Application No. 4-302347). A heat exchange unit is installed upstream of the mixture of honeycomb-shaped catalyst bodies to receive radiation from the catalyst bodies. At the start of catalytic combustion, the catalyst bodies are heated to a temperature higher than the activation temperature by burning with a preheating burner. After that, the supply of the air-fuel mixture was stopped, the flame of the preheating burner was extinguished, and the air-fuel mixture was supplied again to cause catalytic combustion.
[0003]
[Problems to be solved by the invention]
The conventional catalytic combustion apparatus has the following problems. First, since the combustion temperature is low in the catalytic combustion, when trying to increase the amount of heat exchange, the catalyst body becomes large and it is difficult to realize downsizing of the entire device. When the catalyst body becomes large, the combustion stability tends to be insufficient, particularly in the low combustion amount region, and it becomes difficult to expand the combustion amount variable range. In addition, after the flame combustion is performed by the preheating burner at the start of the catalytic combustion, the supply of the air-fuel mixture is stopped to extinguish the flame of the preheating burner, and the air-fuel mixture is supplied again to perform the catalytic combustion, so that the control tends to be complicated. In addition, there is a problem that nitrogen oxides (NOx) are generated during flame combustion.
[0004]
The present invention provides a catalytic combustion apparatus that can increase the efficiency of heat transfer performance, reduce the size of equipment, reduce costs, enable radiant heating over a wide range, and improve radiation efficiency. It is for the purpose.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides, as a first means, a mixed gas supply part of fuel and air, a gas-permeable catalyst body provided downstream in the flow direction of the mixed gas supply part, and a mixed gas of the catalyst body An infrared transmitting body provided facing the catalyst body on the upstream side in the flow direction, a radiation heat receiving body having a heat exchange section facing the catalyst body via the infrared transmitting body, and between the infrared transmitting body and the radiation heat receiving body The catalytic combustion apparatus is provided with an exhaust passage communicating with the downstream of the catalyst body so that the combustion gas formed and passed through the catalyst body flows .
[0006]
As a second means, there is provided a catalytic combustion apparatus provided with an infrared absorber in the first means without an infrared transmitting body.
[0007]
As a third means, a mixed gas supply part of fuel and air, two planar catalyst bodies having air permeability provided downstream in the flow direction of the mixed gas supply part, and two provided on the outside of the catalyst body The catalyst combustion apparatus is provided with an infrared transmitting body or an infrared absorbing body and two air-fuel mixture paths formed between the catalyst body and the infrared transmitting body or the infrared absorbing body.
[0008]
As a fourth means, the catalyst body is formed between an infrared transmitting body or a radiation heat receiving body having a heat exchanging portion facing through the infrared absorbing body, and between the infrared transmitting body or the infrared absorbing body and the radiation receiving body, A catalytic combustion apparatus of a third means provided with an exhaust path communicating with the downstream side of the catalyst body is provided.
[0009]
As fifth means, two planar catalyst bodies, an auxiliary catalyst body positioned on the downstream side of the two catalyst bodies, and an electric heater positioned between the two catalyst bodies and the auxiliary catalyst body The electric heater is energized at the start of combustion, the catalyst body and the auxiliary catalyst body are heated, the energization to the electric heater is stopped, and after a predetermined time, the air-fuel mixture is supplied to start catalytic combustion. A fourth catalytic combustion apparatus is assumed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the first embodiment. The main parts of the catalytic combustion apparatus of the first embodiment are a catalyst body 1, a catalyst body support 2, a fixed plate 3, a combustion chamber wall 4, an electric heater 5, an auxiliary catalyst body 6, an auxiliary catalyst body support 7, and a radiation heat receiving body 8. , A heat exchanging section 9, an infrared transmitting body 10, an infrared transmitting body support 11, an exhaust path 12, and an exhaust hole 13. The catalyst body 1 and the auxiliary catalyst body 6 are made by supporting a noble metal catalyst such as palladium or platinum using a cordierite honeycomb having air permeability as a carrier.
[0011]
Two catalyst bodies 1 are provided, and are inclined to face each other with a predetermined distance so that the upstream side of the air-fuel mixture is on the outside. The auxiliary catalyst body 6 is provided on the downstream side of the catalyst body 1, and the electric heater 5 is positioned between the catalyst body 1 and the auxiliary catalyst body 6. The radiation heat receiving body 8 is provided on the upstream side of the catalyst body 1 so as to face the catalyst body 1 so as to easily receive radiation, and the heat receiving section 8 is provided with a heat exchanging portion 9. The infrared transmitting body 10 is made of glass, and an exhaust path 12 is provided between the infrared transmitting body 10 and the copy heat receiving body 8. On the upstream side of the catalyst body 1, an air-fuel mixture path 14, a partition plate 15, an air-fuel mixture injection hole 16, and a gas mixture supply unit 17 are provided.
[0012]
Next, the operation of the present embodiment will be described. First, the electric heater 5 is energized at the start of combustion, the catalyst body 1 or the auxiliary catalyst body 6 is heated to the activation temperature or higher, and then the electric power to the electric heater 5 is stopped, and the surface temperature of the electric heater 5 is set to the ignition temperature. After making it less than, the air-fuel mixture is supplied to the catalyst body 1 and catalytic combustion is performed. The air-fuel mixture passes through the gas mixture supply section 17 and is ejected from the air-fuel mixture ejection hole 16. At the time of catalytic combustion, the upstream surface of the catalyst body 1 is heated red, and radiant energy is emitted upstream. This radiant energy passes through the infrared transmitting body 10, is absorbed by the radiant heat receiving body 8, and is converted into thermal energy again, whereby radiant heat is transferred from the catalyst body 1 to the radiant heat receiving body 8. Thereafter, heat is transferred to the fluid to be heated by the heat exchanging portion 9 provided in the radiation heat receiving body 8 by heat conduction. Since the radiant heat transfer does not disturb the flow of the air-fuel mixture, the combustion reaction at the upstream surface of the catalyst body 1 is not hindered, and the combustion stability can be ensured even if the amount of heat exchange with the heated fluid is increased. it can.
[0013]
The combustion gas that has passed through the catalyst body 1 is purified by the auxiliary catalyst body 6, passes through the exhaust passage 12 outside the infrared transmitting body 10, and is discharged from the exhaust hole 13. In the exhaust path 12, the heat of the combustion gas is transferred to the radiation heat receiving body 8 by convective heat transfer. That is, the heat transfer to the radiation heat receiving body 8 takes a form in which the radiant heat transfer from the catalyst body 1 and the convective heat transfer from the combustion gas coexist. With this configuration, it is possible to increase the efficiency of heat transfer performance and reduce the size of the device.
[0014]
As described above, the mixed gas supply unit 17, the two planar catalyst bodies 1 having air permeability provided downstream in the flow direction of the mixed gas supply unit 17, and the two infrared transmissions provided outside the catalyst body 1. By providing the body 10 and the two air-fuel mixture paths 14 formed between the catalyst body 1 and the infrared transmitting body 10, the catalytic combustion apparatus can be reduced in size and radiant energy can be applied to the front and rear surfaces of the apparatus. In this way, a wide range of radiant heating is possible. Furthermore, by making two catalyst bodies 1 face each other, the downstream side of the catalyst body 1 can be used as a heat retaining region, and exhaust energy and heat dissipation loss can be reduced to increase the radiation energy to the upstream side of the catalyst body 1, Radiation efficiency is improved.
[0015]
A radiation heat receiving body 8 having a heat exchanging portion 9 facing the catalyst body 1 via the infrared transmission body 10 and an exhaust path formed between the infrared transmission body 10 and the radiation heat reception body 8 and communicating with the downstream of the catalyst body 1 12, two planar catalyst bodies 1, two infrared transmission bodies 10 provided outside the catalyst body 1, and two air-fuel mixture paths 14 formed between the catalyst body 1 and the infrared transmission body 10. By providing the above, it is possible to realize a high load type heat exchange integrated catalytic combustor.
[0016]
By making the catalyst body 1 incline and face each other, the concentration distribution and flow velocity distribution of the air-fuel mixture can be improved and the catalytic reaction can be made uniform. Installation of the auxiliary catalyst body 6 for purification is also facilitated.
[0017]
Two planar catalyst bodies 1, an auxiliary catalyst body 6 positioned downstream of the two catalyst bodies 1, and an electric heater 5 positioned between the two catalyst bodies 1 and the auxiliary catalyst body 6 The electric heater 5 is energized at the start of combustion, the catalyst body 1 and the auxiliary catalyst body 6 are heated, the energization to the electric heater 5 is stopped, and after a predetermined time, an air-fuel mixture is supplied to start catalytic combustion By doing so, there is no abnormal ignition in the vicinity of the electric heater 5 or generation of NOx, so that the temperature can be kept between the catalyst body 1 and the auxiliary catalyst body 6 and the start-up time can be shortened. Furthermore, since the upstream temperature of the catalyst body 1 does not rise at the time of start-up, heat does not move to the radiation heat receiving body 8, and the heat of the electric heater 5 can be utilized efficiently for start-up.
[0018]
By using the radiation heat receiving body 8 as a metal plate and covering the heat receiving surface side with a high radiation material, the radiation heat transfer efficiency from the catalyst body 1 can be further improved.
[0019]
By forming a protrusion (not shown) that receives the exhaust heat on the exhaust path side of the radiation heat receiver 8, the heat transfer area can be increased to improve the convective heat transfer performance and to increase the efficiency.
[0020]
(Embodiment 2)
Next, a second embodiment of the present invention will be described. FIG. 2 is a cross-sectional view of the second embodiment. The catalytic combustion apparatus of the second embodiment does not have the infrared transmitting body 10 but is provided with an infrared absorbing body 18. As the infrared absorber 18, stainless steel having an oxidized surface is used, but any material having a high emissivity and excellent heat resistance may be used.
[0021]
In Embodiment 2, after the radiation energy from the catalyst body 1 is absorbed by the infrared absorber 18, the radiation energy from the infrared absorber 18 is absorbed by the radiation heat receiving body 8 and converted into thermal energy. There is radiant heat transfer from the infrared absorber 18 to the infrared absorber 18 and radiant heat transfer from the infrared absorber 18 to the radiation heat receiver 8. Even the infrared transmitting body 10 (glass) does not transmit 100% of the radiant energy. Therefore, by increasing the temperature of the infrared absorbing body 18, the efficiency of radiant heat transfer from the catalyst body 1 to the radiation heat receiving body 8 can be increased. It is also possible to approach the case of using. In Embodiment 2, since it is not necessary to install the infrared transmitting body 10 (glass), it becomes easy to achieve cost reduction.
[0022]
Radiation heat transfer efficiency from the catalyst body 1 to the radiation heat receiving body 8 can be further improved by using the infrared absorber 18 as a metal plate and covering both surfaces with a high radiation material.
[0023]
【The invention's effect】
As is clear from the above description, according to the catalytic combustion apparatus of the present invention, the following effects can be obtained.
[0024]
By providing a radiation heat receiver on the upstream side of the air-fuel mixture of the catalyst body via an infrared transmission body and an exhaust path, a heat transfer form in which radiant heat transfer from the catalyst body and convective heat transfer from the combustion gas coexist, High efficiency in heat transfer performance and downsizing of equipment are possible.
[0025]
Cost reduction can also be achieved by using an infrared absorber without using an infrared transparent body (glass).
[0026]
By making two catalyst bodies face each other with a predetermined distance so that the upstream side of the mixture is on the outside, it is possible to reduce the size and to emit radiant energy to the front and rear surfaces of the equipment. Heating is possible and radiation efficiency is improved.
[0027]
An electric heater is provided between the two catalyst bodies and the auxiliary catalyst body. The electric heater is energized at the start of combustion, the catalyst body or the auxiliary catalyst body is heated, the energization to the electric heater is stopped, and a predetermined time later By supplying the air-fuel mixture and performing catalytic combustion, there is no abnormal ignition in the vicinity of the electric heater or generation of NOx, so that the temperature can be kept between the catalyst body and the auxiliary catalyst body, and the startup time can be shortened.
[Brief description of the drawings]
FIG. 1 is a sectional view of a catalytic combustion apparatus according to a first embodiment of the present invention. FIG. 2 is a sectional view of a catalytic combustion apparatus according to a second embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Catalyst body 5 Electric heater 6 Auxiliary catalyst body 8 Radiation heat receiving body 9 Heat exchange part 10 Infrared transmitting body 12 Exhaust path 18 Infrared absorber

Claims (9)

燃料と空気の混合ガス供給部と、前記混合ガス供給部の流れ方向下流に設けられた通気性を有する触媒体と、前記触媒体の混合気の流れ方向上流側に前記触媒体と対面して設けられた赤外線透過体と、前記触媒体に前記赤外線透過体を介して対面する熱交換部を有する輻射受熱体と、前記赤外線透過体と前記輻射受熱体の間に形成され、前記触媒体を通過した燃焼ガスを流すように前記触媒体の下流と連通する排気通路とを備えたことを特徴とする触媒燃焼装置。A fuel and air mixed gas supply unit, a gas-permeable catalyst body provided downstream in the flow direction of the mixed gas supply unit, and the catalyst body facing the catalyst body upstream in the flow direction of the air-fuel mixture of the catalyst body An infrared transmitting body provided; a radiation heat receiving body having a heat exchange portion facing the catalyst body through the infrared transmitting body; and formed between the infrared transmitting body and the radiation heat receiving body, A catalytic combustion apparatus comprising an exhaust passage communicating with the downstream side of the catalyst body so as to flow the passed combustion gas . 燃料と空気の混合ガス供給部と、前記混合ガス供給部の流れ方向下流に設けられた通気性を有する触媒体と、前記触媒体の混合気の流れ方向上流側に前記触媒体と対面して設けられた赤外線吸収体と、前記触媒体に前記赤外線吸収体を介して対面する熱交換部を有する輻射受熱体と、前記赤外線吸収体と前記輻射受熱体の間に形成され、前記触媒体を通過した燃焼ガスを流すように前記触媒体の下流と連通する排気通路とを備えたことを特徴とする触媒燃焼装置。A fuel and air mixed gas supply unit, a gas-permeable catalyst body provided downstream in the flow direction of the mixed gas supply unit, and the catalyst body facing the catalyst body upstream in the flow direction of the air-fuel mixture of the catalyst body An infrared absorber provided, a radiation heat receiver having a heat exchange section facing the catalyst body via the infrared absorber, and formed between the infrared absorber and the radiation heat receiver, the catalyst body A catalytic combustion apparatus comprising an exhaust passage communicating with the downstream side of the catalyst body so as to flow the passed combustion gas . 燃料と空気の混合ガス供給部と、前記混合ガス供給部の流れ方向下流に設けられた通気性を有する2枚の平面状の触媒体と、前記触媒体の外側に設けられた2つの赤外線透過体、または赤外線吸収体と、前記触媒体と前記赤外線透過体、または前記赤外線吸収体との間に形成された2つの混合気経路とを備えたことを特徴とする触媒燃焼装置。A fuel / air mixed gas supply section, two air-permeable planar catalyst bodies provided downstream in the flow direction of the mixed gas supply section, and two infrared transmissions provided outside the catalyst bodies A catalytic combustion apparatus comprising: a body or an infrared absorber; and two air-fuel mixture paths formed between the catalyst body and the infrared transmitter or the infrared absorber. 触媒体に前記赤外線透過体、または赤外線吸収体を介して対面する熱交換部を有する輻射受熱体と、前記赤外線透過体、または前記赤外線吸収体と前記輻射受熱体との間に形成され、前記触媒体の下流と連通する排気経路とをさらに備えた請求項3記載の触媒燃焼装置。A radiation heat receiving body having a heat exchange part facing the infrared ray transmitting body or the infrared absorbing body on the catalyst body, the infrared transmitting body, or formed between the infrared absorbing body and the radiation heat receiving body, The catalytic combustion apparatus according to claim 3, further comprising an exhaust path communicating with the downstream side of the catalyst body. 触媒体は傾斜して対向している請求項3又は4記載の触媒燃焼装置。The catalytic combustion apparatus according to claim 3 or 4, wherein the catalyst bodies are inclined and face each other. 触媒体は2枚の平面状の触媒体であり、前記2枚の触媒体の下流側に位置する補助触媒体と、前記2枚の触媒体と前記補助触媒体との間に位置させた電気ヒーターとをさらに備え、燃焼開始時に前記電気ヒーターに通電し、前記触媒体及び前記補助触媒体を加熱した後、前記電気ヒーターへの通電を停止し、所定時間後、混合気を供給して触媒燃焼を開始する請求項3又は4記載の触媒燃焼装置。The catalyst bodies are two planar catalyst bodies, and an auxiliary catalyst body positioned on the downstream side of the two catalyst bodies, and an electric body positioned between the two catalyst bodies and the auxiliary catalyst body. A heater, and energizes the electric heater at the start of combustion, heats the catalyst body and the auxiliary catalyst body, stops energization of the electric heater, and after a predetermined time, supplies an air-fuel mixture to form a catalyst The catalytic combustion apparatus according to claim 3 or 4, wherein combustion is started. 輻射受熱体は金属板であり、受熱面側を高輻射材で被覆した請求項1、2又は4記載の触媒燃焼装置。The catalytic combustion apparatus according to claim 1, 2 or 4, wherein the radiation heat receiving body is a metal plate, and the heat receiving surface side is coated with a high radiation material. 赤外線吸収体は金属板であり、両面を高輻射材で被覆した請求項2、3又は4記載の触媒燃焼装置。The catalytic combustion apparatus according to claim 2, 3 or 4, wherein the infrared absorber is a metal plate and both surfaces thereof are coated with a high radiation material. 輻射受熱体の排気経路側に排気熱を受熱する突出部が形成された請求項1、2又は4記載の触媒燃焼装置。5. The catalytic combustion apparatus according to claim 1, wherein a projection for receiving exhaust heat is formed on the exhaust path side of the radiation heat receiving body.
JP24005296A 1996-09-11 1996-09-11 Catalytic combustion device Expired - Lifetime JP3678855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24005296A JP3678855B2 (en) 1996-09-11 1996-09-11 Catalytic combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24005296A JP3678855B2 (en) 1996-09-11 1996-09-11 Catalytic combustion device

Publications (2)

Publication Number Publication Date
JPH1089634A JPH1089634A (en) 1998-04-10
JP3678855B2 true JP3678855B2 (en) 2005-08-03

Family

ID=17053768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24005296A Expired - Lifetime JP3678855B2 (en) 1996-09-11 1996-09-11 Catalytic combustion device

Country Status (1)

Country Link
JP (1) JP3678855B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059212A (en) * 2005-08-24 2007-03-08 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system and heat exchanger built-in type catalyst combustion device
JP5697479B2 (en) * 2011-02-21 2015-04-08 総合ビル・メンテム株式会社 Heating device

Also Published As

Publication number Publication date
JPH1089634A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
KR100452835B1 (en) Catalytic combustion apparatus
US5934073A (en) Auxiliary heating for motor vehicles with internal combustion engines
KR100257551B1 (en) Combustion apparatus
KR19990013605A (en) Combustion device
JP3678855B2 (en) Catalytic combustion device
JP3779792B2 (en) Catalytic combustion device
CN211551592U (en) Flameless burner or flameless burner group with heat exchange system
JP3645029B2 (en) Catalytic combustion device
JPH1151333A (en) Catalytic combustion equipment
JP3732034B2 (en) Hybrid catalytic combustion apparatus and combustion method
JP3793609B2 (en) Combustion device
JP3709296B2 (en) Catalytic combustion device
JPH1151310A (en) Catalytic combustion equipment
JP2806018B2 (en) Catalytic combustion device
JP3568314B2 (en) Heating equipment
JPH1122924A (en) Catalystic combustion device
JPH06249414A (en) Catalytic burner
JP2000146298A (en) Catalyst combustor
JP3595720B2 (en) Catalytic combustion heating device
JP2000039115A (en) Catalytic combustor
JPS591918A (en) Heating device for promoting radiation
JP2844687B2 (en) Infrared heater
JPH0989210A (en) Catalyst combustion device
JPH0113204Y2 (en)
CN112393241A (en) Flameless combustion engine and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

EXPY Cancellation because of completion of term