JP3568314B2 - Heating equipment - Google Patents

Heating equipment Download PDF

Info

Publication number
JP3568314B2
JP3568314B2 JP06869996A JP6869996A JP3568314B2 JP 3568314 B2 JP3568314 B2 JP 3568314B2 JP 06869996 A JP06869996 A JP 06869996A JP 6869996 A JP6869996 A JP 6869996A JP 3568314 B2 JP3568314 B2 JP 3568314B2
Authority
JP
Japan
Prior art keywords
combustion
electric heater
catalyst
catalytic
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06869996A
Other languages
Japanese (ja)
Other versions
JPH09257310A (en
Inventor
次郎 鈴木
猛 富澤
龍夫 藤田
豊 吉田
則夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06869996A priority Critical patent/JP3568314B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to EP97104974A priority patent/EP0798512B1/en
Priority to DE69732504T priority patent/DE69732504T2/en
Priority to EP02022352A priority patent/EP1273850B1/en
Priority to DE69729492T priority patent/DE69729492T2/en
Priority to KR1019970010294A priority patent/KR100257551B1/en
Priority to US08/823,619 priority patent/US5901700A/en
Publication of JPH09257310A publication Critical patent/JPH09257310A/en
Application granted granted Critical
Publication of JP3568314B2 publication Critical patent/JP3568314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、暖房機、給湯機、空調機器等で必要とされる加熱装置に関するものである。
【0002】
【従来の技術】
加熱方法として代表的には電気加熱と燃焼加熱を利用することが知られている。電気加熱として一般的な方法は、抵抗線に通電して発熱させる方法である。また燃焼加熱には火炎燃焼と触媒を用いた無炎燃焼がある。ともに燃料と空気を混合して燃焼させて熱を発生させる。また、電気ヒータと燃焼を併用した石油ファンヒータの様な機器も販売されていた。
【0003】
【発明が解決しょうとする課題】
しかしながら、電気加熱は大電流を発生させると、機器のコストと運転経費が増大する。一方、燃焼加熱は大きな熱量を経済的に発生させうるが、排気の臭気、特に着火時の臭気の発生と、小燃焼領域での燃焼の不安定性の課題がある。また、燃焼と電気ヒータを併用した機器は燃焼の排気の問題を解決していない。
【0004】
本発明はこのような従来の加熱装置の課題を考慮し、暖房負荷の大幅な変動に対応できる加熱装置を実現し、また暖房開始時や気温の低いときは燃焼で高い出力を発生し、暖房負荷の低いときは電気の熱で加熱することが可能であり、また燃焼における着火時の排気をクリーンにすることができ、また触媒燃焼では触媒の予熱電源を共用でき、かつ低NOxの効果をもたらす加熱装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は、燃料供給部と、燃焼用空気を供給する送風機と、前記燃料の燃焼室と、前記燃焼室内に設けた電気ヒータと、前記燃焼室に設けた熱交換部を有するもので、加熱量が小の領域で前記電気ヒータの発熱のみで前記熱交換部を加熱し、加熱量の大きい領域で前記電気ヒータに通電して前記燃焼室を加熱した後に燃焼を開始して熱交換部を加熱する構成とした。
【0006】
燃焼開始時に臭気が発生する理由は火炎が冷たい燃焼室で冷却されるため反応中間生成物が排出されるためである。あらかじめ燃焼室を電気ヒータで加熱すれば臭気の発生はなくなる。また、加熱量が少なくて良いときに、燃焼火炎を小さくすると火炎が低温となって燃焼が不安定になる。このため排気の中間生成物は増加し、場合によっては失火する。従来の加熱装置では燃焼を頻繁にON−OFFして平均燃焼量を下げる必要があった。しかし、本発明では低出力時は電気ヒータが加熱するので低出力が極めて容易に得られる。また、再度燃焼状態にするときも加熱されているため排気特性は悪くならない。
【0007】
また、請求項2に示すように加熱量が小の領域で前記電気ヒータに通電するとともに燃料を供給して燃焼させ、加熱量の大きい領域で前記電気ヒータに通電して前記燃焼室を加熱した後、前記電気ヒータに通電せずに加熱量の小の領域よりも多い燃料を供給して燃焼を開始し熱交換部を加熱することでも、着火時の良い排気特性と燃焼の安定性は得られる。小燃焼の火炎温度の低下を電気ヒータの熱が補うからである。この方法は請求項1より低出力に対応できないが、全部電気を用いるよりも電気代金は節約できる。また、請求項1と請求項2の発明を併用することも合理的である。
【0008】
請求項4に示すように燃焼室に燃焼用の触媒体を設けた場合は、まず電気ヒータで触媒を活性化温度まで加熱する。触媒は常温では反応しないためである。この方法は火炎がないために、安全、低NOx等の効果がある。低出力時も触媒は活性温度を保つ以上の温度に制御され、再度高出力に移行するときも排気ガスはクリーンである特徴を持つものである。燃焼はすべて触媒で反応させても、火炎燃焼の後の排気の未燃物を触媒で燃焼しても良い。
【0009】
また、請求項5や請求項6の発明によれば、排気はよりクリーンとなり、火炎がないためにあたかも電気ヒータのみであるような安全性も確保できる。
【0010】
【本発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0011】
(実施の形態1)
本発明の請求項1の実施の形態を図1とともに説明する。燃料供給部1から供給される燃料ガスと燃焼用送風機2から送られる燃焼用空気の混合部3で混合気が作られる。燃料供給量は5kWで、気体燃料でも液体燃料でも良い。燃料の混合部3の下流に設けた燃焼室4に混合気は流れる。燃焼室4には火炎孔5と放電による点火器6と出力2kWの電気ヒータ7が設けられている。燃焼室4の下流の熱交換フィン8には温水管9が設けられ熱回収を行う。燃焼室4内部に温度検知部10が設けられている。温水管9の温水は循環ポンプ11により燃焼室4と放熱熱交換器12の間の温水経路13を循環する。放熱熱交換器12には室内に温風を送る送風機14が設けられている。温水経路13には温水温度検知部15が設けられている。また、放熱手段はこのような水経路であっても空冷フィンであっても良い。
【0012】
このような構成での本発明の動作を説明する。電気ヒータ7に通電し、火炎孔5と燃焼室4内面を加熱する。燃焼室4内面が所定の温度に達した後、電気ヒータ7の通電を停止し、燃料供給と送風と点火器6の動作を開始する。混合部3から送られた混合気は火炎孔5で燃焼する。この時、燃焼室4の温度は200℃以上に上昇しているので着火性は良く、かつ着火時の排気の未燃ガスは少ない。このような状態で温水経路13の温度が所定の暖房温度に達したときに送風機14を運転して温風を室内に送風する。室内の温度が上昇して暖房負荷が減少すると、温水温度が上昇する。このことを温水温度検知部15で検知して燃焼を停止する。電気ヒータ7に通電し、燃焼用送風機2を弱回転とする。温水は所定の暖房温度を維持する。さらに暖房負荷が減少して温水温度が上昇するときは、電気ヒータ7の通電量を減少させる。また、暖房負荷が増加したときは、燃料の供給を開始する。燃料を供給しても燃焼室4が高温となっているので再燃焼時の排気もクリーンである。
【0013】
(実施の形態2)
本発明の請求項2を図1とともに説明する。燃料の供給を変化させても5kW〜2kWは熱量を変えられる。2kW以下となると燃焼は不安定となり、空燃比により逆火やリフトあるいはCOの増加といった現象を生じる。前例では2kW以下は電気の熱で暖房した。しかし、電気の節約のために燃焼しつつ通電することも可能である。例えば1kWの燃焼量では火炎が冷却して燃焼が不安定になるが、500W通電すれば火炎は安定なものとなる。合計発熱量は1.5kWであり、暖房負荷への対応幅は単に燃料の供給量を調節する場合よりも拡大する。
【0014】
(実施の形態3)
本発明の請求項3を図2とともに説明する。燃焼室4の下流にハニカム状の浄化用触媒体16が設けられている。その他の構成は実施の形態1と同一である。燃焼開始時に電気ヒータ7で燃焼室4の内部とくに、浄化用触媒体16を加熱する。浄化用触媒体16は300セル/平方インチのハニカム構造である。流れ方向厚さは20mmである。ハニカム担体はコーディエライトやアルミン酸石灰を成形したもので、白金族金属触媒が担持されている。ハニカム孔は一辺0.6mm角の正方形である。
【0015】
これはセラミック製で熱容量が少ないため、電気ヒータ7で500℃まで温度上昇する。このため燃焼開始時に火炎孔5に着火したときに発生する未燃ガスはこの触媒で反応して酸化されて臭気は殆どなくなる。
【0016】
高出力は燃焼により5kW得られるが、暖房負荷が低下した場合の動作は実施の形態1と同一で電気ヒータ7に通電して行い2kWの出力となる。このような方法は実施の形態2に応用すれば、更に低燃焼量とすることも可能となる。火炎が不安定でCOを発生しても、電気ヒータ7で加熱されている浄化用触媒体が排気を完全に酸化するからである。また、燃焼時も触媒が火炎の発生するCOを酸化するため燃焼排気は常にクリーンとなる。
【0017】
(実施の形態4)
請求項4に関する発明を図3とともに説明する。燃料供給部1、燃焼用送風機2、混合部3の下流に混合気孔17を設けている。点火手段は用いないが、燃焼用触媒体18を加熱するための電気ヒータ7は設けている。燃焼用触媒体18はハニカムであるが長さが200mmと実施の形態3よりは長い。これはここで全量燃焼できるようにするためである。この下流に温水管9がある。
【0018】
このような構成で、電気ヒータ7に通電し、燃焼用触媒体18の上流が加熱する。触媒18が所定の活性化温度に達したことを燃焼部の温度検知部10で検知し、電気ヒータ7の通電を停止し、電気ヒータ7表面温度が発火温度以下になったときに、混合気を供給すると、混合気は燃焼用触媒体18の上流で触媒反応を始める。次第に燃焼量と空気量を増加させると燃焼用触媒体18全体で燃焼する。触媒体の高温化による劣化を防止するため空気過剰率は2以上が好ましい。
【0019】
このような燃焼部構成で暖房負荷が低くなったときは、燃料の供給を低下させる。あるいは、さらに暖房負荷が低下したときは電気ヒータ7に通電して電気熱で温水を加熱する。再燃焼時も触媒を活性化温度に保っている限り燃料を随時供給して燃焼による高出力に切り替えられる。この方式は火炎が全くないために燃焼音やNOxの発生がなく、あたかも電気ですべてが行われているような安全性が得られる。
【0020】
(実施の形態5)
請求項6を図4、5とともに説明する。図4に示すように、燃料供給部1から供給される燃料ガスと燃焼用送風機2から送られる燃焼用空気が混合部3で混合され混合気が作られる。混合部3の下流に設けた第1触媒燃焼部19に混合気は流れ込み、第1触媒燃焼部19の第1触媒体22で反応する。すなわち、この第1触媒燃焼部19の断面を示す図5から分かるように、第1触媒燃焼部19の内面に突出する受熱用のフィン20に隙間21を介して設けられた薄板状の第1触媒体22で混合気は反応する。アルミ合金製の第1触媒燃焼部19の外周には第1温水管24が設けられ熱回収を行う。第1触媒体22は耐熱鉄合金にγアルミナをコートし、ここに白金やパラジュウムのような白金族金属触媒が担持されている。第1触媒燃焼部19の下流に第2触媒燃焼部が設けられ、ここにハニカム構造の第2触媒体23が設けられている。第1触媒燃焼部19と第2触媒燃焼体23の間に電気ヒータ7が設けられている。第1触媒燃焼部19の上流にも電気ヒータを設けて、連動させても良い。第2触媒体23の内壁は断熱材でライニングされている。
【0021】
第2触媒体23の下流にはフィン8と排気熱回収用の第2温水管9が設けられ、第1温水管24と連通している。
【0022】
このような構成での本発明の動作を説明する。電気ヒータ7に通電し、第1触媒体22と第2触媒体23を同時に加熱して触媒予熱を開始する。第1触媒体22の下流および第2触媒体23の上流が加熱される。触媒22、23が所定の活性化温度に達した後、電気ヒータ7の通電を停止し、燃料の供給を開始する。混合部3から送られた混合気は第1触媒燃焼部19を通過する。活性化温度は燃料や触媒の種類で異なり、例えばプロパンガスでは約300℃であり、メタンはこれよりも高く、灯油は低い。触媒を活性化温度に加熱するため、電気ヒータの表面温度は600℃以上が好ましい。
【0023】
混合気はまず第1触媒体22下流で部分的に反応し、第1触媒体22をすり抜けた未反応燃料は第2触媒体23の上流で反応し始める。第2触媒体23は高温となっているので、未反応ガスはここで反応し、最終排気には未燃ガスはほとんど含まれない。
【0024】
第1触媒体22では触媒がガスと酸素を吸着し、触媒表面で反応するので無炎燃焼となり燃焼熱で第1触媒体22は高温となり、この熱が隙間21を放射熱として通過しフィン21に伝わる。この第1触媒燃焼部19で供給する燃料のエネルギーの75%が燃焼し、燃焼したエネルギーの80%がフィン20から第1温水管24へ伝熱する。すなわち供給燃料エネルギーの60%(=75×80%)がここで水に伝熱する。第1触媒燃焼部19から排出される排気には、供給燃料エネルギーを100%として未燃燃料が25%(=100%−75%)と排気熱が15%(=75%−60%)、合計で40%残っている。第2触媒体23の温度が低温化するとここで未燃燃料が反応し難いため、ここでは熱交換は行わない。このため、未燃燃料が全て燃焼した後の第2触媒燃焼体23からの排気は、供給エネルギーの40%を排気熱として有するものとなる。次に、フィン8を有する第2温水管9でこの熱を回収する。ここでの熱交換率は70%であった。第2温水管9が回収する熱は28%(=40%×70%)となる。すなわち第1温水管24と第2温水管9を合計すると88%(60%+28%)の総合熱効率となった。
【0025】
触媒燃焼装置を有炎燃焼装置と同一の燃焼負荷率(燃焼室体積当たりの燃焼量)で運転すると、触媒体温度が1200℃以上となり触媒の耐熱寿命が著しく短くなる。したがって実施の形態4では大きな触媒を用いている。しかし、本実施の形態では熱交換部であるフィン20を直接触媒体が覆うため第1触媒体22は比較的低温となり、かつ触媒での発熱から受熱部に直接伝熱するので熱交換効率は高くなる。
【0026】
この実施の形態でも暖房負荷が減少して温水温度が上昇しすぎると、燃料供給量を減少させなければならない。触媒が活性化温度よりも低くなる2kWが燃焼の下限界である。ここで燃焼を停止し再度電気ヒータ7に通電して温水を加熱する。電気ヒータは2kW〜0まで制御できるため暖房負荷の大幅な変動に対応できる。しかし、再燃焼の触媒の活性化温度を維持すればいつでも燃焼を再開できて、急速な暖房負荷の上昇に対応できる。また、活性化温度以下であっても再度通電による予熱時間を若干設ければ再燃焼時のクリーンな排気を損なわない。
【0027】
このような実施の形態1〜4の燃焼と電気の切り替えの制御は、外気温度、室内温度。あるいは温水温度を検知して行うなど用途に応じて選択すればよい。
【0028】
【発明の効果】
以上に述べた本発明の効果は次の通りである。暖房負荷の大幅な変動に対応できる加熱装置を実現し、暖房開始時や気温の低いときは燃焼で高い出力を発生し、暖房負荷の低いときは電気の熱で加熱することが可能である。
【0029】
また、燃焼における着火時の排気をクリーンにすることもできるため燃焼独特の弊害も減少している。
【0030】
さらに触媒燃焼では触媒の予熱電源を共用でき、かつ低NOxの効果をもたらす。
【図面の簡単な説明】
【図1】本発明の請求項1の一実施の形態の燃焼装置を示す断面図である。
【図2】本発明の請求項3の一実施の形態の燃焼装置を示す縦断面図である。
【図3】本発明の請求項4の一実施の形態の断面図である。
【図4】本発明の請求項6の一実施の形態の断面図である。
【図5】本発明の請求項6の一実施の形態の第1触媒燃焼部の断面図である。
【符号の説明】
1 燃料供給部
2 燃焼用送風機
3 混合部
4 燃焼室
5 火炎孔
6 点火器
7 電気ヒータ
8 熱交換フィン
9 温水管
10 温度検知部
11 循環ポンプ
12 放熱熱交換器
13 温水経路
16 浄化用触媒体
17 混合気孔
18 燃焼用触媒体
22 第1燃焼触媒体
23 第2燃焼触媒体
24 第2温水管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heating device required for a heater, a water heater, an air conditioner, and the like.
[0002]
[Prior art]
As a heating method, it is typically known to use electric heating and combustion heating. A general method for electric heating is to generate heat by supplying electricity to a resistance wire. The combustion heating includes flame combustion and flameless combustion using a catalyst. In both cases, fuel and air are mixed and burned to generate heat. In addition, devices such as an oil fan heater that uses both an electric heater and combustion have been sold.
[0003]
[Problems to be solved by the invention]
However, when electric heating generates a large current, the cost and operating cost of the equipment increase. On the other hand, combustion heating can economically generate a large amount of heat, but has problems of generation of odor of exhaust gas, particularly odor at the time of ignition, and instability of combustion in a small combustion region. In addition, equipment using both combustion and an electric heater does not solve the problem of combustion exhaust.
[0004]
The present invention considers such a problem of the conventional heating device, and realizes a heating device that can cope with a large fluctuation of a heating load.Also, when heating is started or when the temperature is low, a high output is generated by combustion, and heating is performed. When the load is low, it is possible to heat with electric heat, clean the exhaust at the time of ignition in combustion, share the catalyst preheating power supply in catalytic combustion, and reduce the effect of low NOx. It is an object to provide a heating device for providing.
[0005]
[Means for Solving the Problems]
The present invention includes a fuel supply unit, a blower for supplying combustion air, a combustion chamber for the fuel, an electric heater provided in the combustion chamber, and a heat exchange unit provided in the combustion chamber. The heat exchange unit is heated only by the heat generated by the electric heater in the small area, and the electric heater is energized in the large heat area to heat the combustion chamber, and then the combustion is started to start the heat exchange unit. Heating was adopted.
[0006]
The reason that the odor is generated at the start of combustion is that the reaction intermediate product is discharged because the flame is cooled in a cold combustion chamber. If the combustion chamber is heated in advance by an electric heater, no odor is generated. Further, when the amount of heating is sufficient, if the combustion flame is reduced, the temperature of the flame becomes low and combustion becomes unstable. This increases the intermediate products of the exhaust and, in some cases, causes a misfire. In the conventional heating device, it was necessary to frequently turn on and off the combustion to lower the average combustion amount. However, in the present invention, when the output is low, the electric heater is heated, so that a low output can be obtained very easily. Also, when the combustion state is set again, the exhaust characteristics are not deteriorated because the heating is performed.
[0007]
Further, as shown in claim 2, the electric heater is energized and the fuel is supplied and burned in the region where the heating amount is small, and the electric heater is energized in the region where the heating amount is large to heat the combustion chamber. After that , by supplying more fuel than the region with a small amount of heating without heating the electric heater and starting combustion to heat the heat exchange part, good exhaust characteristics at ignition and stability of combustion can be obtained. Can be This is because the heat of the electric heater compensates for the decrease in the flame temperature of the small combustion. Although this method cannot cope with lower output than claim 1, the electricity bill can be saved as compared with using all electricity. It is also reasonable to use the inventions of claims 1 and 2 together.
[0008]
When a catalyst for combustion is provided in the combustion chamber, the catalyst is first heated to the activation temperature by an electric heater. This is because the catalyst does not react at room temperature. This method has safety, low NOx, and other effects because there is no flame. Even when the output is low, the catalyst is controlled to a temperature higher than the temperature at which the active temperature is maintained, and the exhaust gas is clean even when the output shifts to the high output again. The combustion may all be reacted with a catalyst, or the unburned matter of the exhaust gas after the flame combustion may be burned with the catalyst.
[0009]
Further, according to the fifth and sixth aspects of the present invention, the exhaust becomes cleaner, and the safety as if only an electric heater is provided because there is no flame can be secured.
[0010]
[Embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
(Embodiment 1)
The first embodiment of the present invention will be described with reference to FIG. An air-fuel mixture is formed in a mixing unit 3 of the fuel gas supplied from the fuel supply unit 1 and the combustion air sent from the combustion blower 2. The fuel supply amount is 5 kW, and either gaseous fuel or liquid fuel may be used. The mixture flows into a combustion chamber 4 provided downstream of the fuel mixing section 3. The combustion chamber 4 is provided with a flame hole 5, an igniter 6 by discharge, and an electric heater 7 having an output of 2 kW. A hot water pipe 9 is provided on the heat exchange fins 8 downstream of the combustion chamber 4 to recover heat. A temperature detector 10 is provided inside the combustion chamber 4. The hot water in the hot water pipe 9 is circulated by a circulation pump 11 through a hot water path 13 between the combustion chamber 4 and the heat radiation heat exchanger 12. The radiator heat exchanger 12 is provided with a blower 14 for sending warm air into the room. The hot water path 13 is provided with a hot water temperature detector 15. The heat radiating means may be such a water path or an air-cooled fin.
[0012]
The operation of the present invention in such a configuration will be described. Electricity is supplied to the electric heater 7 to heat the flame hole 5 and the inner surface of the combustion chamber 4. After the inner surface of the combustion chamber 4 reaches a predetermined temperature, the energization of the electric heater 7 is stopped, and the fuel supply, the air blowing, and the operation of the igniter 6 are started. The air-fuel mixture sent from the mixing section 3 burns in the flame holes 5. At this time, since the temperature of the combustion chamber 4 has risen to 200 ° C. or higher, the ignitability is good, and the unburned gas in the exhaust gas at the time of ignition is small. When the temperature of the hot water path 13 reaches a predetermined heating temperature in such a state, the blower 14 is operated to blow hot air into the room. When the indoor temperature rises and the heating load decreases, the hot water temperature rises. This is detected by the hot water temperature detector 15, and the combustion is stopped. Electricity is supplied to the electric heater 7, and the combustion blower 2 is rotated at a low speed. The hot water maintains a predetermined heating temperature. When the heating load further decreases and the hot water temperature rises, the amount of electricity supplied to the electric heater 7 is reduced. When the heating load increases, the supply of fuel is started. Even when fuel is supplied, the combustion chamber 4 is at a high temperature, so that exhaust gas at the time of reburning is also clean.
[0013]
(Embodiment 2)
Claim 2 of the present invention will be described with reference to FIG. Even if the supply of fuel is changed, the amount of heat can be changed from 5 kW to 2 kW. If it is less than 2 kW, combustion becomes unstable, and a phenomenon such as flashback, lift or an increase in CO occurs depending on the air-fuel ratio. In the previous example, heating of 2 kW or less was performed by electric heat. However, it is also possible to energize while burning to save electricity. For example, when the combustion amount is 1 kW, the flame is cooled and the combustion becomes unstable, but when 500 W is supplied, the flame becomes stable. The total calorific value is 1.5 kW, and the range of response to the heating load is larger than when simply adjusting the fuel supply amount.
[0014]
(Embodiment 3)
Claim 3 of the present invention will be described with reference to FIG. A honeycomb-shaped purification catalyst 16 is provided downstream of the combustion chamber 4. Other configurations are the same as those of the first embodiment. At the start of combustion, an electric heater 7 heats the inside of the combustion chamber 4, particularly the purification catalyst 16. The purifying catalyst 16 has a honeycomb structure of 300 cells / square inch. The thickness in the flow direction is 20 mm. The honeycomb carrier is formed by molding cordierite or lime aluminate, and carries a platinum group metal catalyst. The honeycomb hole is a square having a side of 0.6 mm square.
[0015]
Since this is made of ceramic and has a small heat capacity, the temperature rises to 500 ° C. by the electric heater 7. For this reason, unburned gas generated when the flame hole 5 is ignited at the start of combustion reacts with this catalyst and is oxidized, so that odor is almost eliminated.
[0016]
Although a high output is obtained by combustion by 5 kW, the operation when the heating load is reduced is the same as that of the first embodiment, and the electric heater 7 is energized to output 2 kW. If such a method is applied to the second embodiment, it is possible to further reduce the combustion amount. This is because even if the flame is unstable and CO is generated, the purification catalyst heated by the electric heater 7 completely oxidizes the exhaust gas. Also, during combustion, the catalyst oxidizes the CO that generates the flame, so that the combustion exhaust gas is always clean.
[0017]
(Embodiment 4)
The invention according to claim 4 will be described with reference to FIG. A mixed air hole 17 is provided downstream of the fuel supply unit 1, the combustion blower 2, and the mixing unit 3. Although no ignition means is used, an electric heater 7 for heating the combustion catalyst 18 is provided. The combustion catalyst 18 is a honeycomb, but has a length of 200 mm, which is longer than that of the third embodiment. This is to make it possible to burn the entire amount here. Downstream of this is a hot water pipe 9.
[0018]
With such a configuration, the electric heater 7 is energized and the upstream of the combustion catalyst 18 is heated. The temperature detection unit 10 of the combustion unit detects that the catalyst 18 has reached a predetermined activation temperature, and stops energization of the electric heater 7. When the surface temperature of the electric heater 7 becomes lower than the ignition temperature, the air-fuel mixture Is supplied, the air-fuel mixture starts a catalytic reaction upstream of the combustion catalyst 18. When the amount of combustion and the amount of air gradually increase, the entire combustion catalyst 18 burns. The excess air ratio is preferably 2 or more in order to prevent deterioration of the catalyst due to high temperature.
[0019]
When the heating load is reduced in such a combustion section configuration, the fuel supply is reduced. Alternatively, when the heating load further decreases, the electric heater 7 is energized to heat the hot water with electric heat. At the time of re-combustion, as long as the catalyst is kept at the activation temperature, fuel can be supplied as needed to switch to high output by combustion. In this method, since there is no flame, there is no generation of combustion noise and NOx, and safety as if everything is performed by electricity can be obtained.
[0020]
(Embodiment 5)
Claim 6 will be described with reference to FIGS. As shown in FIG. 4, the fuel gas supplied from the fuel supply unit 1 and the combustion air sent from the combustion blower 2 are mixed in the mixing unit 3 to form an air-fuel mixture. The air-fuel mixture flows into the first catalytic combustion section 19 provided downstream of the mixing section 3 and reacts with the first catalytic body 22 of the first catalytic combustion section 19. That is, as can be seen from FIG. 5 showing a cross section of the first catalytic combustion section 19, a thin plate-shaped first fin 20 provided on the heat receiving fin 20 protruding from the inner surface of the first catalytic combustion section 19 via the gap 21. The mixture reacts with the catalyst 22. A first hot water pipe 24 is provided on the outer periphery of the first catalytic combustion section 19 made of an aluminum alloy to recover heat. The first catalyst body 22 is formed by coating a heat-resistant iron alloy with γ-alumina, and carrying a platinum group metal catalyst such as platinum or palladium. A second catalytic combustion section is provided downstream of the first catalytic combustion section 19, and a second catalyst body 23 having a honeycomb structure is provided here. The electric heater 7 is provided between the first catalytic combustion section 19 and the second catalytic combustion body 23. An electric heater may also be provided upstream of the first catalytic combustion section 19 so as to be linked. The inner wall of the second catalyst body 23 is lined with a heat insulating material.
[0021]
The fin 8 and the second hot water pipe 9 for exhaust heat recovery are provided downstream of the second catalyst body 23, and communicate with the first hot water pipe 24.
[0022]
The operation of the present invention in such a configuration will be described. Electric power is supplied to the electric heater 7 to simultaneously heat the first catalyst body 22 and the second catalyst body 23 to start catalyst preheating. The downstream of the first catalyst body 22 and the upstream of the second catalyst body 23 are heated. After the catalysts 22 and 23 reach a predetermined activation temperature, the power supply to the electric heater 7 is stopped, and the supply of fuel is started. The air-fuel mixture sent from the mixing section 3 passes through the first catalytic combustion section 19. The activation temperature differs depending on the type of fuel or catalyst, for example, about 300 ° C. for propane gas, higher for methane and lower for kerosene. In order to heat the catalyst to the activation temperature, the surface temperature of the electric heater is preferably 600 ° C. or higher.
[0023]
The air-fuel mixture firstly partially reacts downstream of the first catalyst 22, and the unreacted fuel that has passed through the first catalyst 22 starts to react upstream of the second catalyst 23. Since the second catalyst body 23 is at a high temperature, the unreacted gas reacts here, and the final exhaust gas contains almost no unburned gas.
[0024]
In the first catalytic body 22, the catalyst adsorbs gas and oxygen and reacts on the surface of the catalyst, so that flameless combustion occurs and the first catalytic body 22 becomes high in temperature due to the combustion heat. It is transmitted to. 75% of the energy of the fuel supplied in the first catalytic combustion section 19 is burned, and 80% of the burned energy is transferred from the fins 20 to the first hot water pipe 24. That is, 60% (= 75 × 80%) of the supplied fuel energy is transferred to water here. The exhaust gas discharged from the first catalytic combustion unit 19 has 25% (= 100% -75%) of unburned fuel and 15% (= 75% -60%) of exhaust heat with the supplied fuel energy being 100%, A total of 40% remains. When the temperature of the second catalyst body 23 becomes low, the unburned fuel hardly reacts here, so that heat exchange is not performed here. Therefore, the exhaust gas from the second catalytic combustion body 23 after all the unburned fuel has burned has 40% of the supplied energy as exhaust heat. Next, the heat is recovered by the second hot water pipe 9 having the fins 8. The heat exchange rate here was 70%. The heat recovered by the second hot water pipe 9 is 28% (= 40% × 70%). That is, the total thermal efficiency of the first hot water pipe 24 and the second hot water pipe 9 was 88% (60% + 28%) in total.
[0025]
When the catalytic combustion device is operated at the same combustion load factor (the amount of combustion per combustion chamber volume) as the flaming combustion device, the temperature of the catalyst becomes 1200 ° C. or more, and the heat resistance life of the catalyst is significantly shortened. Therefore, in Embodiment 4, a large catalyst is used. However, in the present embodiment, the first catalyst body 22 has a relatively low temperature because the fin 20 which is the heat exchange section is directly covered by the catalyst body, and heat is directly transferred from the heat generated by the catalyst to the heat receiving section. Get higher.
[0026]
Also in this embodiment, if the heating load decreases and the hot water temperature rises too high, the fuel supply amount must be reduced. The lower limit of combustion is 2 kW at which the catalyst becomes lower than the activation temperature. Here, the combustion is stopped and the electric heater 7 is energized again to heat the hot water. Since the electric heater can control from 2 kW to 0, it can cope with a large fluctuation of the heating load. However, if the activation temperature of the reburning catalyst is maintained, the combustion can be restarted at any time, and a rapid increase in the heating load can be handled. Even if the temperature is lower than the activation temperature, clean exhaust during reburning will not be impaired if a slight preheating time is provided by re-energization.
[0027]
The control of switching between combustion and electricity according to the first to fourth embodiments is performed based on the outside air temperature and the indoor temperature. Alternatively, it may be selected according to the application, such as by detecting the temperature of hot water.
[0028]
【The invention's effect】
The effects of the present invention described above are as follows. By realizing a heating device that can cope with a large fluctuation in the heating load, it is possible to generate a high output by combustion at the start of heating or when the temperature is low, and to heat with electric heat when the heating load is low.
[0029]
In addition, since the exhaust gas at the time of ignition in combustion can be made clean, adverse effects peculiar to combustion are reduced.
[0030]
Further, in the catalytic combustion, the preheating power source for the catalyst can be shared and the effect of low NOx is brought about.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a combustion apparatus according to one embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a combustion apparatus according to a third embodiment of the present invention.
FIG. 3 is a sectional view of a fourth embodiment of the present invention.
FIG. 4 is a sectional view of a sixth embodiment of the present invention.
FIG. 5 is a sectional view of a first catalytic combustion section according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel supply part 2 Combustion blower 3 Mixing part 4 Combustion chamber 5 Flame hole 6 Igniter 7 Electric heater 8 Heat exchange fin 9 Hot water pipe 10 Temperature detection part 11 Circulation pump 12 Radiation heat exchanger 13 Hot water path 16 Purification catalyst 17 mixed pores 18 combustion catalyst 22 first combustion catalyst 23 second combustion catalyst 24 second hot water pipe

Claims (6)

燃料供給部と、燃焼用空気を供給する送風機と、前記燃料の燃焼室と、前記燃焼室内に設けた電気ヒータと、前記燃焼室に設けた熱交換部を備え、加熱量が小の場合は、前記電気ヒータの発熱のみで前記熱交換部を加熱し、加熱量の大きい場合は、前記電気ヒータに通電した後に燃焼を行って前記熱交換部を加熱することを特徴とする加熱装置。A fuel supply unit, a blower for supplying combustion air, a combustion chamber for the fuel, an electric heater provided in the combustion chamber, and a heat exchange unit provided in the combustion chamber; A heating unit that heats the heat exchange unit only by the heat generated by the electric heater and, when the amount of heating is large, burns after energizing the electric heater to heat the heat exchange unit. 燃料供給部と、燃焼用空気を供給する送風機と、前記の燃料の燃焼室と、前記燃焼室内に設けた電気ヒータと、前記燃焼室に設けた熱交換部を備え、加熱量が小の場合は、前記電気ヒータに通電するとともに燃料を供給して燃焼させることで前記熱交換部を加熱し、加熱量の大きい場合は、前記電気ヒータに通電した後、前記電気ヒータに通電せずに加熱量の小の場合よりも多い燃料を供給し燃焼を行うことで前記熱交換部を加熱することを特徴とする加熱装置。A fuel supply section, a blower for supplying combustion air, a combustion chamber for the fuel, an electric heater provided in the combustion chamber, and a heat exchange section provided in the combustion chamber, wherein the heating amount is small. Heats the heat exchange section by energizing the electric heater and supplying and burning fuel, and when the heating amount is large, energizes the electric heater and then heats without energizing the electric heater. A heating device characterized in that the heat exchange section is heated by supplying more fuel than in the case of a small amount and performing combustion. 前記燃焼室内に火炎孔と点火手段とを備え、前記電気ヒータは前記火炎孔の下流に設けられ、さらに前記電気ヒータの下流に浄化用触媒体を備え、前記熱交換部は、前記浄化用触媒体の下流に設けられている請求項1又は2の加熱装置。The combustion chamber includes a flame hole and an ignition means, the electric heater is provided downstream of the flame hole, and further includes a purifying catalyst downstream of the electric heater. 3. The heating device according to claim 1, wherein the heating device is provided downstream of the medium. 前記電気ヒータの下流に燃焼用触媒を備え、前記電気ヒータで前記燃焼用触媒を加熱した後に前記燃焼用触媒で触媒反応を開始する請求項1、又は2の加熱装置。The heating device according to claim 1, further comprising a combustion catalyst downstream of the electric heater, wherein the combustion catalyst is heated by the electric heater to start a catalytic reaction with the combustion catalyst. 燃焼量小の時の燃焼室温度が前記電気ヒータで加熱された燃焼開始前の燃焼室温度と実質上同一である請求項3、又は4の加熱装置。5. The heating device according to claim 3, wherein the combustion chamber temperature when the combustion amount is small is substantially the same as the combustion chamber temperature before the start of combustion heated by the electric heater. 燃焼室に設けた第1触媒燃焼部と、前記第1触媒燃焼部に設けた第1熱交換部と、前記第1触媒燃焼部の内部に設けた受熱用のフィンと、前記フィンに設けられた第1触媒体と、前記第1触媒燃焼部の下流に設けた第2触媒燃焼部と、前記第2触媒燃焼部に設けた第1触媒体よりも幾何学的表面積が大きい第2触媒体と、前記第2触媒体の下流に設けた前記第1熱交換部と連通する第2熱交換部と、前記第1触媒体の下流に設けた電気ヒータと、前記電気ヒータに通電して前記第1、第2触媒体を加熱した後に、燃料の供給を行って触媒燃焼を開始する燃焼部とを備えたことを特徴する加熱装置。A first catalytic combustion section provided in the combustion chamber, a first heat exchange section provided in the first catalytic combustion section, a heat receiving fin provided in the first catalytic combustion section, and a fin provided in the fin. A first catalytic body, a second catalytic combustion section provided downstream of the first catalytic combustion section, and a second catalytic body having a larger geometric surface area than the first catalytic body provided in the second catalytic combustion section. A second heat exchange unit communicating with the first heat exchange unit provided downstream of the second catalyst body; an electric heater provided downstream of the first catalyst body; A heating unit for supplying fuel after heating the first and second catalyst bodies to start catalytic combustion.
JP06869996A 1996-03-25 1996-03-25 Heating equipment Expired - Fee Related JP3568314B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP06869996A JP3568314B2 (en) 1996-03-25 1996-03-25 Heating equipment
DE69732504T DE69732504T2 (en) 1996-03-25 1997-03-24 combustion device
EP02022352A EP1273850B1 (en) 1996-03-25 1997-03-24 Combustion apparatus
DE69729492T DE69729492T2 (en) 1996-03-25 1997-03-24 incinerator
EP97104974A EP0798512B1 (en) 1996-03-25 1997-03-24 Combustion apparatus
KR1019970010294A KR100257551B1 (en) 1996-03-25 1997-03-25 Combustion apparatus
US08/823,619 US5901700A (en) 1996-03-25 1997-03-25 Combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06869996A JP3568314B2 (en) 1996-03-25 1996-03-25 Heating equipment

Publications (2)

Publication Number Publication Date
JPH09257310A JPH09257310A (en) 1997-10-03
JP3568314B2 true JP3568314B2 (en) 2004-09-22

Family

ID=13381285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06869996A Expired - Fee Related JP3568314B2 (en) 1996-03-25 1996-03-25 Heating equipment

Country Status (1)

Country Link
JP (1) JP3568314B2 (en)

Also Published As

Publication number Publication date
JPH09257310A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US5938427A (en) Combustion apparatus
US5934073A (en) Auxiliary heating for motor vehicles with internal combustion engines
KR100257551B1 (en) Combustion apparatus
JPH1122916A (en) Combustion device
JP3568314B2 (en) Heating equipment
JPH0933007A (en) Combustion device
JP2000146298A (en) Catalyst combustor
JPH1151310A (en) Catalytic combustion equipment
JPH10300027A (en) Catalytic combustion apparatus
JP4155692B2 (en) Hybrid catalytic combustion device
JP2567992B2 (en) Catalytic combustion device
JP3678855B2 (en) Catalytic combustion device
JP3793609B2 (en) Combustion device
JP3296523B2 (en) Heating device
JP2506943B2 (en) Catalytic combustion device and combustion catalyst body
JP2002364811A (en) Catalytic combustion device
JP2005251431A (en) Catalytic combustion device
JPH1182925A (en) Combustor for gas fan heater
JP2000055312A (en) Catalyst combustion device and combustion control method of the same
JP4224927B2 (en) Refrigerant heating type air conditioner
JPH08587Y2 (en) Catalytic combustion device
JPH06143985A (en) Heating equipment of electric car
JP2001193905A (en) Catalytic burner
JPH09280517A (en) Catalytic combustion device
JPH0849810A (en) Catalyst combustion type fluid heating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees