JP3645029B2 - Catalytic combustion device - Google Patents

Catalytic combustion device Download PDF

Info

Publication number
JP3645029B2
JP3645029B2 JP09540896A JP9540896A JP3645029B2 JP 3645029 B2 JP3645029 B2 JP 3645029B2 JP 09540896 A JP09540896 A JP 09540896A JP 9540896 A JP9540896 A JP 9540896A JP 3645029 B2 JP3645029 B2 JP 3645029B2
Authority
JP
Japan
Prior art keywords
catalyst body
heat
heat receiving
catalytic combustion
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09540896A
Other languages
Japanese (ja)
Other versions
JPH09280517A (en
Inventor
龍夫 藤田
猛 富澤
正人 保坂
晃 前西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP09540896A priority Critical patent/JP3645029B2/en
Publication of JPH09280517A publication Critical patent/JPH09280517A/en
Application granted granted Critical
Publication of JP3645029B2 publication Critical patent/JP3645029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は主として、家庭用、または業務用の給湯、暖房に適用する触媒燃焼装置に関するものである。
【0002】
【従来の技術】
白金やパラジウム等の貴金属触媒をコージライト等の坦体に担持した触媒体を触媒燃焼させ、熱交換器を設けて燃焼熱を水等の被加熱流体に伝熱し、給湯や暖房に適用する触媒燃焼装置が提案されている。触媒燃焼は燃焼温度が低いため、窒素酸化物(以下、NOxとする)がほとんど発生しないという大きな利点があり、希薄燃焼も可能で燃焼安定性も優れている。そして触媒燃焼開始時は予熱バーナで燃料ガスと空気との混合ガスを火炎燃焼させて触媒体を活性化温度以上に加熱した後、その混合気の供給を停止して予熱バーナの火炎を消炎させ、再び、混合気を供給して触媒燃焼させ、あるいは他の方法としては、火炎燃焼させずに、電気ヒーター等で触媒体を昇温した後、混合気を触媒体に通過させ、触媒燃焼させていた。また、給湯や暖房能力を高めるために、触媒の劣化を抑制できる範囲で触媒体温度を高めたり、触媒体の赤熱面積を増加させる方法が適用されていた。
【0003】
【発明が解決しようとする課題】
しかしながら従来例の触媒燃焼装置には以下に説明する課題がある。まず、触媒燃焼はNOxを発生しないという大きな利点がある反面、燃焼温度が低いため、被加熱流体への熱交換量を増加させようとすると、触媒体が大きくなり、機器全体として小型化が困難であり、液体燃料の場合には気化後、燃料が再凝縮したり、タールを発生しやすかった。また、触媒燃焼開始時に予熱バーナで火炎燃焼させた後、混合気の供給を停止して予熱バーナの火炎を消炎させ、再び、混合気を供給して触媒燃焼させる方法は制御が複雑になりやすく、また火炎燃焼させずに、電気ヒーター等で触媒体を昇温しようとすると、立ち上げ時間が長くなるという課題があった。また、触媒体を大きくしたり、被加熱流体への熱交換量を増加させようとすると、特に低燃焼量領域で燃焼安定性が不十分となり、燃焼量可変範囲(以下、TDRとする)を拡大し難かった。
【0004】
本発明は、この様な従来の触媒燃焼装置の課題を考慮し、輻射受熱体への放射伝熱特性を維持した状態で液体燃料の再凝縮やタール発生を抑制することができ、また触媒体上流面における燃焼反応が阻害されることがなく、被加熱流体への熱交換量を増加させても燃焼安定性を確保することが可能となる触媒燃焼装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するため、第一の手段として、通気性を有する触媒体と、触媒体の上流面に対向する受熱面を有する輻射受熱体と、輻射受熱体に設けた熱交換部と、触媒体に送る液体燃料の気化部と、輻射受熱体の触媒体側に受熱面と空間を介して位置させた熱線透過体を設けた触媒燃焼装置とする。
【0006】
第二の手段として、通気性を有する触媒体と、触媒体の上流面に対向する受熱面を有する輻射受熱体と、触媒体に送る液体燃料の気化部と、輻射受熱体の受熱面の裏面に熱抵抗体を介して位置させた熱交換部を設けた触媒燃焼装置とする。
【0007】
第三の手段として、通気性を有する触媒体と、触媒体の上流面に対向する受熱面を有する輻射受熱体と、輻射受熱体に設けた熱交換部と、触媒体の下流側に位置させた補助触媒体と、触媒体と補助触媒体の間に位置させた電気ヒーターを設け、燃焼開始時に電気ヒーターに通電し、触媒体、及び補助触媒体を加熱した後、電気ヒーターへの通電を停止し、所定時間後、混合気を供給して触媒燃焼させる触媒燃焼装置とする。
【0008】
第四の手段として、通気性を有する触媒体と、触媒体の上流面に対向する受熱面を有する輻射受熱体と、輻射受熱体に設けた熱交換部と、触媒体の下流側に位置させた補助触媒体と、触媒体と補助触媒体の間に位置させた着火手段を設け、燃焼開始時に着火手段の作動とほぼ同時に混合気を供給し、触媒体の下流面に火炎を付着させ、火炎燃焼から触媒燃焼に移行させる触媒燃焼装置とする。
【0009】
第五の手段として、輻射受熱体近傍の熱交換部と、触媒体の下流側の排ガス熱交換部を独立させ、熱交換部内の被加熱流体と、排ガス熱交換部内の被加熱流体を異種流体とした触媒燃焼装置とする。
【0010】
【発明の実施の形態】
(実施の形態1)
以下、図面を用いて本発明の実施の形態1について説明する。図1は実施の形態1の断面図である。実施の形態1の触媒燃焼装置の主要部は触媒体1、触媒体支持2、燃焼室壁3、電気ヒーター4、電気ヒーター支持5、補助触媒体6、補助触媒体支持7、補助燃焼室壁8、輻射受熱体9、熱交換部10、熱線透過体11、熱線透過体支持12で構成している。触媒体1、補助触媒体6は通気性を有するコージライトハニカムを担体とし、パラジウム、白金等の貴金属系触媒を担持したものである。補助触媒体6は触媒体1の下流側に設け、電気ヒーター4は触媒体1と補助触媒体6の間に位置させている。輻射受熱体9は触媒体1の上流側に輻射を受けやすいように触媒体1に対向して設けており、輻射受熱体9には熱交換部10を設置している。熱線透過体11はガラスで形成しており、輻射受熱体9の触媒体側に空間11aを介して設けている。輻射受熱体9の上流側には、混合気供給路13、空気供給路14、燃料供給路15、液体燃料の気化部16を設けている。一方、補助触媒体6の下流側には、排ガス熱交換部17、排気通路18を設けている。
【0011】
次に、本実施の形態の動作についての説明を行なう。まず、燃焼開始時には電気ヒーター4に通電し、触媒体1、または補助触媒体6を活性化温度以上に加熱した後、電気ヒーター4への通電を停止し、電気ヒーター4の表面温度を着火温度未満とした後、混合気を触媒体1へ供給して触媒燃焼させる。混合気は燃料供給路15、液体燃料の気化部16を通して気化させた燃料と空気供給路14からの空気を混合させたものであり、混合気供給路13で混合が促進される。触媒燃焼時に触媒体1の上流面が赤熱され、上流側に放射エネルギーを射出する。この放射エネルギーは輻射受熱体9で吸収されて再び熱エネルギーに変換されることにより、触媒体1から輻射受熱体9へ放射伝熱されることになり、その後、熱伝導により、輻射受熱体9に設けた熱交換部10で被加熱流体へ伝熱される。対流熱伝達とは異なり、混合気の流れを乱すことなく、放射伝熱されるため、触媒体1上流面における燃焼反応が阻害されることがなく、被加熱流体への熱交換量を増加させても燃焼安定性を確保することができる。
【0012】
なお、伝熱性能を高めると、輻射受熱体9の温度が低下するが、これに対して、灯油などの液体燃料を気化させた状態で流入させることが考えられる。その際、輻射受熱体9の触媒体側壁面(受熱面)で液体燃料が再び凝縮したり、タールを発生しやすくなることを防ぐため、輻射受熱体9の触媒体側に熱線透過体11を空間11aを介して設けている。それにより、輻射受熱体9への放射伝熱特性を維持した状態で熱線透過体11の触媒体側壁面温度を高め、液体燃料の再凝縮やタール発生を抑制している。空間11aは空気断熱層として作用する。触媒体1を通過した燃焼ガスは補助触媒体6で浄化され、排ガス熱交換部17で排熱を回収した後、排気通路18から排出される。
【0013】
さらに、輻射受熱体9の受熱面と熱線透過体11の間の空間11aを燃焼用空気を送風するファン等で加圧することにより、空間11aに混合気が流入してくるのを防止し、空間11aにおける液体燃料の再凝縮やタール発生を抑制することができる。
【0014】
このように、触媒体1と補助触媒体6の間に電気ヒーター4を設け、燃焼開始時に電気ヒーター4に通電し、触媒体1、または補助触媒体6を加熱した後、電気ヒーター4への通電を停止し、所定時間後、混合気を供給して触媒燃焼させることにより、電気ヒーター4近傍での異常発火やNOxの発生もなく、触媒体1と補助触媒体6の間を保温領域とし、立ち上げ時間を短縮している。さらに、立ち上げ時には、触媒体1上流温度は上昇しないため、輻射受熱体9へ熱が移動することもなく、電気ヒーター4の熱を効率良く、立ち上げに活かすことができる。特に、立ち上げ時に熱交換部10内の被加熱流体の流れを停止させておくことにより、輻射受熱体9への熱移動を抑制できるため、立ち上げ時間をさらに短縮することが可能となる。触媒燃焼時には、補助触媒体6により、排ガス浄化性能を向上させるとともに、触媒体1の温度も上昇させ、輻射受熱体9への放射伝熱性能も高めている。
【0015】
他方、燃焼開始時に電気ヒーター4への通電とほぼ同時に混合気を供給し、触媒体1の下流面に火炎を付着させ、火炎燃焼から触媒燃焼に移行させることもできる。この場合は、電気ヒーター4による触媒体1の予熱が不要となるため、触媒燃焼への立ち上がり時間を著しく短縮することができ、予熱バーナを追加する必要もないため、構造、および制御を簡素化することができる。この際、電気ヒーター4は単に着火手段の一つとして使用したものであり、圧電着火等の他の着火手段を用いても良い。
【0016】
触媒体1の下流側に排ガス熱交換部17を設けることにより、熱効率を向上させることができるが、特に輻射受熱体9近傍の熱交換部10と、触媒体1の下流側の排ガス熱交換部17を独立させ、熱交換部10内の被加熱流体と、排ガス熱交換部17内の被加熱流体を異種流体とする(一例として、熱交換部10内の被加熱流体を冷媒とし、排ガス熱交換部17内の被加熱流体を水とする)ことにより、熱交換器としての適応性を拡張できるとともに、伝熱性能と燃焼安定性を両立させやすくなり、高TDR化も可能となる。
【0017】
(実施の形態2)
次に、本発明の実施の形態2について説明する。図2は実施の形態2の断面図である。実施の形態2の触媒燃焼装置は実施の形態1における熱線透過体11がなく、輻射受熱体9と熱交換部10の間に熱抵抗体19を設けている。熱抵抗体19は熱伝導を抑制するものであり、形状として限定する必要はない。
【0018】
実施の形態2では、輻射受熱体9の触媒体側壁面温度を液体燃料が再凝縮やタールを発生しない温度(約240℃以上)とし、熱交換量を維持するために、機器全体が大型化しないように配慮して熱交換部10の伝熱面積を増加させている。実施の形態1と比較すると、触媒体1から輻射受熱体9への輻射伝熱性能は低下するが、熱線透過体11(ガラス)を設置する必要がなく、低コスト化を図りやすくなる。
【0019】
【発明の効果】
以上、説明したように、本発明の触媒燃焼装置によれば、次のような効果を得ることができる。
【0020】
輻射受熱体の触媒体側に受熱面と空間を介して熱線透過体を設けることにより、輻射受熱体への放射伝熱特性を維持した状態で液体燃料の再凝縮やタール発生を抑制することができる。対流熱伝達とは異なり、混合気の流れを乱すことなく、放射伝熱されるため、触媒体上流面における燃焼反応が阻害されることがなく、被加熱流体への熱交換量を増加させても燃焼安定性を確保することが可能となる。
【0021】
また、触媒体と補助触媒体の間に電気ヒーターを設け、燃焼開始時に電気ヒーターに通電し、触媒体、または補助触媒体を加熱した後、電気ヒーターへの通電を停止し、所定時間後、混合気を供給して触媒燃焼させることにより、電気ヒーター近傍での異常発火やNOxの発生もなく、触媒体と補助触媒体の間を保温領域とし、立ち上げ時間を短縮することができる。
【0022】
また、触媒体の下流面に火炎を付着させ、火炎燃焼から触媒燃焼に移行させることにより、触媒体の予熱が不要となるため、触媒燃焼への立ち上がり時間を著しく短縮することができ、予熱バーナを追加する必要もないため、構造、および制御を簡素化することができる。
【0023】
また、輻射受熱体近傍の熱交換部と、触媒体の下流側の排ガス熱交換部を独立させ、熱交換部内の被加熱流体と、排ガス熱交換部内の被加熱流体を異種流体とすることにより、熱交換器としての適応性を拡張できるとともに、伝熱性能と燃焼安定性を両立させやすくなり、高TDR化も可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の触媒燃焼装置の断面図
【図2】本発明の実施の形態2の触媒燃焼装置の断面図
【符号の説明】
1 触媒体
4 電気ヒーター
6 補助触媒体
9 輻射受熱体
10 熱交換部
11 熱線透過体
16 液体燃料気化部
17 排ガス熱交換部
19 熱抵抗体
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a catalytic combustion apparatus applied to domestic or business hot water supply and heating.
[0002]
[Prior art]
A catalyst that applies a precious metal catalyst such as platinum or palladium to a carrier such as cordierite that is catalytically combusted, and a heat exchanger is installed to transfer the combustion heat to a fluid to be heated such as water. Combustion devices have been proposed. Since catalytic combustion has a low combustion temperature, there is a great advantage that nitrogen oxides (hereinafter referred to as NOx) are hardly generated, lean combustion is possible, and combustion stability is excellent. At the start of catalytic combustion, the preheated burner is used to flame-combust the mixed gas of fuel gas and air to heat the catalyst body to the activation temperature or higher, and then the supply of the mixed gas is stopped to extinguish the flame of the preheated burner. Again, the air-fuel mixture is supplied and the catalyst is combusted, or as another method, the temperature of the catalyst body is raised by an electric heater or the like without causing the flame combustion, and then the air-fuel mixture is passed through the catalyst body and the catalyst is combusted. It was. In addition, in order to increase hot water supply and heating capacity, a method of increasing the temperature of the catalyst body within a range in which deterioration of the catalyst can be suppressed or increasing the red hot area of the catalyst body has been applied.
[0003]
[Problems to be solved by the invention]
However, the conventional catalytic combustion apparatus has the following problems. First, catalytic combustion has the great advantage of not generating NOx, but the combustion temperature is low, so if you try to increase the amount of heat exchange with the fluid to be heated, the catalyst body becomes large and it is difficult to downsize the entire device In the case of liquid fuel, after vaporization, the fuel was easily recondensed and tar was easily generated. In addition, after the flame combustion is performed with the preheating burner at the start of catalytic combustion, the supply of the air-fuel mixture is stopped, the flame of the preheating burner is extinguished, and the method of supplying the air-fuel mixture and catalytic combustion again tends to be complicated. In addition, when the temperature of the catalyst body is increased with an electric heater or the like without burning the flame, there is a problem that the startup time becomes long. Further, if the catalyst body is enlarged or the heat exchange amount to the fluid to be heated is increased, the combustion stability becomes insufficient particularly in the low combustion amount region, and the combustion amount variable range (hereinafter referred to as TDR) is increased. It was difficult to expand.
[0004]
In consideration of the problems of the conventional catalytic combustion apparatus, the present invention can suppress recondensation and tar generation of liquid fuel while maintaining radiant heat transfer characteristics to the radiation heat receiving body. An object of the present invention is to provide a catalytic combustion apparatus that does not hinder the combustion reaction on the upstream surface and can ensure combustion stability even when the amount of heat exchange with the heated fluid is increased. is there.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides, as a first means, a catalyst body having air permeability, a radiation heat receiving body having a heat receiving surface facing the upstream surface of the catalyst body, and a heat exchange section provided in the radiation heat receiving body. And a vaporizer for the liquid fuel to be sent to the catalyst body, and a catalyst combustion apparatus provided with a heat ray transmitting body positioned through the heat receiving surface and space on the catalyst body side of the radiation heat receiving body.
[0006]
As a second means, a catalyst body having air permeability, a radiation heat receiving body having a heat receiving surface facing the upstream surface of the catalyst body, a vaporizing portion of liquid fuel to be sent to the catalyst body, and a back surface of the heat receiving surface of the radiation heat receiving body The catalytic combustion apparatus is provided with a heat exchanging portion positioned via a thermal resistor.
[0007]
As a third means, a catalyst body having air permeability, a radiation heat receiving body having a heat receiving surface facing the upstream surface of the catalyst body, a heat exchanging portion provided in the radiation heat receiving body, and a downstream side of the catalyst body are arranged. The auxiliary catalyst body and an electric heater positioned between the catalyst body and the auxiliary catalyst body are provided, and the electric heater is energized at the start of combustion. After heating the catalyst body and the auxiliary catalyst body, the electric heater is energized. The catalyst combustion apparatus is stopped and, after a predetermined time, supplies an air-fuel mixture to perform catalytic combustion.
[0008]
As a fourth means, a catalyst body having air permeability, a radiation heat receiving body having a heat receiving surface facing the upstream surface of the catalyst body, a heat exchanging portion provided in the radiation heat receiving body, and a downstream side of the catalyst body. An auxiliary catalyst body and an ignition means positioned between the catalyst body and the auxiliary catalyst body, supplying an air-fuel mixture almost simultaneously with the operation of the ignition means at the start of combustion, and attaching a flame to the downstream surface of the catalyst body, A catalytic combustion apparatus that shifts from flame combustion to catalytic combustion is used.
[0009]
As a fifth means, the heat exchange part in the vicinity of the radiation heat receiving body and the exhaust gas heat exchange part on the downstream side of the catalyst body are made independent, and the heated fluid in the heat exchange part and the heated fluid in the exhaust gas heat exchange part are different fluids. The catalytic combustion apparatus.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
The first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of the first embodiment. The main parts of the catalytic combustion apparatus of the first embodiment are a catalyst body 1, a catalyst body support 2, a combustion chamber wall 3, an electric heater 4, an electric heater support 5, an auxiliary catalyst body 6, an auxiliary catalyst body support 7, and an auxiliary combustion chamber wall. 8, a radiation heat receiving body 9, a heat exchanging portion 10, a heat ray transmitting body 11, and a heat ray transmitting body support 12. The catalyst body 1 and the auxiliary catalyst body 6 are made by supporting a noble metal catalyst such as palladium or platinum using a cordierite honeycomb having air permeability as a carrier. The auxiliary catalyst body 6 is provided on the downstream side of the catalyst body 1, and the electric heater 4 is positioned between the catalyst body 1 and the auxiliary catalyst body 6. The radiant heat receiving body 9 is provided on the upstream side of the catalyst body 1 so as to face the catalyst body 1 so that the radiant heat receiving body 9 is likely to receive radiation, and the radiant heat receiving body 9 is provided with a heat exchanging portion 10. The heat ray transmitting body 11 is made of glass, and is provided on the catalyst body side of the radiation heat receiving body 9 via a space 11a. An air-fuel mixture supply path 13, an air supply path 14, a fuel supply path 15, and a liquid fuel vaporization section 16 are provided on the upstream side of the radiation heat receiving body 9. On the other hand, an exhaust gas heat exchange section 17 and an exhaust passage 18 are provided on the downstream side of the auxiliary catalyst body 6.
[0011]
Next, the operation of this embodiment will be described. First, the electric heater 4 is energized at the start of combustion, and the catalyst body 1 or the auxiliary catalyst body 6 is heated to the activation temperature or higher, and then the energization to the electric heater 4 is stopped and the surface temperature of the electric heater 4 is set to the ignition temperature. After making it less than, the air-fuel mixture is supplied to the catalyst body 1 and catalytic combustion is performed. The air-fuel mixture is a mixture of fuel vaporized through the fuel supply passage 15 and the liquid fuel vaporization section 16 and air from the air supply passage 14, and mixing is promoted in the air-fuel mixture supply passage 13. During catalytic combustion, the upstream surface of the catalyst body 1 is heated red, and radiant energy is injected upstream. The radiant energy is absorbed by the radiant heat receiving body 9 and converted back into thermal energy, whereby radiant heat is transferred from the catalyst body 1 to the radiant heat receiving body 9, and then the radiant heat receiving body 9 is subjected to heat conduction. Heat is transferred to the fluid to be heated by the provided heat exchange unit 10. Unlike convective heat transfer, radiant heat transfer is performed without disturbing the flow of the air-fuel mixture, so that the combustion reaction on the upstream surface of the catalyst body 1 is not hindered, and the amount of heat exchange with the fluid to be heated is increased. Also, combustion stability can be ensured.
[0012]
In addition, when the heat transfer performance is improved, the temperature of the radiation heat receiving body 9 is lowered. On the other hand, it is conceivable that liquid fuel such as kerosene is allowed to flow in a vaporized state. At this time, in order to prevent the liquid fuel from condensing again on the catalyst side wall surface (heat receiving surface) of the radiation heat receiving body 9 or to easily generate tar, the heat ray transmitting body 11 is placed on the catalyst body side of the radiation heat receiving body 9 in the space 11a. Is provided. Accordingly, the temperature of the catalyst side wall surface of the heat ray transmitting body 11 is increased while maintaining the radiant heat transfer characteristics to the radiation heat receiving body 9, and the recondensation of liquid fuel and the generation of tar are suppressed. The space 11a acts as an air insulation layer. The combustion gas that has passed through the catalyst body 1 is purified by the auxiliary catalyst body 6, exhaust heat is recovered by the exhaust gas heat exchange unit 17, and then exhausted from the exhaust passage 18.
[0013]
Further, by pressurizing the space 11a between the heat receiving surface of the radiation heat receiving body 9 and the heat ray transmitting body 11 with a fan or the like that blows air for combustion, the mixture is prevented from flowing into the space 11a. The recondensation and tar generation of the liquid fuel in 11a can be suppressed.
[0014]
As described above, the electric heater 4 is provided between the catalyst body 1 and the auxiliary catalyst body 6, and the electric heater 4 is energized at the start of combustion to heat the catalyst body 1 or the auxiliary catalyst body 6. The energization is stopped, and after a predetermined time, the air-fuel mixture is supplied and the catalyst is combusted, so that there is no abnormal ignition or NOx in the vicinity of the electric heater 4 and the temperature between the catalyst body 1 and the auxiliary catalyst body 6 is kept as a heat retaining region. , Shortening the startup time. Furthermore, since the upstream temperature of the catalyst body 1 does not rise at the time of start-up, the heat does not move to the radiation heat receiving body 9, and the heat of the electric heater 4 can be utilized efficiently for start-up. In particular, by stopping the flow of the fluid to be heated in the heat exchanging unit 10 at the time of start-up, heat transfer to the radiation heat receiving body 9 can be suppressed, so that the start-up time can be further shortened. At the time of catalytic combustion, the auxiliary catalyst body 6 improves the exhaust gas purification performance, raises the temperature of the catalyst body 1, and improves the radiation heat transfer performance to the radiation heat receiving body 9.
[0015]
On the other hand, the air-fuel mixture can be supplied almost simultaneously with the energization of the electric heater 4 at the start of combustion, and a flame can be attached to the downstream surface of the catalyst body 1 to shift from flame combustion to catalytic combustion. In this case, since the preheating of the catalyst body 1 by the electric heater 4 is not required, the rise time for catalytic combustion can be remarkably shortened, and it is not necessary to add a preheating burner, thereby simplifying the structure and control. can do. At this time, the electric heater 4 is merely used as one of the ignition means, and other ignition means such as piezoelectric ignition may be used.
[0016]
Although the thermal efficiency can be improved by providing the exhaust gas heat exchanging portion 17 on the downstream side of the catalyst body 1, the heat exchanging portion 10 in the vicinity of the radiation heat receiving body 9 and the exhaust gas heat exchanging portion on the downstream side of the catalyst body 1 in particular. 17, and the heated fluid in the heat exchange unit 10 and the heated fluid in the exhaust gas heat exchange unit 17 are different fluids (for example, the heated fluid in the heat exchange unit 10 is used as a refrigerant, By using water as the fluid to be heated in the exchange unit 17), adaptability as a heat exchanger can be expanded, heat transfer performance and combustion stability can be easily achieved, and high TDR can be achieved.
[0017]
(Embodiment 2)
Next, a second embodiment of the present invention will be described. FIG. 2 is a cross-sectional view of the second embodiment. The catalytic combustion apparatus of the second embodiment does not have the heat ray transmitting body 11 in the first embodiment, and a thermal resistor 19 is provided between the radiation heat receiving body 9 and the heat exchanging section 10. The thermal resistor 19 suppresses heat conduction and need not be limited in shape.
[0018]
In the second embodiment, the temperature of the side wall surface of the catalyst body of the radiation heat receiving body 9 is set to a temperature at which the liquid fuel does not recondense or generate tar (about 240 ° C. or higher), and the heat exchange amount is maintained. Thus, the heat transfer area of the heat exchange unit 10 is increased. Compared with Embodiment 1, the radiant heat transfer performance from the catalyst body 1 to the radiant heat receiving body 9 is lowered, but it is not necessary to install the heat ray transmissive body 11 (glass), and the cost can be easily reduced.
[0019]
【The invention's effect】
As described above, according to the catalytic combustion apparatus of the present invention, the following effects can be obtained.
[0020]
By providing a heat ray transmitting body through the heat receiving surface and space on the catalyst body side of the radiation heat receiving body, recondensation of liquid fuel and tar generation can be suppressed while maintaining the radiation heat transfer characteristics to the radiation receiving body. . Unlike convective heat transfer, radiant heat transfer is performed without disturbing the flow of the air-fuel mixture, so that the combustion reaction on the upstream surface of the catalyst body is not hindered, and the amount of heat exchange with the fluid to be heated can be increased. Combustion stability can be ensured.
[0021]
In addition, an electric heater is provided between the catalyst body and the auxiliary catalyst body, the electric heater is energized at the start of combustion, the catalyst body or the auxiliary catalyst body is heated, the energization to the electric heater is stopped, and after a predetermined time, By supplying the air-fuel mixture and performing catalytic combustion, there is no abnormal ignition or NOx in the vicinity of the electric heater, so that the temperature can be kept between the catalyst body and the auxiliary catalyst body, and the startup time can be shortened.
[0022]
Also, by attaching a flame to the downstream surface of the catalyst body and shifting from flame combustion to catalyst combustion, preheating of the catalyst body becomes unnecessary, so the rise time to catalyst combustion can be significantly shortened, and the preheating burner Therefore, the structure and control can be simplified.
[0023]
In addition, by making the heat exchange part near the radiant heat receiver and the exhaust gas heat exchange part downstream of the catalyst body independent, the heated fluid in the heat exchange part and the heated fluid in the exhaust gas heat exchange part are different fluids. In addition to being able to expand the adaptability as a heat exchanger, it is easy to achieve both heat transfer performance and combustion stability, and a high TDR is also possible.
[Brief description of the drawings]
FIG. 1 is a sectional view of a catalytic combustion apparatus according to a first embodiment of the present invention. FIG. 2 is a sectional view of a catalytic combustion apparatus according to a second embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Catalyst body 4 Electric heater 6 Auxiliary catalyst body 9 Radiation heat receiving body 10 Heat exchange part 11 Heat ray transparent body 16 Liquid fuel vaporization part 17 Exhaust gas heat exchange part 19 Thermal resistor

Claims (7)

通気性を有する触媒体と、前記触媒体の上流側に位置し、その触媒体に対向する受熱面を有する輻射受熱体と、前記輻射受熱体に設けられた熱交換部と、前記触媒体に送る液体燃料の気化部と、前記輻射受熱体の前記触媒体側に、前記受熱面から所定距離離れて配置され、熱線を透過させる熱線透過体とを備えたことを特徴とする触媒燃焼装置。A catalyst body having air permeability, a radiation heat receiving body located on the upstream side of the catalyst body and having a heat receiving surface facing the catalyst body, a heat exchanging portion provided in the radiation heat receiving body, and the catalyst body A catalytic combustion apparatus, comprising: a vaporizing unit for liquid fuel to be sent; and a heat ray transmitting member disposed at a predetermined distance from the heat receiving surface on the catalyst body side of the radiation heat receiving member and transmitting heat rays. 輻射受熱体の受熱面と前記熱線透過体の間の空間を加圧した請求項1記載の触媒燃焼装置。The catalytic combustion apparatus according to claim 1, wherein a space between a heat receiving surface of a radiation heat receiving body and the heat ray transmitting body is pressurized. 通気性を有する触媒体と、前記触媒体の上流側に位置し、その触媒体に対向する受熱面を有する輻射受熱体と、前記触媒体に送る液体燃料の気化部と、前記輻射受熱体の受熱面の裏面に熱抵抗体を介して設けられた熱交換部とを備えたことを特徴とする触媒燃焼装置。A catalyst body having air permeability, a radiant heat receiver located on the upstream side of the catalyst body and having a heat receiving surface facing the catalyst body, a vaporization portion of liquid fuel to be sent to the catalyst body, and the radiant heat receiver A catalytic combustion apparatus comprising: a heat exchanging portion provided on a back surface of a heat receiving surface via a thermal resistor. 通気性を有する触媒体と、前記触媒体の上流側に位置し、その触媒体に対向する受熱面を有する輻射受熱体と、前記輻射受熱体に設けられた熱交換部と、前記触媒体の下流側に配置された補助触媒体と、前記触媒体と前記補助触媒体の間に配置された電気ヒーターとを備え、燃焼開始時に前記電気ヒーターに通電し、前記触媒体及び前記補助触媒体を加熱した後、前記電気ヒーターへの通電を停止し、所定時間後、混合気を供給して触媒燃焼させることを特徴とする触媒燃焼装置。A catalyst body having air permeability, a radiation heat receiving body located on the upstream side of the catalyst body and having a heat receiving surface facing the catalyst body, a heat exchanging portion provided in the radiation heat receiving body, and the catalyst body An auxiliary catalyst body disposed on the downstream side, and an electric heater disposed between the catalyst body and the auxiliary catalyst body, energizing the electric heater at the start of combustion, the catalyst body and the auxiliary catalyst body After heating, the energization to the electric heater is stopped, and after a predetermined time, an air-fuel mixture is supplied to perform catalytic combustion. 通気性を有する触媒体と、前記触媒体の上流側に位置し、その触媒体に対向する受熱面を有する輻射受熱体と、前記輻射受熱体に設けられた熱交換部と、前記触媒体の下流側に配置された補助触媒体と、前記触媒体と前記補助触媒体の間に配置された着火手段とを備え、燃焼開始時に前記着火手段の作動とほぼ同時に混合気を供給し、前記触媒体の下流面に火炎を付着させ、火炎燃焼から触媒燃焼に移行させることを特徴とする触媒燃焼装置。A catalyst body having air permeability, a radiation heat receiving body located on the upstream side of the catalyst body and having a heat receiving surface facing the catalyst body, a heat exchanging portion provided in the radiation heat receiving body, and the catalyst body An auxiliary catalyst body disposed on the downstream side, and ignition means disposed between the catalyst body and the auxiliary catalyst body, supplying an air-fuel mixture substantially simultaneously with the operation of the ignition means at the start of combustion, A catalytic combustion apparatus characterized in that a flame is attached to a downstream surface of a medium to shift from flame combustion to catalytic combustion. 触媒体の下流側に排ガス熱交換部を設けた請求項1、3、4または5記載の触媒燃焼装置。The catalytic combustion apparatus according to claim 1, 3, 4 or 5, wherein an exhaust gas heat exchanging portion is provided downstream of the catalyst body. 輻射受熱体近傍の熱交換部と、前記触媒体の下流側の排ガス熱交換部が独立系統とされ、前記熱交換部内の被加熱流体と、前記排ガス熱交換部内の被加熱流体が異種流体である請求項6記載の触媒燃焼装置。The heat exchange part near the radiant heat receiver and the exhaust gas heat exchange part downstream of the catalyst body are independent systems, and the heated fluid in the heat exchange part and the heated fluid in the exhaust gas heat exchange part are different fluids. The catalytic combustion apparatus according to claim 6.
JP09540896A 1996-04-17 1996-04-17 Catalytic combustion device Expired - Fee Related JP3645029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09540896A JP3645029B2 (en) 1996-04-17 1996-04-17 Catalytic combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09540896A JP3645029B2 (en) 1996-04-17 1996-04-17 Catalytic combustion device

Publications (2)

Publication Number Publication Date
JPH09280517A JPH09280517A (en) 1997-10-31
JP3645029B2 true JP3645029B2 (en) 2005-05-11

Family

ID=14136858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09540896A Expired - Fee Related JP3645029B2 (en) 1996-04-17 1996-04-17 Catalytic combustion device

Country Status (1)

Country Link
JP (1) JP3645029B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19604263A1 (en) * 1996-02-06 1997-08-14 Fraunhofer Ges Forschung Catalytic burner
US6669469B2 (en) 2001-02-21 2003-12-30 Matsushita Electric Industrial Co., Ltd. Catalyst combustion device and method of producing frame body portion thereof

Also Published As

Publication number Publication date
JPH09280517A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JP4617072B2 (en) Evaporation apparatus, in particular an evaporation apparatus for producing a hydrocarbon / mixture mixture decomposable to recover hydrogen in a reformer
JP3466103B2 (en) Catalytic combustion device
JPH1122916A (en) Combustion device
KR100257551B1 (en) Combustion apparatus
JP3645029B2 (en) Catalytic combustion device
JP3657675B2 (en) Combustion equipment
JP3779792B2 (en) Catalytic combustion device
JP3678855B2 (en) Catalytic combustion device
JP2000146298A (en) Catalyst combustor
JP3504777B2 (en) Liquid fuel vaporizer
JP2005274063A (en) Catalyst combustion type fluid heating device
JPH1151333A (en) Catalytic combustion equipment
JPH1151310A (en) Catalytic combustion equipment
JPH1122924A (en) Catalystic combustion device
JP3709296B2 (en) Catalytic combustion device
JPH06249414A (en) Catalytic burner
JP3793609B2 (en) Combustion device
JP2001059603A (en) Catalytic combustion equipment
JP3596741B2 (en) Catalytic combustion device
JPS59202310A (en) Catalytic burner
JP2000039115A (en) Catalytic combustor
JPH1089616A (en) Catalyst combustor
JPH044489B2 (en)
JPH0771714A (en) Catalyst combustion device
JPH0849810A (en) Catalyst combustion type fluid heating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees