JPS6165099A - Return channel of centrifugal compressor - Google Patents

Return channel of centrifugal compressor

Info

Publication number
JPS6165099A
JPS6165099A JP59186568A JP18656884A JPS6165099A JP S6165099 A JPS6165099 A JP S6165099A JP 59186568 A JP59186568 A JP 59186568A JP 18656884 A JP18656884 A JP 18656884A JP S6165099 A JPS6165099 A JP S6165099A
Authority
JP
Japan
Prior art keywords
vane
return
fluid
centrifugal compressor
return channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59186568A
Other languages
Japanese (ja)
Inventor
Yasushi Furuya
泰 古谷
Keiji Koike
小池 啓二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP59186568A priority Critical patent/JPS6165099A/en
Publication of JPS6165099A publication Critical patent/JPS6165099A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To relax a rapid increase and decrease in a speed of fluid, by providing slits in return vane so as to free an outflow and an inflow of the fluid in a belly surface side and a back surface of the vane in the return channel of a centrifugal compressor. CONSTITUTION:A centrifugal compressor has an impeller 1 and a seal device 3, and a return vane 9 in a return channel 10 in the centrifugal compressor provides slits 14 connecting a belly surface side of the return vane 9 with its back surface side and permitting fluid to freely circulate. Accordingly, the centrifugal compressor, allowing the fluid to flow in accordance with its flow amount from the belly surface side to the back surface side or reversely to that direction so as to relax a rapid increase and decrease in a speed of the fluid, enables the generation of exfoliation and surging to be prevented particularly in a low flow quantity range of air by suppressing an increase of loss in the whole flow quantity range of air.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、羽根車で与えられた速度エネルギをディフュ
ーザで回収して減速、昇圧し、さらに未回収の速度エネ
ルギをリターンチャンネルで回収する構成を有する遠心
圧縮機におけるリターンチャンフルに関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a configuration in which velocity energy given by an impeller is recovered by a diffuser, decelerated and pressurized, and unrecovered velocity energy is recovered by a return channel. The present invention relates to a return chamfer in a centrifugal compressor having a centrifugal compressor.

〔従来技術〕[Prior art]

従来、リターンチャンネルを有する多段圧縮機において
は、第1図に示したように、羽根車1゜1゛が圧縮機本
体2内に軸受及びシール装置3によって支承された駆動
軸4に多段に連接され、各羽根m1.l’ は圧縮機本
体2、吸い込みカバー5、中胴6.6’  6”によっ
てそれぞれ区画形成された羽根車室内に収容されている
。また、羽根車1の出口は、ディフューザ7を経て、さ
らに中胴6.6”によって形成されたUターン部8及び
戻りベーン9を配設した流路からなるリターンチャンネ
ルlOを経て次段の羽根車1°の入口に連なり、羽根車
l°の出口はディフューザ7°を経て禍を室11に連な
っている。
Conventionally, in a multi-stage compressor having a return channel, as shown in FIG. and each blade m1. l' is accommodated in an impeller chamber partitioned by the compressor main body 2, suction cover 5, and middle body 6.6'6''.The outlet of the impeller 1 passes through a diffuser 7, It connects to the inlet of the impeller 1° of the next stage through a return channel 10 consisting of a U-turn part 8 formed by the middle body 6.6" and a flow path in which a return vane 9 is arranged, and the outlet of the impeller 1° is connected to the inlet of the impeller 1° of the next stage. The misfortune is connected to chamber 11 through the diffuser 7°.

図中、12は吸い込みカバー5に接続された吸造管、1
3.+3°はそれぞれ羽根車1. 1’ のノール装置
を示す。
In the figure, 12 is a suction pipe connected to the suction cover 5;
3. +3° is impeller 1. 1' Knoll apparatus is shown.

このような多段圧縮段の作用は、羽根車によって吸込T
’l’12から流体を吸い込み、昇圧すると共に速度エ
ネルギを与え、更にディフューザ7に轟いて減速、昇圧
して速度エネルギを回収する。しかし、ディフューザ7
においては、流体の速度エネルギは十分に回収されず、
まだかなりの速度エネルギを持っており、この残留速度
エネルギはさらにUターン部8及び戻りへ一/9を配設
した流路からなるリターンチャンネル10に至って回収
され、次段の、V目U車1′に4かれ、さらにディフュ
ーザ7′を経て渦巻室11に至る。
The action of such a multi-stage compression stage is that the impeller increases the suction T.
Fluid is sucked in from 'l' 12, pressurized, and given velocity energy, and then sent to the diffuser 7 to decelerate, pressurize, and recover velocity energy. However, diffuser 7
, the velocity energy of the fluid is not sufficiently recovered;
It still has considerable velocity energy, and this residual velocity energy is further recovered by reaching the return channel 10 consisting of the U-turn section 8 and the flow path with 1/9th of the return channel. 1', and further reaches the swirl chamber 11 via a diffuser 7'.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ここで戻りへ−ンを配設した流路について検討する。 Here, a flow path with a return channel will be considered.

いま戻りへ一ン人口の流体速度をC7とすると、Uター
ン部出口の風量、流路幅、流れ角(周方向に対する角度
)をそれぞれQ、、B、、R−、、α。
Returning now, if the fluid velocity at one point is C7, the air volume, flow path width, and flow angle (angle with respect to the circumferential direction) at the U-turn exit are Q, B, R-, α, respectively.

としたとき、 C5−Q−、/2rt Rs  Bs  Sin α。When C5-Q-, /2rt Rs Bs Sin α.

となる。一方、リターンチャンネルのスロート (戻り
ベーンがチャンネルを構成し始める位置)をtを付して
表示し、スロートの径、ベーンの数をそれぞれDt、Z
とすれば、スロートにおける流体の速度C【は、 Ct−Qs / ZD t−Bs となる。
becomes. On the other hand, the throat of the return channel (the position where the return vanes start forming the channel) is indicated with t, and the diameter of the throat and the number of vanes are indicated as Dt and Z, respectively.
Then, the velocity C of the fluid at the throat becomes Ct-Qs/ZDt-Bs.

C1とCtの関係は、第3図(a)および(b)で示し
た9口く、設計風量ではC2からCLへの変化は殆どな
いが、設計点以外の風量においては、低風量域では減速
、大風量域では増速となり、低風量域での減速率が大き
くなると、サージングの発生原因となる場合がある。
The relationship between C1 and Ct is as shown in Figure 3 (a) and (b), and there is almost no change from C2 to CL at the design air volume, but at air volumes other than the design point, in the low air volume region. It decelerates and increases the speed in the high air volume range, and if the deceleration rate becomes large in the low air volume range, it may cause surging.

即ち、設計点以外ではスロートベーン腹面側の半径R,
の位置では速度はC3に等しいが、スロートにおける平
均速度はCtとなるためベーン背面側では半径R1の位
置からスロートの位置までの間で急激な減速または増速
が必要となる。(第3図(b)参IIq)従って低風量
域でベーン背面側の減速率が大きくなると、流体がスロ
ートに達する以前にベーン背面側では剥離して大きい槓
失を生じ、さらに風量が低下すればサージングへと発展
する。
That is, outside the design point, the radius R of the throat vane ventral surface side is
At the position, the speed is equal to C3, but the average speed at the throat is Ct, so a rapid deceleration or speed increase is required on the back side of the vane between the radius R1 position and the throat position. (See Figure 3 (b) IIq) Therefore, if the deceleration rate on the back side of the vane increases in a low air volume region, the fluid will separate on the back side of the vane before it reaches the throat, causing a large loss of force, and the air volume will further decrease. This develops into surging.

従って、従来の遠心圧縮機のリターンチャンネルの性能
を表すtnn失敗数ベーン入口から出口までの全圧…失
をベーン入口の動圧で割って無次元化したもの)ξ、は
第4図に示す如くになり、設計点ではt貝失係数ξ。は
最小であるが、設計風量から外れる程で激に増大する。
Therefore, the number of failures, tnn, which represents the performance of the return channel of a conventional centrifugal compressor (total pressure lost from the vane inlet to the vane outlet, divided by the dynamic pressure at the vane inlet to make it dimensionless), is shown in Figure 4. So, at the design point, the lapse coefficient ξ. is the minimum, but it increases dramatically as the air volume deviates from the design air volume.

ここで、低風■域での…失増大はベーン入口からスロー
トまでの減速によるものが大きく、一方、大風量域での
撰失増大はスロート以後の速度の増大によるものが大き
いと考えられる。′ 本発明は、上記の如き従来の問題点を解決し、戻りベー
ンの背面側における流体の2激な増、減速を緩和して今
風m域におけるli失の増大を印制し、とくに低風量域
における′fiI 1TIIf及びサージングの発生を
防上することを目的としている。
Here, it is thought that the increase in air loss in the low wind region (■) is largely due to the deceleration from the vane inlet to the throat, while the increase in air loss in the large air volume area is largely due to the increase in speed after the throat. ' The present invention solves the above-mentioned conventional problems, alleviates the drastic increase and deceleration of the fluid on the back side of the return vane, suppresses the increase in li loss in the current wind m range, and is particularly effective for low air volume. The purpose is to prevent the occurrence of 'fiI 1TIIf and surging in the area.

(問題点を解決するだめの手段) 本発明は、以上の如き問題点を解決する手段として、羽
根車で与えられた速度エネルギをディフューザで回収し
て減速、昇圧し、さらに未回収の速度エネルギをリター
ンチャンネルで回収する構成を有する遠心圧縮機におい
て、リターンチャンネル中の戻りベーンにスリットを設
け、ベーン腹面側と背面側の流体の出入を自由にしたも
のである。
(Means for Solving the Problems) As a means for solving the above-mentioned problems, the present invention recovers the velocity energy given by the impeller using a diffuser, decelerates and boosts the pressure, and further collects the unrecovered velocity energy. In a centrifugal compressor configured to collect fluid in a return channel, a slit is provided in the return vane in the return channel to allow fluid to freely flow in and out from the vent side and the back side of the vane.

上記の構成により、流体はスリットを通って腹面側と背
面側との間で流通し、宏激な増、減速を緩和して全風量
域において用失の増大を抑制し、とくに低風量域におけ
る剥離及びサージングの発生を防止することができる。
With the above configuration, the fluid flows between the ventral side and the back side through the slit, alleviates drastic increase and deceleration, and suppresses the increase in dissipation in the entire air volume range, especially in the low air volume range. The occurrence of peeling and surging can be prevented.

〔実施例〕〔Example〕

以下v、5図に示す本発明の実施例について説明する。 Embodiments of the present invention shown in FIGS. v and 5 will be described below.

第5図に示した如く、リターンチャンネルlO中の戻り
へ−79には戻りベーン9の腹面側と背面側を連通し流
体の自由な流通を許ずスリンH4が設けられている。
As shown in FIG. 5, a sulin H4 is provided in the return channel 1O in the return channel 10 so as to communicate the vent side and the back side of the return vane 9 and not allow free flow of fluid.

そこで圧縮機が低風組成運転となり、ベーン入口とスロ
ートとの間のへ一ン背面側における減速率が大きくなり
、ベーン背面側の流量が小さくなると、ベーン腹面側の
昇圧された流体がスリット14を通つてベーン背面側に
流れ込み、流れの急激な減速を緩和してこの領域におけ
る境界層の発達を抑制する。従って設計点以下の低風量
域における運転において、ベーン背面における流れの剥
離を抑制する効果を奏し、設計点近傍の運転性能を維持
することができる。
Therefore, the compressor operates at a low wind composition, the deceleration rate on the back side of the vane between the vane inlet and the throat increases, and the flow rate on the back side of the vane decreases. It flows into the back side of the vane through the flow, mitigating the rapid deceleration of the flow and suppressing the development of a boundary layer in this region. Therefore, in operation in a low air volume region below the design point, it is possible to suppress flow separation on the back surface of the vane, and maintain operational performance near the design point.

また圧11機が大風量域運転となると、流体はスリット
14を通ってヘー79の背面側から腹面側に流れる。こ
れは、スロート以降の圧力関係が第3図(a)に示した
如く設計点を境として逆転するために生したもので、大
風量域ではスリット14を通してリターンチャンスル1
0のスロートをバイパスする流れが生じてベーン入口か
らスロートまでの間の過大な増速か緩和され、リターン
チャンネルlOの性能を向上させることができる。
Further, when the pressure 11 is operated in a large air volume region, the fluid flows through the slit 14 from the back side of the heel 79 to the vent side. This occurs because the pressure relationship after the throat reverses around the design point as shown in Figure 3 (a), and in a large air volume area, the return chancel 1
A flow bypassing the throat of the vane is generated to alleviate excessive speed increase between the vane inlet and the throat, thereby improving the performance of the return channel lO.

従って本実施例の戻りへ−ンは第4図中に破線で示した
如く、設創点とほぼ同し高性能の区域が設計点の両側の
大風量域及び低風量域に拡大され、広い運転領域にわた
って高効率のリターンチャンネルとしてI1動させるこ
とができ、圧縮機の効率の改善にも寄与することができ
る。
Therefore, as shown by the broken line in Fig. 4, the return line in this example is almost the same as the creation point, and the high performance area is expanded to the high air volume area and the low air volume area on both sides of the design point, and the area is wide. I1 can be operated as a highly efficient return channel over the operating range and can also contribute to improving the efficiency of the compressor.

なお、上記第5図に示した実施例においては、スリット
14はベーン毎にベーン入口からスロートまでの範囲に
二個設けられているが、これは−個でもまた二個以上の
適当な数とすることもできる。
In the embodiment shown in FIG. 5, two slits 14 are provided for each vane in the range from the vane entrance to the throat, but this number may be - or any suitable number of two or more. You can also.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明はリターンチャンネル中の戻りベ
ーンにスリットを設け、ベーン腹面側の流体の出入を自
由にしたので、流量の大小に応して腹面側から背面側へ
またはその逆に流れることにより、流体の急激な増、減
速を緩和して全風量域において損失の増大を抑制し、と
(に低風量域における剥離及びサージングの発生を防止
し、全風量域において圧縮機の効率を設計点における効
率値に改善することができる。
As described above, the present invention provides a slit in the return vane in the return channel to allow fluid to freely flow in and out from the ventral side of the vane, so that the fluid flows from the ventral side to the back side or vice versa depending on the magnitude of the flow rate. This reduces the sudden increase and deceleration of the fluid, suppresses the increase in loss in the entire air volume range, prevents separation and surging in the low air volume range, and improves compressor efficiency in the entire air volume range. The efficiency value at the design point can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多段圧縮機の縦断側面図、第2図は第1
図の戻りベーンを示す横断面図、第3図(a)は吸い込
みJl!II?Fとベーン人口及びスロートにおける流
体速度との関係を示す図、第3図(b)はチャンネルの
スロートにおける流体のa19分布を示す図、第4図は
流体流量とリターンチャンネルの効率の変化を示す図、
第5図は本発明の実施例を示す第2図と同様の図である
。 1、ビ  羽根車、2− 圧縮機本体、3−軸受及びソ
ール装置、4− 駆動軸、5  吸い込みカバー、6,
6°、6′  中桐−7,7′・ ディフューザ、8−
Uターン部、9 −戻りベーン、lO−リターンチャン
ネル、IL渦巻室、I2  吸込管、13.13’  
−ソール装置、14−  スリット、 134  デイフユーヂ出口の流路幅 B 、−Uターン部出口の流路幅 DL   リターンチャンネルスロート径C3Uターン
部出口の速度 C4・−−−リターンチャンスルスロートの速度。 特許出願人    株式会社  荏原製作所代理人 弁
理士  高  木  正   行代理人 弁理士  依
  1) 孝 次 部第3図
Figure 1 is a vertical side view of a conventional multistage compressor, and Figure 2 is a vertical side view of a conventional multistage compressor.
The cross-sectional view showing the return vane in Figure 3 (a) is the suction Jl! II? A diagram showing the relationship between F, vane population, and fluid velocity at the throat, Figure 3 (b) is a diagram showing the A19 distribution of fluid at the throat of the channel, and Figure 4 shows changes in fluid flow rate and efficiency of the return channel. figure,
FIG. 5 is a diagram similar to FIG. 2 showing an embodiment of the present invention. 1. Bi impeller, 2- compressor main body, 3- bearing and sole device, 4- drive shaft, 5 suction cover, 6.
6°, 6' Nakatou-7, 7' Diffuser, 8-
U-turn, 9 - return vane, lO - return channel, IL vortex chamber, I2 suction pipe, 13.13'
- Sole device, 14 - Slit, 134 Passage width B at the outlet of the diffuser, - Passage width DL at the exit of the U-turn section Return channel throat diameter C3 Speed of the exit of the U-turn section C4 - Speed of the return chancel throat. Patent Applicant Ebara Corporation Agent Patent Attorney Masayuki Takagi Agent Patent Attorney Yori 1) Takashi Part 3 Figure 3

Claims (1)

【特許請求の範囲】 1、羽根車で与えられた速度エネルギをディフューザで
回収して減速、昇圧し、さらに未回収の速度エネルギを
リターンチャンネルで回収する構成を有する遠心圧縮機
において、リターンチャンネル中の戻りベーンにスリッ
トを設け、ベーン腹面側と背面側の流体の出入を自由に
したことを特徴とする、遠心圧縮機のリターンチャンネ
ル。 2、前記戻りベーンのスリットが、戻りベーン入口から
、該戻りベーンのスロートまでの範囲に設けられている
ことを特徴とする特許請求の範囲第1項記載の遠心圧縮
機のリターンチャンネル。
[Claims] 1. In a centrifugal compressor having a configuration in which velocity energy given by an impeller is recovered by a diffuser to decelerate and increase pressure, and unrecovered velocity energy is recovered by a return channel, A return channel for a centrifugal compressor characterized by providing a slit in the return vane to allow fluid to freely flow in and out from the ventral and rear sides of the vane. 2. The return channel of a centrifugal compressor according to claim 1, wherein the slit of the return vane is provided in a range from the return vane inlet to the throat of the return vane.
JP59186568A 1984-09-07 1984-09-07 Return channel of centrifugal compressor Pending JPS6165099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186568A JPS6165099A (en) 1984-09-07 1984-09-07 Return channel of centrifugal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186568A JPS6165099A (en) 1984-09-07 1984-09-07 Return channel of centrifugal compressor

Publications (1)

Publication Number Publication Date
JPS6165099A true JPS6165099A (en) 1986-04-03

Family

ID=16190802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186568A Pending JPS6165099A (en) 1984-09-07 1984-09-07 Return channel of centrifugal compressor

Country Status (1)

Country Link
JP (1) JPS6165099A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383764A (en) * 1992-03-11 1995-01-24 Nikkiso, Co., Ltd. Diffusor pump having diffusor blades
CN100374733C (en) * 2004-02-23 2008-03-12 孙敏超 Radial single raw blade diffuser
JP2008302745A (en) * 2007-06-05 2008-12-18 Kobelco Cranes Co Ltd Hydraulic piping structure for crawler type working machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383764A (en) * 1992-03-11 1995-01-24 Nikkiso, Co., Ltd. Diffusor pump having diffusor blades
CN100374733C (en) * 2004-02-23 2008-03-12 孙敏超 Radial single raw blade diffuser
JP2008302745A (en) * 2007-06-05 2008-12-18 Kobelco Cranes Co Ltd Hydraulic piping structure for crawler type working machine

Similar Documents

Publication Publication Date Title
JP2743658B2 (en) Centrifugal compressor
US4877370A (en) Diffuser for centrifugal compressor
US5228832A (en) Mixed flow compressor
JPS6165099A (en) Return channel of centrifugal compressor
JPH0968197A (en) Impeller for centrifugal pump or compressor
JPS58101299A (en) Centrifugal compressor
JPS61210298A (en) Centrifugal pump impeller
JP2573292B2 (en) High speed centrifugal compressor
JPH03134298A (en) Diffuser with vanes of centrifugal compressor
WO1996028662A1 (en) Centrifugal hydraulic machine
JPH01318790A (en) Flashing vane of multistage pump
JPS6138198A (en) Diffuser for centrifugal hydraulic machine
JPS62168905A (en) Moisture removing device for turbine
JPH11257291A (en) Diffuser of centrifugal compressor
JPS5859399A (en) Turbo-type fluid machine
JPH0615879B2 (en) Diff user of centrifugal fluid machine
JPS59115500A (en) Blade in retardation cascade for axial-flow rotary machine
JPH1182389A (en) Turbo-fluid machinery
JPH0615878B2 (en) High-speed centrifugal compressor diffuser
JPS5920598A (en) Centrifugal blower
JPS58150099A (en) Centrifugal impeller
JPS588203A (en) Diaphragm for axial flow turbine
JPS6261800B2 (en)
US1424263A (en) Tttrbine
JPS58167900A (en) Diffuser equipped with guide vane