JPS5859399A - Turbo-type fluid machine - Google Patents

Turbo-type fluid machine

Info

Publication number
JPS5859399A
JPS5859399A JP56156264A JP15626481A JPS5859399A JP S5859399 A JPS5859399 A JP S5859399A JP 56156264 A JP56156264 A JP 56156264A JP 15626481 A JP15626481 A JP 15626481A JP S5859399 A JPS5859399 A JP S5859399A
Authority
JP
Japan
Prior art keywords
impeller
diffuser
conduit
fluid machine
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56156264A
Other languages
Japanese (ja)
Inventor
Hideo Nishida
秀夫 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56156264A priority Critical patent/JPS5859399A/en
Publication of JPS5859399A publication Critical patent/JPS5859399A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To improve the performance of a turbo-type fluid machine, by reducing the area of flow separating regions in both of a diffuser passage and an impeller passage through provision of a conduit connecting these two passages to each other. CONSTITUTION:When a valve 12 is opened, fluid flow from a diffuser section 8 toward an impeller 3 is caused in a conduit 11 since pressure in the diffuser section 8 is higher than that in the region of the impeller 3. Here, since one end of the conduit 11 is opened on the side 7a of a guide vane 7 where the pressure is negative, i.e., in a region 14 where separation of fluid flow is caused, separated fluid is drawn into the conduit 11. Therefore, the area of the separation region 14 is reduced. On the other hand, since the other end of the conduit 11 is opened on the side 13 of the fluid passage in the casing 4, high-pressure fluid drawn into the conduit 11 from the diffuser 8 is ejected toward the impeller 3. Resultantly, energy is supplied to the fluid separated from the negative-pressure side of the impeller 3, so that the area of the separation region in the impeller 3 can be reduced.

Description

【発明の詳細な説明】 この発明は、遠心圧縮機や斜流送風機などのようなター
ボ形流体機械に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbo fluid machine such as a centrifugal compressor or mixed flow blower.

従業のターボ1流体機械は、第1図に示すように、6板
1と複数の羽根2からなる側板無し羽根車3.この羽根
車3に対向して設けられたケーシング4、羽根車3の外
周側に対向して配置された1組のディフューザ板5.6
の間に案内羽根7を円形翼列状に配置してなる案内羽根
付ディフューザ8.このデイフスーザ8から吐出される
流体を集めるスクロール91および吸込管10などによ
り構成されている。このように構成されたターボ形流体
機械においては、設計流量点付近では1羽根車3やデイ
フ二−ザ8の入口部において流れ角αが羽根角βとほぼ
一致するため、ターボ形流体の性能は高い。しかし、流
量が減少すると、羽根車3の入口部においては、第2図
に示すように。
As shown in FIG. 1, the employee's turbo 1 fluid machine has an impeller without side plates, which is composed of six plates 1 and a plurality of blades 2. A casing 4 is provided to face the impeller 3, and a pair of diffuser plates 5, 6 are arranged to face the outer circumferential side of the impeller 3.
A diffuser with guide vanes 8 in which guide vanes 7 are arranged in a circular row between the guide vanes. It is comprised of a scroll 91 that collects fluid discharged from the diffuser 8, a suction pipe 10, and the like. In the turbo fluid machine configured in this way, the flow angle α almost matches the blade angle β at the inlet of one impeller 3 and the diffuser 8 near the design flow point, so the performance of the turbo fluid is is expensive. However, when the flow rate decreases, at the inlet of the impeller 3, as shown in FIG.

羽根2の角度β1と流れ角α、iが異なってしまうため
1羽根2の負圧面側2aで流れは剥離を起す。
Since the angle β1 of the blade 2 and the flow angle α, i are different, the flow causes separation on the suction side 2a of the blade 2.

また、ディフユーザ80入口部においても第3図に示す
ように、案内羽根7の角度βdと流れ角αdの違いによ
りゃはり負圧面側7aで剥離が生じる。この結果、ター
ボ形流体機械の性能が低下するばかりでなく、設計流量
点に比較的近い流量点で流体機械はサージングに入るた
め1作動範囲も狭くなるという欠点があった。
Furthermore, as shown in FIG. 3 at the entrance of the diff user 80, separation occurs on the negative pressure side 7a due to the difference between the angle βd of the guide vane 7 and the flow angle αd. As a result, not only the performance of the turbo-type fluid machine deteriorates, but also the fluid machine enters surging at a flow point relatively close to the design flow point, resulting in a disadvantage that the operating range becomes narrower.

この発明は上述の事柄にもとづきなされたもの  −′
□で、ディフューザや羽根車における剥離領域を減らす
ことにより、ターボ形流体機械の作動範囲の拡大と低流
量域(部分負荷)の性能向上を計るようにしたターボ形
流体機械を提供することを目的とするものである。
This invention was made based on the above-mentioned matters −′
□The purpose is to provide a turbo fluid machine that expands the operating range of the turbo fluid machine and improves performance in the low flow range (partial load) by reducing the separation area in the diffuser and impeller. That is.

本発明の特徴は、ケーシング内に設けられた側板無し羽
根車と、対向する1組のディフューザ板の間に案内羽根
を円形翼列状に配置してなる案内羽根付ディフューザと
を備えるターボ形流体機械において、一端がディフュー
ザ流路における案内羽根の負圧面側に開口し、他端が羽
根車に対向して設けられたケーシングの流路面側に開口
する管路を設け、その管路の途中にターボ形流体機械の
流量と連動して作動される弁を設けたものである。
The present invention is characterized in that it provides a turbo fluid machine including an impeller without side plates provided in a casing and a diffuser with guide vanes in which guide vanes are arranged in a circular row between a pair of opposing diffuser plates. , a conduit is provided with one end opening on the negative pressure side of the guide vane in the diffuser flow path and the other end opening on the flow path side of the casing provided opposite to the impeller, and a turbo type It is equipped with a valve that is operated in conjunction with the flow rate of the fluid machine.

このように構成することにより、ディフューザ内の負圧
部の流体を羽根車流路の負圧部に吹き出させ、これによ
りディフューザ内の剥離竣および羽根車内の剥離域を減
らすことができ、ターボ形流体機械の作動範囲の拡大と
低流量域における特性の向上をはかることができる。
With this configuration, the fluid in the negative pressure section in the diffuser can be blown out to the negative pressure section in the impeller flow path, thereby reducing the amount of separation in the diffuser and the separation area in the impeller. It is possible to expand the operating range of the machine and improve characteristics in the low flow range.

以下、本発明を遠心形流体機械に適用した場合の一実施
例を第4図〜第6図により説明する。これら各図釦おい
て、第1図〜第3図に示した本のと同一のものには同一
符号を付しである。
An embodiment in which the present invention is applied to a centrifugal fluid machine will be described below with reference to FIGS. 4 to 6. In each of these figures, buttons that are the same as those in the book shown in FIGS. 1 to 3 are given the same reference numerals.

図において、11は管路で、この管路11の一端は、デ
ィフューザ板5を貫通してディフューザ流路における案
内羽根7の負圧面側7aに開口しく第6図参照)、また
他端は、羽根車3に対向して設けられたケーシング4の
流路面側13に開口している。また、第5図に示すよう
に、ケーシング4の流路面側13における管路11とそ
の法線のなす角Rrは正となるように構成されている。
In the figure, 11 is a conduit, and one end of this conduit 11 passes through the diffuser plate 5 and opens on the negative pressure side 7a of the guide vane 7 in the diffuser flow path (see FIG. 6), and the other end is It opens on the flow path surface side 13 of the casing 4 provided opposite the impeller 3. Further, as shown in FIG. 5, the angle Rr between the pipe line 11 on the flow path side 13 of the casing 4 and its normal line is positive.

管路11の途中には、遠心形流体機械の流量制御弁(図
示せず)と連動する弁12が設けられており、この弁1
2は遠心形流体機械の流量と連動して作動される。この
ような弁12を有する管路11がディフューザ8におけ
る案内羽根7の翼列lピッチにつき1本づつ、即ち案内
羽根7の数と同じ数だけ設けられている。弁12は、タ
ーボ形流体機械の運転状態が設計流量点付近では閉じて
いるが、流量制御弁の開度がある値以下、即ち流量があ
る値以下になると開くように構成されている。
A valve 12 is provided in the middle of the conduit 11 and is connected to a flow control valve (not shown) of a centrifugal fluid machine.
2 is operated in conjunction with the flow rate of the centrifugal fluid machine. One conduit 11 having such a valve 12 is provided for each pitch of the guide vanes 7 in the diffuser 8, that is, the same number as the guide vanes 7. The valve 12 is closed when the operating state of the turbo fluid machine is near the design flow rate point, but is configured to open when the opening of the flow control valve becomes less than a certain value, that is, the flow rate becomes less than a certain value.

上記のように構成した一実施例の作用について以下述べ
る。遠心形流体機械の設計流量点付近では、弁12は閉
じているから、この遠心形流体機械は従来の遠心形流体
機械と同様に作用し、したがって高い性能か得られる。
The operation of one embodiment configured as described above will be described below. Since the valve 12 is closed near the design flow point of the centrifugal fluid machine, the centrifugal fluid machine operates in the same manner as a conventional centrifugal fluid machine, thus providing high performance.

遠心形流体機械の流量制御弁を絞ることによって、流量
がある値以下になると、弁12け開かれる。一般に、デ
ィフューザ8部の圧力は1羽根車3内の圧力より高いか
ら、弁12が開かれるとその圧力差により、第5図に矢
印で示すように管路11内ではディフューザ8部から羽
根車3に向う流れが生ずる。この管路11の一端は第6
図に示すように、ディフューザ流路における案内羽根7
の負圧面側7a、即ち流れの剥離領域14に開口してい
るから、ディフューザ8内で剥離した流体は管路11に
吸込まれることになる。その結果、図に示すように、本
発明におけるディフューザ8内の剥離領域14は従来の
遠心形流体機械の場合における剥離領域15よりも大幅
に減少し、ディフューザ性能は大幅に向上する。着た、
管路11の他端は1羽根車3に対向して設けられたケー
シング4の流路面側13に、開口しているから、管路1
1に吸込まれたディフューザ8内の高圧流体は、羽根車
3に向って吹き出される。その結果、羽根車3内におけ
る羽根2の負圧面側の剥離した流体にエネルギが与えら
れるから、羽根車3内の剥離領域も小さくすることがで
き、したがって羽根車性能も向上する。さらに、羽根車
3やディフューザ8内の剥離領域の減少によって、ター
ボ形流体機械のサージング点は設計流量点より本かなり
少ない流量のところになり、したがって作動範囲も拡大
する。
By throttling the flow control valves of the centrifugal fluid machine, when the flow rate falls below a certain value, 12 valves are opened. In general, the pressure in the diffuser 8 section is higher than the pressure in the impeller 3, so when the valve 12 is opened, the pressure difference causes the pressure in the diffuser 8 section to move from the impeller to the impeller in the pipe line 11, as shown by the arrow in FIG. A flow toward 3 occurs. One end of this pipe 11 is connected to the sixth
As shown in the figure, guide vanes 7 in the diffuser flow path
Since it is open to the negative pressure side 7a of the diffuser 8, that is, the flow separation region 14, the fluid separated within the diffuser 8 is sucked into the pipe line 11. As a result, as shown in the figure, the separation area 14 in the diffuser 8 in the present invention is significantly reduced compared to the separation area 15 in the conventional centrifugal fluid machine, and the diffuser performance is significantly improved. worn,
The other end of the pipe line 11 is open to the flow path side 13 of the casing 4 provided opposite to the first impeller 3, so the pipe line 1
The high-pressure fluid in the diffuser 8 that has been sucked into the diffuser 1 is blown out toward the impeller 3 . As a result, energy is given to the separated fluid on the suction side of the blades 2 within the impeller 3, so the separated area within the impeller 3 can also be reduced, and the performance of the impeller is improved. Furthermore, due to the reduction in the separation area within the impeller 3 and the diffuser 8, the surging point of the turbo-fluid machine will be at a flow rate considerably lower than the design flow point, and the operating range will therefore be expanded.

なお、上述の一実施例では、ディフューザにおける翼列
1ピツチにつき1本の管路を設けた例を示したが、これ
に限定されるものではなく1例えば翼列lピッチに2本
以上の管路を設けることも可能である。またこの実施例
では遠心形流体機械に適用した場合について述べたが、
斜流形流体機械にも同様に適用可能である。
In the above-described embodiment, one pipe is provided for each pitch of the blade row in the diffuser, but the invention is not limited to this. It is also possible to provide a path. In addition, although this example describes the case where it is applied to a centrifugal fluid machine,
It is also applicable to mixed flow type fluid machines.

以上述べたように1本発明のターボ形流体機械では、デ
ィフューザにおける案内羽根の負圧面側と羽根車に対向
して設けられたケーシングの流路面側を連通ずる管路を
設けているので、ディフューザや羽根車における剥離領
域を減らすことができ、したがって、ターボ形流体機械
の低流量域における性能を向上させることができるだけ
でなく。
As described above, in the turbo fluid machine of the present invention, a pipe is provided that communicates the negative pressure side of the guide vane in the diffuser with the flow path side of the casing provided opposite to the impeller. Not only can the separation area in the impeller be reduced and therefore the performance in the low flow region of turbo-type fluid machinery can be improved.

作動範囲も拡大させることができるという効果がある。This has the effect that the operating range can also be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のターボ形流体機械を示す縦断面図、第2
図は第1図の羽根車における部分負荷時の流れを示す説
#J図、第3図は第1図のディフューザにおける部分負
荷時の流れを示す説明図、第4図は本発明のりJポル流
体機械の一実施例を示す縦断面図、第5図は第4図の要
部拡大図、第6図は!1図のディフューザにおける部分
負荷時の流れを示す説明図である。 3・・・羽根車、4・・・ケーシング、5.6・・・デ
ィフューザ板、7・・・案内羽根、7a・・・負圧面側
、8・・・ディフューザ、11・・・管路、12・・・
弁t13・・・ケーシングの流路面側。 fil  囚 ;f2図       、+ 3121才4 日
Figure 1 is a longitudinal sectional view showing a conventional turbo-type fluid machine;
The figure is an explanatory diagram showing the flow at partial load in the impeller of Figure 1, Figure 3 is an explanatory diagram showing the flow at partial load in the diffuser of Figure 1, and Figure 4 is an explanatory diagram showing the flow at partial load in the impeller of the present invention. A vertical cross-sectional view showing one embodiment of the fluid machine, FIG. 5 is an enlarged view of the main part of FIG. 4, and FIG. 6 is! FIG. 2 is an explanatory diagram showing the flow at partial load in the diffuser of FIG. 1; 3... Impeller, 4... Casing, 5.6... Diffuser plate, 7... Guide vane, 7a... Negative pressure side, 8... Diffuser, 11... Conduit, 12...
Valve t13...flow path side of the casing. fil prisoner; f2 figure, +3121 years 4 days

Claims (1)

【特許請求の範囲】[Claims] ケーシング内に設けられた側板無し羽根車と、対向する
1組のディフューザ板の間に案内羽根を円形翼列状に配
置してなる案内羽根付ディフューザとを備えるターボ形
流体機械において、一端がディフューザ流路における案
内羽根の負圧面側に開口し、他端が羽根単に対向して設
けられ九ケーシングの流路面側に開口する管路を設け、
その管路の途中にターボ形流体機械の流量と連動して作
動される弁を設けたことを特徴とするターボ形流体機械
In a turbo fluid machine equipped with an impeller without side plates provided in a casing and a diffuser with guide vanes in which guide vanes are arranged in a circular row between a pair of opposing diffuser plates, one end is connected to the diffuser flow path. a conduit opening on the negative pressure side of the guide vane, the other end of which is provided opposite the vane, and opening on the flow path side of the casing;
A turbo-type fluid machine characterized in that a valve operated in conjunction with the flow rate of the turbo-type fluid machine is provided in the middle of the conduit.
JP56156264A 1981-10-02 1981-10-02 Turbo-type fluid machine Pending JPS5859399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56156264A JPS5859399A (en) 1981-10-02 1981-10-02 Turbo-type fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56156264A JPS5859399A (en) 1981-10-02 1981-10-02 Turbo-type fluid machine

Publications (1)

Publication Number Publication Date
JPS5859399A true JPS5859399A (en) 1983-04-08

Family

ID=15623999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56156264A Pending JPS5859399A (en) 1981-10-02 1981-10-02 Turbo-type fluid machine

Country Status (1)

Country Link
JP (1) JPS5859399A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311199A (en) * 1989-06-09 1991-01-18 Hitachi Ltd Mixed flow compressor
WO2010043820A1 (en) * 2008-10-17 2010-04-22 Turbomeca Diffuser having blades with apertures
JP2017180456A (en) * 2016-03-30 2017-10-05 ゼネラル・エレクトリック・カンパニイ Valved airflow passage assembly for adjusting airflow distortion in gas turbine engine
US10753278B2 (en) 2016-03-30 2020-08-25 General Electric Company Translating inlet for adjusting airflow distortion in gas turbine engine
US10794281B2 (en) 2016-02-02 2020-10-06 General Electric Company Gas turbine engine having instrumented airflow path components
CN111963490A (en) * 2020-08-07 2020-11-20 中国北方发动机研究所(天津) Vibration suppression structure of vane diffuser of turbocharger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311199A (en) * 1989-06-09 1991-01-18 Hitachi Ltd Mixed flow compressor
WO2010043820A1 (en) * 2008-10-17 2010-04-22 Turbomeca Diffuser having blades with apertures
FR2937385A1 (en) * 2008-10-17 2010-04-23 Turbomeca DIFFUSER WITH AUBES A ORIFICES
CN102187101A (en) * 2008-10-17 2011-09-14 涡轮梅坎公司 Diffuser having blades with apertures
US8641373B2 (en) 2008-10-17 2014-02-04 Turbomeca Diffuser having blades with apertures
RU2515575C2 (en) * 2008-10-17 2014-05-10 Турбомека Gas turbine engine diffuser and gas turbine engine with such diffuser
US10794281B2 (en) 2016-02-02 2020-10-06 General Electric Company Gas turbine engine having instrumented airflow path components
JP2017180456A (en) * 2016-03-30 2017-10-05 ゼネラル・エレクトリック・カンパニイ Valved airflow passage assembly for adjusting airflow distortion in gas turbine engine
US10753278B2 (en) 2016-03-30 2020-08-25 General Electric Company Translating inlet for adjusting airflow distortion in gas turbine engine
US11073090B2 (en) 2016-03-30 2021-07-27 General Electric Company Valved airflow passage assembly for adjusting airflow distortion in gas turbine engine
US11448127B2 (en) 2016-03-30 2022-09-20 General Electric Company Translating inlet for adjusting airflow distortion in gas turbine engine
CN111963490A (en) * 2020-08-07 2020-11-20 中国北方发动机研究所(天津) Vibration suppression structure of vane diffuser of turbocharger

Similar Documents

Publication Publication Date Title
US7261513B2 (en) Centrifugal compressor
JPH0413526B2 (en)
US5011371A (en) Centrifugal compressor/pump with fluid dynamically variable geometry diffuser
CA1307249C (en) Centrifugal compressor/pump with fluid dynamically variable geometry diffuser
JPS60543B2 (en) Control system of multistage axial flow compressor of gas turbine engine
JP4321037B2 (en) Centrifugal compressor for turbocharger
GB1043168A (en) Improvements in or relating to turbo-compressors
JPS5859399A (en) Turbo-type fluid machine
JP3758050B2 (en) Centrifugal compressor with diffuser
US2958456A (en) Multi-stage aerofoil-bladed compressors
JP3038398B2 (en) Centrifugal compressor
JPS6050298A (en) Low flow characteristic improviding system for centrifugal fan and compressor
US3982848A (en) Side channel ring compressor including a channel break decompression nozzle
US2868440A (en) Multi-stage centrifugal blowers, compressors and the like
JPS57212399A (en) Electric fan
US2819836A (en) Multi-stage radial compressor
JP4655603B2 (en) Centrifugal compressor
US1796053A (en) Means for preventing pulsations in centrifugal compressors
JPS64561B2 (en)
US1792248A (en) Centrifugal compressor
JPS59122726A (en) Turbine scroll of turbo-charger
JPS644041B2 (en)
JP2002266797A (en) Compressor for turbo charger
JP2548205B2 (en) Electric blower
JPS61101699A (en) Blower