JPS6164871A - Outer edge of electric razor - Google Patents

Outer edge of electric razor

Info

Publication number
JPS6164871A
JPS6164871A JP18483584A JP18483584A JPS6164871A JP S6164871 A JPS6164871 A JP S6164871A JP 18483584 A JP18483584 A JP 18483584A JP 18483584 A JP18483584 A JP 18483584A JP S6164871 A JPS6164871 A JP S6164871A
Authority
JP
Japan
Prior art keywords
alloy layer
outer edge
alloy
film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18483584A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakagawa
宏史 中川
Tsunemi Oiwa
大岩 恒美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Hitachi Maxell Ltd
Maxell Ltd
Original Assignee
Kyushu Hitachi Maxell Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Hitachi Maxell Ltd, Hitachi Maxell Ltd filed Critical Kyushu Hitachi Maxell Ltd
Priority to JP18483584A priority Critical patent/JPS6164871A/en
Publication of JPS6164871A publication Critical patent/JPS6164871A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dry Shavers And Clippers (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain a titled outer edge which is excellent in corrosion resistance, wear resistance, and appearance by forming an Sn-Co alloy layer on the least the outside surface of an outer edge manufactured by an electrocasting method by using Ni as a base material, and forming an oxide film or a hydroxide film by an oxidizing treatment. CONSTITUTION:An Sn-Co alloy layer 9 is formed by about 0.5-3mum on at least the outside surface of an outer edge 3 manufactured by using an electrocasting method by using Ni as a base material. Subsequently, the surface layer part of the Sn-Co alloy layer 9 is brought to oxidizing treatment by using a method by an oxygen gas plasma, chemical conversion treatment, a method using anodic oxidation, etc., and an oxide film or a hydroxide film is formed. This oxidation depth is set to a range of about 0.2-1mum, and it is desirable that said depth does not exceed a thickness of said alloy layer 9. Also, as for thickness of said alloy layer 9, it is desirable that it is set to the extent that sagging or roundness is not generated in a razor edge 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電鋳法により作製した外刃の改良に係り、耐
蝕性、耐摩耗性、外観に優れた外刃を提供することを目
的とする。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the improvement of an outer cutter manufactured by electroforming, and its purpose is to provide an outer cutter with excellent corrosion resistance, wear resistance, and appearance. shall be.

〔従来の技術〕[Conventional technology]

電気かみそり用外刃として要求される品質としては、切
れ味が良好なこと、切れ味を長期間保つこと、腐蝕しに
<<、外観も良好なこと等の厳しい条件が要求されてい
るが、上記の品質をすべて満足させるには多くの問題が
あり、現在の製造法の主流である電鋳法でも満足のいく
品質が得られているとは言い難い。
The quality required for the outer blade for electric razors is strict, such as good sharpness, long-term sharpness, resistance to corrosion, and good appearance. There are many problems in satisfying all quality requirements, and it is difficult to say that even the electroforming method, which is the mainstream manufacturing method at present, can achieve satisfactory quality.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

現在ニッケ・ル(Ni)電鋳外刃は電着応力減少。 Currently, nickel (Ni) electroformed outer blades have reduced electrodeposition stress.

光沢、硬度の上昇等の目的で硫黄を含む有機系添加剤を
必要とするため、電着物中に硫黄を含むことになり、耐
蝕性の劣下、靭性劣下等外刃としての弱点となる特性を
生じてしまう。また最近テハ、ニッケルーコバルト、ニ
ッケルーコバルト−リン、ニッケルーマンガン、ニッケ
ルータングステン等の合金電鋳刃も開発されているが、
Ni電鋳刃と比べて、耐熱性をやや改善している程度で
あり、耐蝕性、靭性、耐摩耗性等はほぼ同等であり、光
沢においてはやや劣っている。
Since organic additives containing sulfur are required for the purpose of increasing gloss and hardness, the electrodeposit contains sulfur, which causes weaknesses as an outer cutter such as decreased corrosion resistance and toughness. characteristics. Recently, alloy electroformed blades such as Teha, nickel-cobalt, nickel-cobalt-phosphorous, nickel-manganese, and nickel-tungsten have been developed.
Compared to the Ni electroformed blade, the heat resistance is only slightly improved, the corrosion resistance, toughness, abrasion resistance, etc. are almost the same, and the gloss is slightly inferior.

〔問題点を解決するための手段および作用〕この発明は
、上述した従来の技術の欠点を解決できるもので、Ni
単体もしくはNiと上述したような合金よりなる外刃の
一部すなわち肌と当接する外表面または内刃と摺接する
内表面を含む面にスズ−コバルト(Sn−Co)合金層
を形成し、酸化処理により酸化皮膜または水酸化物皮膜
を形成することにより目的を達成したものである。
[Means and effects for solving the problems] The present invention can solve the above-mentioned drawbacks of the conventional technology.
A tin-cobalt (Sn-Co) alloy layer is formed on a part of the outer cutter made of a single element or Ni and an alloy as described above, that is, the surface including the outer surface that comes into contact with the skin or the inner surface that makes sliding contact with the inner cutter, and then oxidizes the outer cutter. The purpose is achieved by forming an oxide film or hydroxide film through treatment.

5n−Co合金層の層厚は0.5〜3μm程度に(7、
その酸化深さは0.2〜1μmの範囲で、特に上記層厚
を越えないことが重要である。
The layer thickness of the 5n-Co alloy layer is approximately 0.5 to 3 μm (7,
The oxidation depth is in the range of 0.2 to 1 μm, and it is particularly important not to exceed the above-mentioned layer thickness.

層厚を越えた場合には、Ni合金電鋳外刃まで達し、S
n −Co合金層とNiとの接合力を弱化させるととも
に、Niを脆化する可能性があり、また0、2μmより
少ないとピンホールが生じ長期間の効果が維持し難いも
のとなる。
If the layer thickness is exceeded, it will reach the Ni alloy electroformed outer blade and the S
It weakens the bonding force between the n-Co alloy layer and Ni, and may also make Ni brittle, and if it is less than 0.2 μm, pinholes will occur, making it difficult to maintain long-term effects.

また5n−Co合金層の表面が酸化皮膜を形成すること
により、表面電気抵抗を高め不導体として、Niと5n
−Goの間もしくは5n−Co自体に生じる極部電池に
よる脆化を防止することが可能であるが、この場合は5
n−Goの合金層とNiとの接合部まで酸化させること
ができる。
In addition, by forming an oxide film on the surface of the 5n-Co alloy layer, the surface electrical resistance is increased and the 5n-Co alloy layer becomes a nonconductor.
It is possible to prevent the embrittlement caused by the electrode battery that occurs between -Go or in 5n-Co itself, but in this case, 5n-Co
Even the junction between the n-Go alloy layer and Ni can be oxidized.

皮膜の作成法として、酸素ガスプラズマによる方法、化
成処理および陽極酸化による方法がある。電鋳外刃は耐
熱性に劣るため、酸素雰囲気中での加熱による酸化処理
はてきないので、上記3つの方法が優れている。特に酸
素ガスプラズマによる方法は、外刃を低温に保ちつつ緻
密で厚い酸化皮膜を形成する方法として優れている。
Methods for forming the film include a method using oxygen gas plasma, a method using chemical conversion treatment, and a method using anodic oxidation. Since the electroformed outer cutter has poor heat resistance, it cannot be subjected to oxidation treatment by heating in an oxygen atmosphere, so the above three methods are superior. In particular, the method using oxygen gas plasma is excellent as a method for forming a dense and thick oxide film while keeping the outer cutter at a low temperature.

また、5n−Co合金層は、Niもしくはその合金電着
物に比べ皮膜を形成しやすい上に、酸素ガスプラズマ法
の条件により種々の任意色に着色でき、外観も向上する
ので有利である。
Further, the 5n-Co alloy layer is advantageous because it is easier to form a film than Ni or its alloy electrodeposited material, and it can be colored in various arbitrary colors depending on the conditions of the oxygen gas plasma method, and the appearance is improved.

プラズマ酸化の方法として高周波電力を外刃に与える方
法(第1図)、直流電圧を印加する方法(第2図)があ
るがいずれも有効である。
As a plasma oxidation method, there are a method of applying high frequency power to the outer cutter (FIG. 1) and a method of applying a DC voltage (FIG. 2), both of which are effective.

またマイクロ波などを用いても有効である。第1図に示
す高周波を印加する場合、02ガス圧は3〜3000m
 Torrの範囲が望ましく、3 m Torr以上で
は放電せずプラズマは発生しない。一方3000m T
orr以上にするとSn −Co酸化物は白色の粉末状
となり望ましくない。さらに10〜500mTorrが
極めて望ましい。高周波電力(13,56MHz)は、
0.3〜5 W/co!が望ましく、0.3 W/cn
i以下では酸化皮膜の形成が遅く、5 W/cn1以上
では外刃の温度が上昇し、靭性を失うため望ましくない
。後者の場合、何らかの方法で試料の冷却をはかれば靭
性劣下を防ぐことができるが、この場合、スパッタ効果
が大きくなること、皮膜の膜質が悪くなる等の欠点があ
る。特に、0.5〜3W/c4の範囲が望ましい。
It is also effective to use microwaves or the like. When applying the high frequency shown in Figure 1, the 02 gas pressure is 3 to 3000 m
A range of Torr is desirable, and at 3 m Torr or more, no discharge occurs and no plasma is generated. On the other hand, 3000m T
If it exceeds orr, the Sn--Co oxide becomes a white powder, which is not desirable. Further, 10 to 500 mTorr is extremely desirable. High frequency power (13,56MHz) is
0.3~5 W/co! is desirable, 0.3 W/cn
If it is less than i, the formation of an oxide film is slow, and if it is more than 5 W/cn1, the temperature of the outer cutter increases and the toughness is lost, which is not desirable. In the latter case, deterioration in toughness can be prevented by cooling the sample in some way, but in this case, there are disadvantages such as increased sputtering effect and poor film quality. In particular, a range of 0.5 to 3 W/c4 is desirable.

プラズマ酸化を行う以前に予め、アルゴン(Ar) 、
クリプトン(Kr) 、 ヘリウム(He) 、チッソ
(N2)、水素(He)等のガスのプラズマで表面をク
リーニングすることにより均一な酸化皮膜を得ることが
できる。外観上・しみ等の欠点がなくなるのでこのよう
な処理を行うことが望ましい。
Before performing plasma oxidation, argon (Ar),
A uniform oxide film can be obtained by cleaning the surface with plasma of a gas such as krypton (Kr), helium (He), nitrogen (N2), or hydrogen (He). It is desirable to carry out such treatment because it eliminates defects such as stains and other defects in appearance.

第3図は、外刃3全体を5n−Go金合金被覆した場合
のリプ断面の図である。Sn −Co合金層が厚すぎる
と刃先10のだれや丸味が生じる心配があるが、酸化層
が厚く、耐蝕性、耐摩耗性は最も良好となる。
FIG. 3 is a cross-sectional view of the lip when the entire outer cutter 3 is coated with a 5n-Go gold alloy. If the Sn--Co alloy layer is too thick, there is a risk that the cutting edge 10 will become sagging or rounded, but a thick oxide layer provides the best corrosion resistance and wear resistance.

第4図は、公知の電鋳法における二次電鋳後、5n−G
o金合金よる三次電鋳を行った場合の図であり、刃先1
0がだれる心配は全くないが、Niおよびその合金は5
n−Cro合金に比べて皮膜を形成しにくいために、5
n−Co合金層11で被覆されていない面12つまり図
示しない内刃と摺接する内表面の酸化物もしくは水酸化
物層がやや薄くなり、耐蝕性、耐摩耗性は上記の場合よ
りやや劣る。
Figure 4 shows 5n-G after secondary electroforming in a known electroforming method.
This is a diagram when tertiary electroforming is performed using o gold alloy, and the cutting edge 1
There is no worry that 0 will come off, but Ni and its alloys
5 because it is difficult to form a film compared to n-Cro alloy.
The oxide or hydroxide layer on the surface 12 not covered with the n-Co alloy layer 11, that is, the inner surface that makes sliding contact with the inner cutter (not shown), is slightly thinner, and the corrosion resistance and abrasion resistance are slightly inferior to the above case.

外刃の刃先10は、毛と接触する上に大きな応力がかか
っており、内表面12の凹入部分13は毛屑や皮脂分が
たまりやすいので、外刃3の腐蝕は刃先lOと凹入部分
I3で大きい傾向がある。−次電鋳を剥離処理後、5n
−Co合金電鋳14を行い、その上に通常の二次電鋳1
5を行い、再び5n−Co合金電鋳16を行うと第5図
に示すような三層構造となる。これを酸化処理すると、
刃先10のだれの心配もなく、耐蝕性も良好であり、総
合的に最も優れている。
The cutting edge 10 of the outer cutter is in contact with hair and is under a large stress, and the recessed part 13 of the inner surface 12 tends to accumulate hair debris and sebum. It tends to be large in part I3. -After electroforming is peeled off, 5n
- Co alloy electroforming 14 is performed, and normal secondary electroforming 1 is applied on top of that.
5 and then 5n-Co alloy electroforming 16 is performed again to form a three-layer structure as shown in FIG. When this is oxidized,
There is no need to worry about the cutting edge 10 sagging, the corrosion resistance is also good, and it is the best overall.

〔実施例〕〔Example〕

以下に実施例について説明する。 Examples will be described below.

第1図は実施例1に用いるプラズマ酸化装置の概略構成
図で、図中の1は酸素(02)ガス、2はAr、  K
r、  He、  H2,N 2ガス、3は外刃、4は
高周波電源、5は排気である。
FIG. 1 is a schematic configuration diagram of the plasma oxidation apparatus used in Example 1, where 1 is oxygen (02) gas, 2 is Ar, K
r, He, H2, N2 gas, 3 is an outer blade, 4 is a high frequency power supply, and 5 is an exhaust gas.

なお第2図は他のプラズマ酸化装置で第1図の符号と同
じものは同一物を示し、6はプラズマ発生用電極、7は
直流、交流、高周波(RF)等の電源、8は直流電源を
示す。
Figure 2 shows another plasma oxidation device, where the same symbols as in Figure 1 indicate the same parts, 6 is a plasma generation electrode, 7 is a power source such as DC, AC, radio frequency (RF), etc., and 8 is a DC power source. shows.

実施例1 イオウ(S)を0.045 wt%含むNi外刃の全面
に5n−Co合金層電鋳を施した外刃3 (第3図)参
照を第1図に示すプラズマ酸化装置にセットし、I X
 10’ Torr以下の真空度まで排気5した後Ar
ガスをIO5CCMの流量で流し、槽内を50m T。
Example 1 Outer blade 3 (see Figure 3), in which a 5n-Co alloy layer was electroformed on the entire surface of a Ni outer blade containing 0.045 wt% sulfur (S), was set in the plasma oxidation apparatus shown in Figure 1. I
After evacuating to a vacuum level of 10' Torr or less, Ar
Gas was flowed at a flow rate of IO5CCM, and the inside of the tank was set at 50mT.

rrとし、高周波電力4を用いて0.5W/crdにな
るように印加し、30秒間処理した。再びI X 1O
−3Torr以下排気し、02ガスを20SCC?’l
流し、槽内を300 mTorrとし、高周波電力4を
0.3〜5 W/ crlまで変化させ10分間の処理
を施した。
rr, high frequency power 4 was applied at 0.5 W/crd, and the treatment was performed for 30 seconds. I X 1O again
Exhaust below -3Torr and 20SCC of 02 gas? 'l
The temperature in the tank was set to 300 mTorr, and the high frequency power 4 was varied from 0.3 to 5 W/crl, and the treatment was performed for 10 minutes.

実施例2 実施例1と同じ外刃3を用い、同一装置で計ガスによる
同じ前処理を行い、高周波電力4をL W / clで
一定とし、02ガス圧力を3〜3000m Torrま
で変化させて10分間のプラズマ酸化処理を施した。
Example 2 Using the same outer cutter 3 as in Example 1, performing the same pretreatment with the meter gas in the same device, keeping the high frequency power 4 constant at L W / cl, and changing the 02 gas pressure from 3 to 3000 m Torr. A plasma oxidation treatment was performed for 10 minutes.

実施例3 Ni−35wt%Co合金電鋳外刃の表面だけに5n−
Co合金層電鋳を施し、実施例1と同じ装置で、同じ前
処理を施し、高周波電力IW/cffl、02ガス圧1
00 mTorrで10分間のプラズマ酸化を施したも
の。
Example 3 5n- was applied only to the surface of the Ni-35wt%Co alloy electroformed outer blade.
Co alloy layer electroforming was performed using the same equipment as in Example 1, the same pretreatment was performed, and high frequency power IW/cffl, 02 gas pressure 1
Plasma oxidation was performed at 00 mTorr for 10 minutes.

実施例4 Sを0.045 wt%含むNi電鋳刃で実施例3と同
し処理を施したもの。
Example 4 A Ni electroformed blade containing 0.045 wt% S was treated in the same manner as in Example 3.

比較例I Sを0.045 wt%含むNi電鋳外刃で酸化未処理
のもの。
Comparative Example IS Ni electroformed outer blade containing 0.045 wt% S and not subjected to oxidation treatment.

比較例2 Ni−35wt%Co合金電鋳外刃で酸化未処理のもの
Comparative Example 2 Ni-35wt%Co alloy electroformed outer blade that was not oxidized.

比較例3 Sを0.045 wt%含む外刃で、5n−Co合金層
電鋳を施さずに実施例3と同じ条件でプラズマ酸化した
もの。
Comparative Example 3 An outer cutter containing 0.045 wt% of S was plasma oxidized under the same conditions as Example 3 without electroforming the 5n-Co alloy layer.

比較例4 Ni  35wt%Co合金電鋳外刃に、Sn−にO合
金層電鋳を施さずに実施例3と同じ条件でプラズマ酸化
したもの。
Comparative Example 4 A Ni 35 wt% Co alloy electroformed outer blade was plasma oxidized under the same conditions as Example 3 without electroforming the Sn-O alloy layer.

プラズマ酸化において、酸化層の生成は、初期の1分間
急速に行われ、10分間以上ではほぼ飽和する傾向にあ
るのでプラズマ酸化の処理時間はすべて10分間とした
In plasma oxidation, the formation of an oxide layer occurs rapidly in the initial minute, and tends to be almost saturated after 10 minutes, so the processing time for all plasma oxidation was set to 10 minutes.

第1表に各々の特性を示す。Table 1 shows the characteristics of each.

第1表 なお耐蝕性、耐摩耗性の評価は、優れたものから劣るも
のへA、A’、B、Cの順に表現している。
In Table 1, the evaluation of corrosion resistance and abrasion resistance is expressed in the order of A, A', B, and C from excellent to poor.

第1表から明らかなようにプラズマ酸化によって耐蝕性
が良好となり、耐摩耗性も非常に良くなった。また、外
刃の着色もでき外観的にも(fれたものとなった。なお
外刃として、Ni−Mn。
As is clear from Table 1, plasma oxidation resulted in good corrosion resistance and very good wear resistance. In addition, the outer cutter can be colored and has a flawed appearance.The outer cutter is made of Ni-Mn.

tlli −W等のNi合金を用いても同様の結果を得
ることは言うまでもない。化成処理や陽極酸化では、酸
化皮膜だけでなく、水酸化皮膜も生じるが、この場合も
耐蝕性、耐摩耗性が向上する。
It goes without saying that similar results can be obtained using Ni alloys such as tlli-W. Chemical conversion treatment and anodic oxidation produce not only an oxide film but also a hydroxide film, which also improves corrosion resistance and wear resistance.

しかしながら着色できない。5n−Co合金は、Niお
よびその合金に比べて化成処理においても酸化皮膜を生
成しやすい利点を有する。
However, it cannot be colored. The 5n-Co alloy has the advantage that it is easier to form an oxide film during chemical conversion treatment than Ni and its alloys.

以上のように、外刃の表面の少なくとも外表面をSn 
−Co合金層で皮膜後、酸化処理を行って酸化皮膜や水
酸化物皮膜を形成した外刃は、耐蝕性、耐摩耗性におい
て優れている。特にプラズマ酸化による酸化処理法は、
着色および皮膜の厚み等で優れており、酸化物の摩擦係
数も小さく有利である。プラズマ酸化法として、直流電
源を用いた場合や、マイクロ波を用いた場合も同じ結果
が得られることは言うまでもない。
As described above, at least the outer surface of the outer cutter is coated with Sn.
An outer cutter coated with a -Co alloy layer and then subjected to oxidation treatment to form an oxide film or a hydroxide film has excellent corrosion resistance and wear resistance. In particular, the oxidation treatment method using plasma oxidation,
It has excellent coloring and film thickness, and is advantageous because the oxide has a small coefficient of friction. It goes without saying that the same results can be obtained when a direct current power source or microwave is used as the plasma oxidation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明を実施するためのプラズマ酸化
装置、第3図、第4図および第5図は本発明の実施例の
外刃リブ断面形状を示す。 3・・・外刃 9、 11. 14. 16・・・5n−Co合金層。 代表出願人  九州日立マクセル株式会社代表者 福 
原 隆 二 嶌31D 7!Fダ図 案51児
1 and 2 show a plasma oxidation apparatus for carrying out the present invention, and FIGS. 3, 4, and 5 show cross-sectional shapes of outer cutter ribs in embodiments of the present invention. 3...Outer blade 9, 11. 14. 16...5n-Co alloy layer. Representative applicant Kyushu Hitachi Maxell Co., Ltd. Representative Fuku
Takashi Hara Futami 31D 7! Fda design 51 children

Claims (1)

【特許請求の範囲】[Claims] (1)ニッケルを素材として電鋳法を用いて作製した外
刃の少なくとも外表面にスズ−コバルト合金層を形成し
、酸化処理して酸化皮膜もしくは水酸化物皮膜を形成し
たことを特徴とする電気かみそりの外刃。
(1) A tin-cobalt alloy layer is formed on at least the outer surface of an outer cutter made of nickel by electroforming, and an oxide film or hydroxide film is formed by oxidation treatment. The outer blade of an electric razor.
JP18483584A 1984-09-03 1984-09-03 Outer edge of electric razor Pending JPS6164871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18483584A JPS6164871A (en) 1984-09-03 1984-09-03 Outer edge of electric razor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18483584A JPS6164871A (en) 1984-09-03 1984-09-03 Outer edge of electric razor

Publications (1)

Publication Number Publication Date
JPS6164871A true JPS6164871A (en) 1986-04-03

Family

ID=16160137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18483584A Pending JPS6164871A (en) 1984-09-03 1984-09-03 Outer edge of electric razor

Country Status (1)

Country Link
JP (1) JPS6164871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340176A (en) * 2002-05-27 2003-12-02 Matsushita Electric Works Ltd Working method of cutter and its working device and inner blade for electric razor
JP2011508653A (en) * 2008-01-04 2011-03-17 スミス アンド ネフュー インコーポレーテッド Surface-alloyed medical implant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292655A (en) * 1975-09-30 1977-08-04 Seiko Epson Corp Method of fabricating electric razor blade
JPS55147A (en) * 1978-06-19 1980-01-05 Hitachi Maxell Outer edge of electric razor and its preparation
JPS59184836A (en) * 1983-04-05 1984-10-20 Hitachi Ltd Flow analyzing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292655A (en) * 1975-09-30 1977-08-04 Seiko Epson Corp Method of fabricating electric razor blade
JPS55147A (en) * 1978-06-19 1980-01-05 Hitachi Maxell Outer edge of electric razor and its preparation
JPS59184836A (en) * 1983-04-05 1984-10-20 Hitachi Ltd Flow analyzing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340176A (en) * 2002-05-27 2003-12-02 Matsushita Electric Works Ltd Working method of cutter and its working device and inner blade for electric razor
JP4496701B2 (en) * 2002-05-27 2010-07-07 パナソニック電工株式会社 Cutting tool processing method and apparatus, and inner blade for electric razor
JP2011508653A (en) * 2008-01-04 2011-03-17 スミス アンド ネフュー インコーポレーテッド Surface-alloyed medical implant
US10675384B2 (en) 2008-01-04 2020-06-09 Smith & Nephew Inc. Surface alloyed medical implant
US11717597B2 (en) 2008-01-04 2023-08-08 Smith & Nephew, Inc. Surface alloyed medical implant

Similar Documents

Publication Publication Date Title
US2429222A (en) Method of making contact wires
JPS63153292A (en) Electroforming apparatus and method
JPH0257690A (en) Aluminum plated substrate for anodic oxidation
US6526662B1 (en) Scissors with minute recessed parts formed at blade tip and method of manufacturing the scissors
JPS6164871A (en) Outer edge of electric razor
US2993264A (en) Protective coating for molybdenum
EP0482565A2 (en) Electrolytic process for stripping a metal coating from a titanium based metal substrate
JP2001225228A (en) Electrode for electric erosion machining and method of manufacturing for the same
US4477316A (en) Long-life insoluble electrode and process for preparing the same
US6287446B1 (en) High porosity three-dimensional structures in chromium based alloys
JPS6164872A (en) Outer edge of electric razor
CN105829584A (en) Method for manufacturing a part coated with a protective coating
US3574075A (en) Method of producing an electrode for use in electro machining
US20110005935A1 (en) Plating method for a radio frequency device and a radio frequency device produced by the method
JP3438199B2 (en) Negative electrode current collector for alkaline batteries
JPS62267480A (en) Mechanical plating method
JP3724364B2 (en) Manufacturing method of metal products
Sutter The Use of Pulsed Current in Electroplating
JP2002066785A (en) Manufacturing method of chromium stainless steel welding wire
JP2003049292A (en) Electrodeposition drum
US2829116A (en) Preparation of oxidation catalytic units
JPS60208471A (en) External parts for timepiece
JPH07285027A (en) Electrolytic polishing method
Omata et al. Selective Microplating of Fe--Ni Alloy for Thin Film Computer Disk Heads
JPH01162781A (en) Mechanical plating method