JPS62267480A - Mechanical plating method - Google Patents

Mechanical plating method

Info

Publication number
JPS62267480A
JPS62267480A JP10776486A JP10776486A JPS62267480A JP S62267480 A JPS62267480 A JP S62267480A JP 10776486 A JP10776486 A JP 10776486A JP 10776486 A JP10776486 A JP 10776486A JP S62267480 A JPS62267480 A JP S62267480A
Authority
JP
Japan
Prior art keywords
plated
metal
metal brush
brush
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10776486A
Other languages
Japanese (ja)
Inventor
Kazuo Ebato
江波戸 和男
Masaomi Tsuda
津田 正臣
Yuji Ikegami
雄二 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP10776486A priority Critical patent/JPS62267480A/en
Publication of JPS62267480A publication Critical patent/JPS62267480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To mechanically obtain a plating having strong fixing power and uniform thickness at a low cost by bringing a metallic brush into frictional contact with a material to be plated at an appropriate temp. by the realtive motion to activate the surface of the material to be plated. CONSTITUTION:The metallic brush 1 in the form of a roller, a brush, etc., is obtained by using a pure metal or an alloy. The metallic brush 1 is brought into frictional contact with the material to be plated by the relative motion at -20-300 deg.C in the atmosphere, a nonoxidizing gas atmospehre, a vacuum atmosphere, etc. Consequently, the surface of the material to be plated is activated, and the pure metal or alloy of the metallic brush 1 is mechanically plated on the material to be plated. The metallic brush 1 can be formed with the wire, ribbon, tape, etc., consisting of Zn, Ni, Al, Cu, Ti, their alloy, stainless steel, a super alloy, etc. After placing, cold rolling with >=5% rolling reduction and annealing at 100-1,200 deg.C are appropriately applied to completely fix the plated layer by diffusion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐食性、耐熱性、耐摩耗性、ハンダ付性、導
電性、メッキ性、装飾性を要求される分野において、純
金属あるいは合金からなるワイヤ。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to pure metals or alloys in fields where corrosion resistance, heat resistance, abrasion resistance, solderability, electrical conductivity, plating properties, and decorative properties are required. wire consisting of.

リボン、テープをブラシ状にして金属ブラシと材料表面
を摩擦接触させ、機械的にメッキするメカニカルメッキ
方法に関するものである。
The present invention relates to a mechanical plating method in which a ribbon or tape is used as a brush and a metal brush is brought into frictional contact with the surface of the material to mechanically plate the material.

(従来の技術) 材料1部品などに金属をメッキする方法として、一般的
に行われている表面処理技術としては、電気メッキ、化
学メッキ、溶融メブキ、溶射メッキなどの方法があり、
金属の薄い膜を材料表面にメッキさせ、各種目的に供し
ている。
(Conventional technology) Surface treatment techniques that are commonly used to plate metal parts on materials include electroplating, chemical plating, hot-dip plating, and thermal spray plating.
A thin film of metal is plated onto the surface of the material and is used for various purposes.

電気メッキ法は、金属を溶かした溶液の中に被メッキ材
を陰極とし、向い合せた陽極との間に直流電流を流すこ
とにより、材料表面に金属薄膜を得る方法である。化学
メッキ法は、電気を使用せずに、ガラス、合成樹脂など
の不導体物質上にメッキする方法である。熔融メッキ法
は溶融した金属の中に浸漬してメッキする方法である。
Electroplating is a method of forming a thin metal film on the surface of a material by using a material to be plated as a cathode in a solution containing metal and passing a direct current between the anode and the opposing anode. Chemical plating is a method of plating on nonconducting materials such as glass and synthetic resin without using electricity. The melt plating method is a method of plating by immersing in molten metal.

溶射メッキ法は、ガスまたはアークで溶融した金属を高
圧のガスまたは空気によって材料の表面に吹き付けてメ
ッキする方法である。
Thermal spray plating is a method of plating by spraying metal melted by gas or arc onto the surface of a material using high-pressure gas or air.

(発明が解決しようとする問題点) 上記各種のメッキ方法において、電気メッキ法は、合金
のメッキが困難であること、化学メッキ法は、メッキ層
が厚くできず薬品の値段が高いこと、溶融メッキ法は、
浸漬するだけでパイプの内面などにメッキ層を厚(でき
る利点があるが、厚さの調整がむずかしこと、溶射メッ
キ法は多孔質になりやす(、金属粒子が酸化されるなど
の欠点がある。共通した最も大きな問題は、メッキ層と
材料の固着力が必ずしも十分でないこと、および装置が
高価であることなどの問題点がある。
(Problems to be solved by the invention) Among the various plating methods mentioned above, electroplating is difficult to plate alloys, chemical plating cannot produce a thick plating layer and the cost of chemicals is high, The plating method is
It has the advantage of being able to form a thick plating layer on the inner surface of a pipe simply by immersing it, but it has the disadvantage that it is difficult to adjust the thickness, and that thermal spray plating tends to be porous (the metal particles are oxidized). The most common problems are that the adhesion between the plating layer and the material is not necessarily sufficient, and the equipment is expensive.

(問題点を解決するための手段) 本発明は、従来の金属を表面にメッキさせる表面処理方
法の有する問題点あるいは欠点を除去・改善した方法を
提供することを目的とし、特許請求の範囲記載の方法を
提供することによって、前記目的を達成することができ
る。すなわち、本発明は純金属あるいは合金をブラシ状
にして金属ブラシとし、前記金属ブラシと被メッキ材料
を大気中、非酸化性ガス中、真空中の何れか1つの雰囲
気で、−20℃〜300℃の温度範囲において金属ブラ
シと被メッキ材料との相対運動により摩擦接触させて被
メッキ材表面を活性化し、金属ブラシの純金属または合
金を被メッキ材表面に機械的にメッキさせることを特徴
とするメカニカルメッキ方法を提供するものである。具
体的にいえば、Zn、Ni、AI、Cu、Tiおよびそ
れらの合金、ステンレス鋼、超合金などの純金属あるい
は合金よりなるワイヤ、リボン、テープなどをブラシ状
にし、金属ブラシと被メッキ材料を大気中もしくは非酸
化性ガス中あるいは真空中で、−20℃〜300℃の温
度範囲において、金属ブラシの回転・走行あるいは、金
属ブラシの回転と被メッキ材料の走行もしくは、金属ブ
ラシの回転走行と被メッキ材料の走行の同時作業により
、金属ブラシと被メッキ材料を摩擦接触させ、被メッキ
材表面を活性化し、金属ブラシの純金属または合金を被
メ・ンキ材料表面に機械的にメッキさせるメカニカルメ
ッキ方法である。
(Means for Solving the Problems) The present invention aims to provide a method that eliminates and improves the problems or drawbacks of the conventional surface treatment method of plating metal on the surface, and the scope of the present invention is described in the claims. The above object can be achieved by providing a method. That is, in the present invention, a pure metal or an alloy is made into a brush shape to form a metal brush, and the metal brush and the material to be plated are heated at -20°C to 300°C in any one of the atmosphere, non-oxidizing gas, and vacuum. It is characterized by activating the surface of the material to be plated by bringing the metal brush into frictional contact with the material to be plated through relative motion in the temperature range of °C, and mechanically plating the pure metal or alloy of the metal brush onto the surface of the material to be plated. The present invention provides a mechanical plating method. Specifically, wires, ribbons, tapes, etc. made of pure metals or alloys such as Zn, Ni, AI, Cu, Ti, alloys thereof, stainless steel, superalloys, etc. are made into a brush shape, and the metal brush and the material to be plated are Rotation and running of a metal brush, rotation of a metal brush and running of a material to be plated, or rotation and running of a metal brush in the air, non-oxidizing gas, or vacuum in a temperature range of -20°C to 300°C. By simultaneously moving the metal brush and the material to be plated, the metal brush and the material to be plated are brought into frictional contact, the surface of the material to be plated is activated, and the pure metal or alloy of the metal brush is mechanically plated on the surface of the material to be coated or plated. This is a mechanical plating method.

さらに本発明は、前記メカニカルメッキを施した後、5
%以上の冷間圧延を施す方法、5%以上の冷間圧延を施
した後100℃〜1200℃の温度範囲で焼なましを施
すメカニカルメッキ方法、100℃〜1200℃の温度
範囲で焼なましを施すメカニカルメッキ方法、100〜
1200“Cの温度範囲で焼なましを施し、さらに5%
以上の冷間圧延を施すことを特徴とするメカニカルメッ
キ方法に関するものである。
Further, in the present invention, after applying the mechanical plating, 5
% or more cold rolling, a mechanical plating method that involves cold rolling 5% or more and then annealing at a temperature range of 100°C to 1200°C, and annealing at a temperature range of 100°C to 1200°C. Mechanical plating method to improve the appearance, 100~
Annealed in a temperature range of 1200"C and further reduced by 5%
The present invention relates to a mechanical plating method characterized by performing the above cold rolling.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明者等は、純金属あるいは合金よりなる金属ブラシ
と被メッキ材料(以下材料という)との相対運動により
摩擦接触させて材料表面を活性化することにより、純金
属あるいは合金を機械的に材料に付着させることができ
、このメッキ法と電気メッキ法によるメッキ層の厚みと
、90°曲げによるメッキ層の剥離がおこるまでの曲げ
回数との関係を比較した結果、前記メッキ方法によるメ
ッキ層の材料との固着力は従来の電気メッキ法によるも
のよりも強固であり、さらに金属ブラシの材料へのメッ
キ時に、酸化を防ぎ、温度を上げることによりさらに良
好な固着力が得られることを新規に知見して本発明を完
成した。
The inventors of the present invention mechanically transform pure metals or alloys into materials by activating the surface of the materials through frictional contact between a metal brush made of pure metals or alloys and the material to be plated (hereinafter referred to as "material") through relative motion. As a result of comparing the relationship between the thickness of the plating layer obtained by this plating method and the electroplating method and the number of bends until the plating layer peels off due to 90° bending, it was found that the plating layer formed by the above plating method The adhesion to the material is stronger than that achieved by conventional electroplating methods, and we have newly discovered that even better adhesion can be obtained by preventing oxidation and increasing the temperature when plating metal brush materials. Based on this knowledge, the present invention was completed.

本発明方法は、基本的には金属ブラシと材料の摩擦によ
り材料表面を活性化し、金属ブラシの金属成分を材料表
面にメッキする方法であり、金属ブラシと材料との相対
運動が生じればよく、その具体的方法は多数ある。その
実施態様の例を第1図ないし第4図に示す。第1図は金
属ブラシの斜視図を示し、(81図は円筒形状ををする
もの、Cb1図は板形状を有するもの、fC1図は円板
形状を有するものである。第2図は第1図(a)に示す
円筒形状を有する金属ブラシと材料との相対運動との関
係を示す図で、Ca1図は、金属ブラシ1が回転・走行
The method of the present invention is basically a method in which the surface of the material is activated by friction between the metal brush and the material, and the metal component of the metal brush is plated on the surface of the material. , there are many specific methods. Examples of such embodiments are shown in FIGS. 1 to 4. Fig. 1 shows a perspective view of a metal brush (Fig. 81 shows one having a cylindrical shape, Fig. Cb1 shows one having a plate shape, and Fig. fC1 shows one having a disc shape. This is a diagram showing the relationship between the relative motion between the cylindrical metal brush shown in Figure (a) and the material, and in Figure Ca1, the metal brush 1 rotates and travels.

材料2が固定の場合、(b)図は、金属ブラシ1が回転
・固定、材料2が走行の場合、fC1図は、金属ブラシ
1が回転・走行2材料2が走行の場合である。
When the material 2 is fixed, the figure (b) shows the case where the metal brush 1 is rotating and fixed and the material 2 is moving, and the fC1 figure is when the metal brush 1 is rotating and moving and the material 2 is moving.

第3図は、第1図(b)および第1図(C1に示す金属
ブラシ1が材料2をメッキする場合で、金属ブラシ1は
固定し、材料2は幅方向および/または長手方向に走行
している場合を示す。なお第1図ta+に示す金属ブラ
シlを回転させずに固定し、材料2を幅方向および/ま
たは長手方向に走行している場合を含むことはいうまで
もない。
FIG. 3 shows a case where the metal brush 1 shown in FIG. 1(b) and FIG. It goes without saying that this also includes the case where the metal brush l shown in FIG.

第4図は第1図(C)に示す金属ブラシ1が材料2をメ
ッキしている場合で、金属ブラシ1は回転しながら材料
2の幅方向および/または長手方向に移動し、材料2は
固定している場合を示す。
FIG. 4 shows a case where the metal brush 1 shown in FIG. Indicates that it is fixed.

次に、金属ブラシ1と材料2表面の温度を一20℃〜3
00℃の温度範囲にする理由は、−20℃より低い温度
になると金属ブラシ1の金属成分が材料2表面になじま
ずメッキできない。300℃をこえると金属ブラシ1が
軟化して変形が大きくなり、一方金属ブラシ1との摩擦
接触時に材料2が変形しやすくなり均一なメッキ層が得
られなくなる。
Next, the temperature of the surface of metal brush 1 and material 2 is set to -20℃ to 3℃.
The reason why the temperature range is 00°C is that when the temperature is lower than -20°C, the metal component of the metal brush 1 does not adapt to the surface of the material 2 and plating cannot be performed. When the temperature exceeds 300° C., the metal brush 1 becomes soft and deforms greatly, and on the other hand, the material 2 becomes easily deformed during frictional contact with the metal brush 1, making it impossible to obtain a uniform plating layer.

従って一20℃〜300℃の温度範囲にする必要がある
Therefore, it is necessary to keep the temperature within the range of -20°C to 300°C.

雰囲気は、酸化が少ないことがよく、真空中もしくは非
酸化性雰囲気下でのメッキ作業が望ましい。しかし大気
中でも酸化の進行を抑制するよう比較的低温であれば大
きな問題を生じない。
The atmosphere is preferably low in oxidation, and plating is preferably performed in a vacuum or in a non-oxidizing atmosphere. However, if the temperature is relatively low enough to suppress the progress of oxidation even in the atmosphere, no major problems will occur.

メッキ層の厚みは、金属ブラシ1と材料2の接触時間を
長くすること、もしくは金属ブラシ1の押しつけ力を強
くすることにより増すことができるが、メッキ層を厚く
すると、部分的剥離を生じる可能性が大きいので、メッ
キ層は、50μ以下が望ましい。
The thickness of the plating layer can be increased by increasing the contact time between the metal brush 1 and the material 2 or by increasing the pressing force of the metal brush 1, but if the plating layer is made thicker, partial peeling may occur. Since the thickness of the plating layer is large, it is desirable that the thickness of the plating layer is 50 μm or less.

第5図は、本発明方法のうち特許請求の範囲第1項記載
の方法により、金属ブラシにCuを用い42%Ni合金
(板厚0.5龍)にメカニカルメッキ法および従来の電
気メッキ法(片面のみメッキ)により固着させたメッキ
層の厚みと、90°曲げによるメッキ層の剥離がおこる
までの曲げ回数との関係を示したものである。本発明メ
カニカルメッキ方法によるメッキ層は、電気メッキ法に
よるものよりも固着力が強固であることを示している。
Figure 5 shows the mechanical plating method and the conventional electroplating method on a 42% Ni alloy (plate thickness 0.5 mm) using Cu as a metal brush by the method described in claim 1 of the method of the present invention. This figure shows the relationship between the thickness of the plated layer fixed by plating on only one side and the number of bends until the plated layer peels off by 90° bending. The results show that the plating layer formed by the mechanical plating method of the present invention has stronger adhesion than that formed by the electroplating method.

メカニカルメッキ方法により表面処理を施した材料の表
面特性は表面にメッキされた金属の特性をそのまま表わ
し、例えば42%Ni合金またはステンレス鋼にCuを
メッキさせた材料では、42%合金またはステンレス鋼
自体にくらべ、きわめて良好なハンダ付性、メッキ性、
導電性を有する等の特徴のある結果を得た。
The surface characteristics of a material that has been surface-treated using a mechanical plating method directly represent the characteristics of the metal plated on the surface. Extremely good solderability, plating performance,
Characteristic results such as having electrical conductivity were obtained.

さらに、前記メカニカルメッキ法によりメッキを施した
後、5%以上の冷間圧延を施す方法、5%以上の冷間圧
延を施した後100℃〜1200℃の温度範囲で焼なま
しを施す方法、100℃〜1200℃の温度範囲で焼な
ましを施す方法、100〜1200℃の温度範囲で焼な
ましを施し、さらに5%以上の冷間圧延を施す方法など
により、メッキ層と材料との拡散によってさらに完全な
固着が得られる。このことは固着力が強固で厚さが均一
なメッキ層が得られることを示している。
Furthermore, a method of applying cold rolling of 5% or more after plating by the mechanical plating method described above, and a method of applying cold rolling of 5% or more and then annealing at a temperature range of 100°C to 1200°C. , annealing at a temperature range of 100°C to 1200°C, or annealing at a temperature range of 100°C to 1200°C, followed by cold rolling of 5% or more. A more complete fixation can be obtained by diffusion. This shows that a plated layer with strong adhesion and uniform thickness can be obtained.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

表は、本発明によるメカニカルメッキ法のうち第2図(
alに示す方法により、Cu、N 1.A I。
The table shows the mechanical plating method according to the present invention shown in Figure 2 (
Cu, N 1. AI.

Zn、Tiおよび黄銅、インコネル600よりなるブラ
シと、被メッキ材42%Ni合金、ステンレス14.C
uおよび軟鋼につきメッキ層の厚みを変えて大気中でメ
ッキ処理を施した材料についてくり返し曲げ試験を行っ
た場合の結果を示す。なお、表には比較として従来の電
気メッキ法により42%Ni合金、ステンレス鋼にCu
、Niをメッキ層の厚さを変えて電気メッキしたものに
ついて、合わせて示す。
Brush made of Zn, Ti, brass, and Inconel 600, plated material 42% Ni alloy, stainless steel 14. C
The results are shown when repeated bending tests were conducted on materials plated in the atmosphere with different thicknesses of the plating layer for u and mild steel. For comparison, the table shows 42% Ni alloy and stainless steel plated with Cu by conventional electroplating method.
, electroplated Ni with varying thicknesses of the plating layer are also shown.

(実施例1) 表において特許請求の範囲第1項記載の本発明方法によ
るメッキのままの材料は、従来の電気メッキ方法と比較
してメッキ層の固着力が強固であるごとがわかる。
(Example 1) The table shows that the plated material as plated by the method of the present invention described in claim 1 has a stronger adhesion of the plated layer compared to the conventional electroplating method.

(実施例2) 表において特許請求の範囲第4項記載の本発明方法によ
るメッキ後、50%の冷間圧延を施した材料はメッキ層
の剥離がなく、固着力に優れていることがわかる。
(Example 2) The table shows that the material subjected to 50% cold rolling after plating according to the method of the present invention described in claim 4 has no peeling of the plating layer and has excellent adhesion. .

(実施例3) 表において特許請求の範囲第5項記載の本発明方法によ
るメ・ツキ後、50%の冷間圧延を施し、表に示した熱
処理条件で熱処理した材料はメッキ層は剥離せず下地の
被メッキ材料が破断し、完全な固着が得られていること
がわかる。
(Example 3) In the table, after plating by the method of the present invention described in claim 5, the plated layer was not peeled off when the material was subjected to 50% cold rolling and heat treated under the heat treatment conditions shown in the table. It can be seen that the underlying material to be plated was broken and complete adhesion was achieved.

(実施例4) 表において特許請求の範囲第6項記載の本発明方法によ
るメッキ後、表に示した熱処理条件で熱処理した材料は
実施例3と同様メッキ層が下地の材料に完全な固着が得
られていることがわかる。
(Example 4) In the table, after plating by the method of the present invention described in claim 6, the material was heat-treated under the heat treatment conditions shown in the table, and as in Example 3, the plated layer completely adhered to the underlying material. I can see that you are getting it.

(実施例5) 表において特許請求の範囲第7項記載の本発明方法によ
るメッキ後、表に示した熱処理条件で熱処理を施し、さ
らに50%の冷間圧延した材料は実施例3および4と同
様メッキ層が下地の材料に完全な固着が得られているこ
とがわかる。
(Example 5) In the table, after plating by the method of the present invention described in claim 7, the material was heat treated under the heat treatment conditions shown in the table and further cold rolled by 50%. Similarly, it can be seen that the plating layer is completely adhered to the underlying material.

(発明の効果) 本発明によるメカニカルメッキ方法は、金属ブラシと材
料との摩擦接触により、機械的に金属をメッキさせる方
法であるので、電気メッキ法や化学メッキ法の場合のご
とく、各種の槽や溶液を必要とせず安価な方法であり、
前記の冷間圧延と熱処理工程を有する製造工程に金属ブ
ラシを設置するのみで作業が行え、固着力が強固で厚さ
が均一なメッキされてなる材料が得られる。
(Effects of the Invention) The mechanical plating method according to the present invention is a method of mechanically plating metal by frictional contact between a metal brush and a material, so it can be used in various tanks as in the case of electroplating and chemical plating. It is an inexpensive method that does not require
The work can be carried out by simply installing a metal brush in the manufacturing process that includes the cold rolling and heat treatment steps described above, and a plated material with strong adhesion and uniform thickness can be obtained.

また本発明によるメカニカルメッキ方法には、従来方法
にくらべ、きわめて安価に、各種の純金属1合金を強固
に材料表面にメッキさせることができ、このような表面
処理を施した材料では、表面固着金属の特性を示し、メ
ッキ性、ハンダ付性。
In addition, the mechanical plating method according to the present invention can strongly plate various pure metal 1 alloys on the surface of materials at a much lower cost than conventional methods. Shows the characteristics of metal, plating and solderability.

導電性、耐食性、耐熱性、耐摩耗性、装飾性のすぐれた
メッキされてなる材料を得ることができる。
A plated material with excellent conductivity, corrosion resistance, heat resistance, abrasion resistance, and decorativeness can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al、 (bl、 (C)はそれぞれ本発明の
金属ブラシの実施態様を示す斜視図。 第2図(al、 (b)、 (C)はそれぞれ第1図(
alに示す金属ブラシと材料との相対運動との関係を示
す図。 第3図は第1図(b)および第1図(C1に示す金属ブ
ラシが材料をメッキしている場合を示す図。 第4図は第1図(C)に示す金属ブラシが材料をメッキ
している場合を示す斜視図。 第5図は42%Ni合金にCuをメカニカルメッキ法お
よび電気メッキ法によりメッキさせた材料の90’<り
返し曲げ回数とメッキ層の厚みとの関係を示す図である
。 ■・・・金属ブラシ、2・・・被メッキ材。 特許出願人 日本冶金工業株式会社 代理人 弁理士  村 1)政 治 第1図 (Q)                      
  (b)(C) 第2図
Figures 1 (al, bl, and c) are perspective views showing embodiments of the metal brush of the present invention.
The figure which shows the relationship between the relative motion of the metal brush and material shown in al. Figure 3 is a diagram showing the case where the metal brush shown in Figure 1 (b) and Figure 1 (C1) is plating the material. Figure 4 is a diagram showing the metal brush shown in Figure 1 (C) plating the material. Fig. 5 shows the relationship between the number of times of bending and the thickness of the plating layer for a material in which 42% Ni alloy is plated with Cu by mechanical plating and electroplating. 1) Politics Figure 1 (Q)
(b) (C) Figure 2

Claims (1)

【特許請求の範囲】 1、純金属あるいは合金をブラシ状にして金属ブラシと
し、前記金属ブラシと被メッキ材料を大気中、非酸化性
ガス中、真空中の何れか1種の雰囲気で、−20℃〜3
00℃の温度範囲において金属ブラシと被メッキ材料と
の相対運動により摩擦接触させて被メッキ材表面を活性
化し、金属ブラシの純金属または合金を被メッキ材表面
に機械的にメッキさせることを特徴とするメカニカルメ
ッキ方法。 2、前記金属ブラシは、Zn、Ni、Al、Cu、Ti
およびそれらの合金、ステンレス鋼、超合金などの純金
属あるいは合金よりなるワイヤ、リボン、テープのいず
れかよりなることを特徴とする特許請求の範囲第1項記
載のメカニカルメッキ方法。 3、前記金属ブラシは、ローラ状又は刷毛状であること
を特徴とする特許請求の範囲第1項記載のメカニカルメ
ッキ方法。 4、純金属あるいは合金をブラシ状にして金属ブラシと
し、前記金属ブラシと被メッキ材料を大気中、非酸化性
ガス中、真空中の何れか1種の雰囲気で、−20℃〜3
00℃の温度範囲において金属ブラシと被メッキ材料と
の相対運動により摩擦接触させて被メッキ材表面を活性
化し、金属ブラシの純金属または合金を被メッキ材表面
に機械的にメッキさせた後、5%以上の冷間圧延を施す
ことを特徴とするメカニカルメッキ方法。 5、純金属あるいは合金をブラシ状にして金属ブラシと
し、前記金属ブラシと被メッキ材料を大気中、非酸化性
ガス中、真空中の何れか1種の雰囲気で、−20℃〜3
00℃の温度範囲において金属ブラシと被メッキ材料と
の相対運動により摩擦接触させて被メッキ材表面を活性
化し、金属ブラシの純金属または合金を被メッキ材表面
に機械的にメッキさせた後、5%以上の冷間圧延を施し
、さらに100℃〜1200℃の温度範囲で焼なましす
ることを特徴とするメカニカルメッキ方法。 6、純金属あるいは合金をブラシ状にして金属ブラシと
し、前記金属ブラシと被メッキ材料を大気中、非酸化性
ガス中、真空中の何れか1種の雰囲気で、−20℃〜3
00℃の温度範囲において金属ブラシと被メッキ材料と
の相対運動により摩擦接触させて被メッキ材表面を活性
化し、金属ブラシの純金属または合金を被メッキ材表面
に機械的にメッキさせた後、100〜1200℃の温度
範囲で焼なましすることを特徴とするメカニカルメッキ
方法。 7、純金属あるいは合金をブラシ状にして金属ブラシと
し、前記金属ブラシと被メッキ材料を大気中、非酸化性
ガス中、真空中の何れか1種の雰囲気で、−20℃〜3
00℃の温度範囲において金属ブラシと被メッキ材料と
の相対運動により摩擦接触させて被メッキ材表面を活性
化し、金属ブラシの純金属または合金を被メッキ材表面
に機械的にメッキさせた後、100〜1200℃の温度
範囲で焼なましを施し、さらに5%以上の冷間圧延を施
すことを特徴とするメカニカルメッキ方法。
[Claims] 1. A metal brush made of a pure metal or an alloy, and the metal brush and the material to be plated placed in one of the atmosphere, non-oxidizing gas, and vacuum, - 20℃~3
The feature is that the metal brush and the material to be plated are brought into frictional contact with each other through relative motion in a temperature range of 00°C to activate the surface of the material to be plated, and the pure metal or alloy of the metal brush is mechanically plated onto the surface of the material to be plated. Mechanical plating method. 2. The metal brush is made of Zn, Ni, Al, Cu, Ti.
The mechanical plating method according to claim 1, characterized in that the method is made of wire, ribbon, or tape made of pure metal or alloy such as alloys thereof, stainless steel, and superalloys. 3. The mechanical plating method according to claim 1, wherein the metal brush has a roller shape or a brush shape. 4. A metal brush made of a pure metal or an alloy, and the metal brush and the material to be plated are heated in an atmosphere of -20°C to 3°C in one of the atmosphere, non-oxidizing gas, and vacuum.
After activating the surface of the material to be plated by bringing it into frictional contact through relative motion between the metal brush and the material to be plated in a temperature range of 00°C, and mechanically plating the pure metal or alloy of the metal brush onto the surface of the material to be plated, A mechanical plating method characterized by cold rolling of 5% or more. 5. A metal brush made of a pure metal or an alloy, and the metal brush and the material to be plated are heated in an atmosphere of -20°C to 3°C in one of the atmosphere, non-oxidizing gas, and vacuum.
After activating the surface of the material to be plated by bringing it into frictional contact through relative motion between the metal brush and the material to be plated in a temperature range of 00°C, and mechanically plating the pure metal or alloy of the metal brush onto the surface of the material to be plated, A mechanical plating method characterized by cold rolling of 5% or more and further annealing in a temperature range of 100°C to 1200°C. 6. Make a metal brush out of pure metal or alloy, and heat the metal brush and the material to be plated in an atmosphere of -20°C to 3°C in any one of the atmosphere, non-oxidizing gas, and vacuum.
After activating the surface of the material to be plated by bringing it into frictional contact through relative motion between the metal brush and the material to be plated in a temperature range of 00°C, and mechanically plating the pure metal or alloy of the metal brush onto the surface of the material to be plated, A mechanical plating method characterized by annealing at a temperature range of 100 to 1200°C. 7. A metal brush made of a pure metal or an alloy, and the metal brush and the material to be plated are heated in an atmosphere of -20°C to 3°C in one of the atmosphere, non-oxidizing gas, and vacuum.
After activating the surface of the material to be plated by bringing it into frictional contact through relative motion between the metal brush and the material to be plated in a temperature range of 00°C, and mechanically plating the pure metal or alloy of the metal brush onto the surface of the material to be plated, A mechanical plating method characterized by annealing in a temperature range of 100 to 1200°C and further cold rolling at a rate of 5% or more.
JP10776486A 1986-05-13 1986-05-13 Mechanical plating method Pending JPS62267480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10776486A JPS62267480A (en) 1986-05-13 1986-05-13 Mechanical plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10776486A JPS62267480A (en) 1986-05-13 1986-05-13 Mechanical plating method

Publications (1)

Publication Number Publication Date
JPS62267480A true JPS62267480A (en) 1987-11-20

Family

ID=14467402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10776486A Pending JPS62267480A (en) 1986-05-13 1986-05-13 Mechanical plating method

Country Status (1)

Country Link
JP (1) JPS62267480A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321863A1 (en) * 1987-12-21 1989-06-28 Nippon Yakin Kogyo Co., Ltd. Mechanical plasting process
JPH0219481A (en) * 1988-07-06 1990-01-23 Nippon Yakin Kogyo Co Ltd Mechanical plating method
JPH0598460A (en) * 1991-04-01 1993-04-20 Nippon Yakin Kogyo Co Ltd Method for controlling mechanical plating
JP2006299363A (en) * 2005-04-22 2006-11-02 Nisshin Steel Co Ltd Method for producing copper-plated steel sheet for electric contacting point
CN103243360A (en) * 2012-02-13 2013-08-14 南车戚墅堰机车车辆工艺研究所有限公司 Zn-Ni alloy brush plating solution and brush plating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087930A (en) * 1973-12-10 1975-07-15
JPS55145163A (en) * 1979-04-24 1980-11-12 Haruo Akiyama Brass-baking method at low temperature by brass wire brush
JPS583980A (en) * 1981-06-30 1983-01-10 エリス・テイ−・クレイトン Portable mechanical plating device and plating method thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087930A (en) * 1973-12-10 1975-07-15
JPS55145163A (en) * 1979-04-24 1980-11-12 Haruo Akiyama Brass-baking method at low temperature by brass wire brush
JPS583980A (en) * 1981-06-30 1983-01-10 エリス・テイ−・クレイトン Portable mechanical plating device and plating method thereby

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321863A1 (en) * 1987-12-21 1989-06-28 Nippon Yakin Kogyo Co., Ltd. Mechanical plasting process
JPH0219481A (en) * 1988-07-06 1990-01-23 Nippon Yakin Kogyo Co Ltd Mechanical plating method
JPH0563554B2 (en) * 1988-07-06 1993-09-10 Nippon Yakin Kogyo Co Ltd
JPH0598460A (en) * 1991-04-01 1993-04-20 Nippon Yakin Kogyo Co Ltd Method for controlling mechanical plating
JP2006299363A (en) * 2005-04-22 2006-11-02 Nisshin Steel Co Ltd Method for producing copper-plated steel sheet for electric contacting point
JP4688100B2 (en) * 2005-04-22 2011-05-25 日新製鋼株式会社 Manufacturing method of Cu plated steel sheet for electrical contacts
CN103243360A (en) * 2012-02-13 2013-08-14 南车戚墅堰机车车辆工艺研究所有限公司 Zn-Ni alloy brush plating solution and brush plating method

Similar Documents

Publication Publication Date Title
US2428033A (en) Manufacture of rustproof electrolytic coatings for metal stock
US4487663A (en) Steel sheets for preparing welded and coated cans and method for manufacturing the same
JPS62267480A (en) Mechanical plating method
JPH05271986A (en) Aluminum-organic polymer laminate
JPS62267481A (en) Mechanical plating method
JPS61235594A (en) Ni plated steel sheet having superior workability and corrosion resistance and its manufacture
JPS61270363A (en) Diffused alloy steel foil
JPS6372895A (en) Production of parts for electronic and electrical equipment
JPH0466695A (en) Heat resisting silver coated copper wire and its production
JP2769350B2 (en) Manufacturing method of hot-dip coated steel sheet
JPS6036000B2 (en) Heat-resistant silver coated copper wire and its manufacturing method
JPS61284593A (en) Manufacture of copper alloy bar for contact maker
JP3092930B2 (en) Ni, Cu coated cold rolled steel sheet and method for producing the same
JP2776701B2 (en) Striped steel sheet with excellent workability and corrosion resistance
US5314108A (en) Method of producing welded tube with excellent corrosion-resistant inner surface
JP3386581B2 (en) Early patina-generating exterior material and method for producing the same
JPH01259153A (en) Manufacture of hot dipped steel sheet
JPS63282293A (en) Electroplating method for stainless steel sheet with zn, ni, or cu
JPS63203777A (en) Partial mechanical plating method
JP3371109B2 (en) Anticorrosion coating of magnesium alloy
JPS63216957A (en) Stainless steel having excellent resistance to high-temperature oxidation
JP3309234B2 (en) Cu-base alloy-plated stainless steel sheet excellent in corrosion resistance and workability and method for producing the same
JP2691325B2 (en) Manufacturing method of carbon steel thin plate for mainspring
JPH01191770A (en) Production of fin material for copper alloy radiator
JPH07268604A (en) Production of zn-mg vapor deposition-coated steel sheet